
In: Proceedings of CoNLL-2000 and LLL-2000, pages 73-78, Lisbon, Portugal, 2000.

Using Induced Rules as Complex Features
in Memory-Based Language Learning

A n t a l v a n d e n B o s c h
ILK / Computa t ional Linguistics

Tilburg University, The Netherlands
Ant al. vdnBo s ch@kub, nl

A b s t r a c t

An extension to memory-based learning is de-
scribed in which automatically induced rules
are used as binary features. These features
have an "active" value when the left-hand side
of the underlying rule applies to the instance.
The RIPPER rule induction algorithm is adopted
for the selection of the underlying rules. The
similarity of a memory instance to a new in-
stance is measured by taking the sum of the
weights of the matching rules both instances
share. We report on experiments that indicate
that (i) the method works equally well or bet-
ter than RIPPER on various language learning
and other benchmark datasets; (ii) the method
does not necessarily perform better than default
memory-based learning, but (iii) when multi-
valued features are combined with the rule-
based features, some slight to significant im-
provements are observed.

1 R u l e s as f e a t u r e s

A common machine-learning solution to classi-
fication problems is rule induction (Clark and
Niblett, 1989; Quinlan, 1993; Cohen, 1995).
The goal of rule induction is generally to induce
a set of rules from data, that captures all gener-
alisable knowledge within that data, and that is
as small as possible at the same time. Classifica-
tion in rule-induction classifiers is based on the
firing of rules on a new instance, triggered by
matching feature values to the left-hand side of
the rule. Rules can be of various normal forms,
and can furthermore be ordered. The appropri-
ate content and ordering of rules can be hard
to find, and at the heart of most rule induction
systems are strong search algorithms that at-
tempt to minimise search through the space of
possible rule sets and orderings.

Although rules appear quite different from in-

stances as used in memory-based or instance-
based learning (Aha et al., 1991; Daelemans and
Van den Bosch, 1992; Daelemans et al., 1997b)
there is a continuum between them. Rules can
be seen as generalised instances; they represent
the set of training instances with the same class
that match on the conditions on the left-hand
side of the rule. Therefore, classification strate-
gies from memory-based learning can naturally
be applied to rules. For example, (Domingos,
1996) describes the RISE system, in which rules
are (carefully) generalised from instances, and
in which the k-NN classification rule searches
for nearest neighbours within these rules when
classifying new instances.

Often, the sets of instances covered by rules
overlap. In other words, seen from the instance
perspective, a single instance can match more
than one rule. Consider the schematic exam-
ple displayed in Figure 1. Three instances with
three multi-valued features match individually
with one or two of the four rules; for example,
the first instance matches with rule 1 (if f l = A
then c = Z) and with rule 3 (if f2 = C then
c = Z).

Pursuing this reasoning, it is possible to in-
dex instances by the rules that apply to them.
For example, in Figure 1, the first instance can
be indexed by the "active" rule identification
numbers 1 and 3. When the left-hand sides of
rules are seen as complex features (in which the
presence of some combination of feature values
is queried) that are strong predictors of a single
class, indexing instances by the rules that apply
to them is essentially the same as representing
instances by a set of complex features.

Note that when a rule matches an instance,
this does not guarantee that the class of the
instance is identical to the rule's predicted class

- many rules will classify with some amount of

73

1

2

3

" ' " 4

: f l f2 f3

.-.-..Ig Ig I0 I

if f l =A then c=Z

if f l=B and f2=B then c=Y

if f2=C then c=Z

if f3=C then c=Z

c

Figure 1: Schematic visualization of the encod-
ing of multi-valued instances via matching rules
to rule-indexed instances, characterlsed by the
numbers of the rules that match them. f l , f2,
and f3 represent the three features, c represents
the class label.

error. In Figure 1, the third memory instance
matches rules 3 and 4 which both predict a Z,
while the instance itself has class X.

Now when instances are represented this way,
they can be used in k-NN classification. Each
complex feature then becomes a binary feature,
that can also be assigned some weight (e.g.,
gain-ratio feature weights, chi-square, or equal
weights (Daelemans et al., 2000)); when a mem-
ory instance and a new test instance share com-
plex features, their similarity becomes the sum
of the weights of the matching features. In Fig-
ure 1, a new instance (bottom) matches rules 2
and 4, thereby (partially) matching the second
and third memory instances. If, for example,
rule 4 would have a higher overall weight than
rule 2, the third memory instance would become
the nearest neighbor. The k-NN rule then says
that the class of the nearest neighbour transfers
to the new instance, which would mean that
class X would be copied - which is a differ-
ent class than those predicted either by rule 2
or 4. This is a marked difference with classi-
fication in RIPPER, where the class is assigned
directly to the new instance by the rule that
fires first. It can be expected that many classi-
fications in this approach would be identical to

those made by RIPPER, but it is possible that
the k-NN approach has some consistent advan-
tage in the cases where classification diverges.

In this paper we investigate some effects of
recoding instances by complex features induced
by an external rule-induction algorithm, and
show that the approach is promising for lan-
guage learning tasks. We find that the method
works equally well or better than RIPPER on
various language learning and other benchmark
datasets. However, the method does not nec-
essarily perform better than default memory-
based learning. Only when the rule-indexing
features are added to the original multi-valued
features, improvements are observed.

2 R u l e - B a s e d M e m o r y : a l g o r i t h m

A new memory-based learning variant RBM,

which stands for Rule-Based Memory, imple-
ments the ideas described in the previous sec-
tion using the following procedure: given a
training set and a test set of a certain classifi-
cation task, (1) apply RIPPER (Cohen, 1995) to
the training set, and collect the set of induced
rules; (2) recode the instances in the training
and test set according to these rules; (3) ap-
ply the basic memory-based learning algorithm
IBi-IG to the recoded training set, and k-NN-
classify the recoded test set. We describe each
of these steps briefly here.

RIPPER (Cohen, 1995) is a fast rule induction
algorithm that splits the training set in two.
On the basis of one part it induces rules in a
straightforward way, with potential overfitting.
When the induced rules classify instances in the
other part of the split training set below some
classification accuracy threshold, they are not
stored. Rules are induced per class, in a certain
class ordering. By default, the ordering is from
low-frequency classes to high frequency classes,
leaving the most frequent class as the default
rule, which is generally beneficial for the total
description length of the rule set. In our experi-
ments, we let RIPPER order the rules from high-
frequent to low-frequent, the idea being that
this method would yield more complex features.

Then, the rule set was taken as the basis
for recoding both the training and test set, as
schematically visualised in Figure 1. As with
the training material, each test set was recoded
in batch, but this could have been done on-

74

line during classification without much compu-
tational overhead. For each language task we
experimented on, we performed 10-fold cross
validation tests, so ten different train-test par-
titions were produced (Weiss and Kulikowski,
1991) that were recoded, and then tested on.
Tests were performed with the TiMBL software
package (Daelemans et al., 2000), using the soft-
ware's dedicated routines for handling binary
features. The default IBi-IG algorithm was used
(for details, consult (Aha et al., 1991; Daele-
mans and Van den Bosch, 1992; Daelemans et
al., 1997b), with gain ratio selected as feature
weighting metric.

3 R e s u l t s

We performed experiments on the following five
language data sets - More details on numbers of
features, values per features, number of classes
and number of instances are displayed in Ta-
ble 1:

D i m i n u t i v e f o r m a t i o n (henceforth DIM):
choosing the correct diminutive inflection
to Dutch nouns out of five possible: je, tje,
pie, kje, and etje, on the basis of phonemic
word transcriptions, segmented at the
level of syllable onset, nucei and coda
of the final three syllables of the word.
The data stems from a study described in
(Daelemans et al., 1997a).

G r a p h e m e - p h o n e m e c o n v e r s i o n (GPSM):
the conversion of a window of nine letters
to the phonemic transcription of the
middle letter. From the original data set
described in (Van den Bosch, 1997) a 10%
subset was drawn.

B a s e - N P c h u n k i n g (NPSM): the segmenta-
tion of sentences into non-recursive NPs.
(Veenstra, 1998) used the Base-NP tag set
as presented in (Ramshaw and Marcus,
1995): I for inside a Base-NP, O for out-
side a Base-NP, and B for the first word
in a Base-NP following another Base-NP.
See (Veenstra, 1998) for more details, and
(Daelemans et al., 1999) for a series of ex-
periments on the original data set from
which we have used a randomly-extracted
10%.

P a r t - o f - s p e e c h t a g g i n g (POSSM): the disam-
biguation of syntactic classes of words in

P P

particular contexts. We assume a tagger
architecture that processes a sentence from
a disambiguated left to an ambiguous right
context , as described in (Daelemans et al.,
1996). The original data set for the part-
of-speech tagging task, extracted from the
LOB corpus, contains 1,046,151 instances;
we have used a randomly-extracted 10% of
this data.

a t t a c h m e n t (PP): the at tachment o fa PP
in the sequence VP hip PP (VP = verb
phrase, 51P = noun phrase, PP = prepo-
sitional phrase). The data consists of four-
tuples of words, extracted from the Wall
Street Journal Treebank. From the origi-
nal data set, used by (Ratnaparkhi et al.,
1994), (Collins and Brooks, 1995), and (Za-
vrel et al., 1997), (Daelemans et al., 1999)
took the train and test set together to form
the particular data also used here.

Table 2 lists the average (10-fold cross-
validation) accuracies, measured in percentages
of correctly classified test instances, of IBI-IG,
RIPPER, and RBM on these five tasks. The clear-
est overall pat tern in this table is the high accu-
racy of IBi-IG, surpassed only twice by RBM on
the DIM and NPSM tasks (significantly, accord-
ing to one-tailed t-tests, with p < 0.05). On
the other three tasks, IBI-IG outperforms RBM.
RIPPER performs significantly more accurately
than IBi-IG only on the DIM task. Once again,
evidence is collected for the global finding that
forgetting parts of the training material, as ob-
viously happens in rule induction, tends to be
harmful to generalisation accuracy in language
learning (Daelemans et al., 1999).

A surprising result apparent in Table 2 is that
RBM never performs worse than RIPPER; in fact,
it performs significantly more accurately than
RIPPER with the GPSM, NPSM, and POSSM tasks.
There appears to be an advantage in the k-
NN approach to rule matching and voting, over
the RIPPER strategy of ordered rule firing, with
these tasks.

Another advantage, now of RBM as opposed
to IBi-IG, is the reduced memory requirements
and resulting speed enhancements. As listed in
Table 3, the average number of rules in the rule
sets induced by RIPPER range between 29 and
971. Averaged over all tasks, the rules have on

75

Data set
DIM

GPSM
POS
NP
PP

#l
Feat.

111
9
5

11
4

Values of ~ature
1 2 3 4 5 6 7 8 9 10 11 12
3 51 19 40 3 61 20 79 2 64 18

42 42 42 42 41 42 42 42 42
155 157 414 395 384

5961 5911 5895 5908 51 50 55 49 3 3 3
3474 4612 68 5780

43

Data set

Cla~ instances 3950

6i I 67,575 15 104,617
25 114
23,898

Table 1: Specifications of the five investigated language learning tasks: numbers of features, values
per feature, classes, and instances. The rightmost column gives the total number of values times
the number of classes.

Task
DIM
GPSM
NPSM
POSSM
PP

% Correct test instances
IBi-IG RIPPER RBM
96.2±0.6 9 6 . 9 ± 0 . 7 . 9 6 . 9 ± 0 . 7 .
88 .9±0.6 80.4±0.5 8 3 . 3 ± 0 . 5 + x/
97.2±0.3 96.9±0.4 9 7 . 5 ± 0 . 4 .
96.6±0.2 94.3±0.2 9 5 . 0 ± 0 . 2 + x /
82.0 :t= 0.5 77.0 ± 0.7 77.0 ± 0.6 +

Table 2: Average generalisation accuracies of
I B i - I G , RIPPER, and RBM o n f ive language learn-
ing tasks. '*' denotes significantly bet ter accu-
racy of RBM or RIPPER over IBi-IG with p
0.05. '+ ' denotes significance in the reverse di-
rection, x /denotes significantly bet ter accuracy
of RBM over RIPPER with p < 0.05.

average about two to four conditions (feature-
value tests). More importantly, as the third
column of Table 3 shows, the average number
of active rules in instances is below two for all
tasks. This means that in most instances of any
of the five tasks, only one complex feature (bit)
is active.

Especially with the smaller rule sets (DIM,

NPSM, and PP - which all have few classes, cf.
Table 1), RBM's classification is very speedy. It
reduces, for example, classification of the NPSM

test set from 19 seconds to 1 second 1. Large
rule sets (GPSM), however, can have adverse ef-
fects - from 8 seconds in ml-IG to 17 seconds
in RBM.

In sum, we observe two cases (DIM and NPSM)

in which RBM attains a significant general±sa-
t±on accuracy improvement over IBi-IG as well
as some interesting classification speedup, but
for the other tasks, for now unpredictably, geE-

1 Timings are measured on one partition, using a dual-
Pentium II 200 Mhz machine running Linux 2.2.

Task
DIM
GPSM
NPSM
POSSM
PP

RIPPER / RBM
#ru l e s c/r f/i

61 2.5 1.3
971 3.9 1.5

72 2.8 1.8
628 2.7 1.0

29 3.0 0.3

Classif. time (s)
IBi-IG RBM

1 1
8 17

19 1
32 13
19 1

Table 3: Average number of RIPPER rules, con-
ditions per rule (c/r), and coded features per
instance (f/i); and one-part i t ion timings (s) of
classification of test material in IBI-IG and RBM,
for five language tasks.

eralisation accuracy losses and even a slowdown
are observed. The lat ter occurs with GPSM,

which has been analysed earlier as being ex-
t remely disjunct in class space, and therefore
highly sensitive to the "forgetting exceptions
is harmful" syndrome (Daelemans et al., 1999;
Van den Bosch, 1999a).

The complex features used in RBM are taken
as the only information available; the original
information (the feature values) are discarded.
This need not be the case; it is possible that the
recoded instances are merged with their orig-
inal feature-value vectors. We performed ex-
periments in which we made this fusion; the
results are listed in Table 4. Comparing the
column labeled "IBi-IG+RBM, denoting the fu-
sion variant, with the IBi-IG column, it can be
seen that it reaches some modest error reduc-
tion percentages (rightmost column in Table 4).
In fact, with NPSM and POSSM, it performs sig-
nificantly bet ter (again, according to one-tailed
t-tests, with p < 0.05) than IBI-IG. On the
other hand, adding the (average) 971 complex
features to the nine multi-valued features in the

76

Task
DIM
GPSM
NPSM
POSSM
PP

% Correct test instances
IBi-IG IBI-IG-bRBM
96.2 ± 0.6 96.2 ± 0.7
88.9 ± 0.6 88.6 ± 0.4
97.2±0.3 97 .6±0 .4 .
96.6±0.2 96 .8±0 .2 .
82.0 ± 0.5 82.1 ± 0.5

% Error
reduct.

0.0
-2.3
6.0
4.6
1.0

Table 4: Average general±sat±on accuracies of
IBI - IG a n d I B i - I G + RBM, and the percentage of
error reduction, on five language learning tasks.
' . ' denotes significantly better accuracy of IB1-
IG--~-RBM over IBi-IG with p < 0.05.

GPSM causes a slight drop in performance - and
a slowdown.

4 D i s c u s s i o n

Representing instances by complex features
that have been induced by a rule induction al-
gorithm appears, in view of the measured ac-
curacies, a viable alternative approach to us-
ing rules, as compared to standard rule induc-
tion. This result is in line with results reported
by Domingos on the RISE algorithm (Domingos,
1995; Domingos, 1996). A marked difference is
that in RISE, the rules are the ins tances in k-
NN classification (and due to the careful gen-
eral±sat±on strategy of RISE, they can be very
instance-specific), while in RBM, the rules are
the features by which the original instances are
indexed. When a nearest neighbor is found to a
query instance in RBM, it is because the two in-
stances share one or more matching rules. The
actual classification that is transferred from the
memory instance to the new instance is just the
classification that this memory item is stored
with - it may well be another class than any of
its matching rules predict.

Second, the method is a potent ial ly helpful
extension to memory-based learning of language
processing tasks. When nothing is known about
the characteristics of a language processing data
set, it is advisable to add the induced complex
features to the original features, and do k-NN
classification on the combination; it is not ad-
visable to base classification only on the induced
complex features. On its own, the method basi-
cally inherits a part of the detrimental "forget-
ting exceptions is harmful" effect from its rule-
induction source (this effect is stronger when

% Correct test instances
Task IBI-IG RBM IBi-IG-bRBM
CAR 93.9 ± 2.1 98.9 ± 0.8 97.2 ± 1.3
NURSERY 94.6 ± 0.6 98.6 ± 0.5 98.7 ± 0.2
SPLICE 91.7 ± 1.1 89.0 ± 2.1 92.7 ± 1.7

Table 5: Average generalisation accuracies of
IB i - IG , RIPPER, and RBM o n three machine-
learning benchmark tasks.

a data set is more disjunct (Daelemans et al.,
1999)). Although RBM performs equal to or bet-
ter than RIPPER, it often does not regain the
level of IBi-IG.

High disjunctivity appears to be a typical fea-
ture of language tasks (Van den Bosch, 1999b);
other non-language tasks generally display less
disjunctivity, which opens the possibility that
the RBM approach may work well for some
of these tasks. We performed pilot tests on
three machine learning benchmark classification
tasks (taken from the UCI benchmark repos-
±tory (Blake and Merz, 1998)) with symbolic,
multi-valued features. Table 5 displays the re-
sults of these experiments. Although the data
set selection is small, the results of RBM and es-
pecially of IBi-IG--~-RBM are promising; the lat-
ter algorithm is consistently better than IBi-IG.
More research and comparisons are needed to
arrive at a broader picture.

An immediate point of further research lies
in the external rule induction algorithm. First,
RIPPER has options that have not been used
here, but that may be relevant for the current
issue, e.g. RIPPER's ability to represent sets
of values at left-hand side conditions, and its
flexibility in producing larger or smaller num-
bers of rules. Second, other rule induction algo-
rithms exist that may play RIPPER'S role, such
as C4.5RULES (Quinlan, 1993).

More generally, further research should fo-
cus on the scaling properties of the approach
(including the scaling of the external rule-
induction algorithm), should investigate more
and larger language data sets, and should seek
comparisons with other existing methods that
claim to handle complex features efficiently
(Brill, 1993; Ratnaparkhi, 1997; Roth, 1998;
Brants, 2000).

77

Acknowledgements
The author thanks the members of the Tilburg
ILK group and the Antwerp CNTS group for
fruitful discussions. This research has been
made possible by a fellowship of the Royal
Netherlands Academy of Arts and Sciences
(KNAW).

R e f e r e n c e s

D.W. Aha, D. Kibler, and M. Albert. 1991.
Instance-based learning algorithms. Machine
Learning, 6:37-66.

C.L. Blake and C.J. Merz. 1998. UCI repository of
machine learning databases.

Thorsten Brants. 2000. TnT - a statistical part-of-
speech tagger. In Proceedings of the Sixth Applied
Natural Language Processing (ANLP-2000), Seat-
tle, WA.

E. Brill. 1993. A Corpus-Based Approach to Lan-
guage Learning. Dissertation, Department of
Computer and Information Science, University of
Pennsylvania.

P. Clark and T. Niblett. 1989. The CN2 rule induc-
tion algorithm. Machine Learning, 3:261-284.

W. W. Cohen. 1995. Fast effective rule induction.
In Proceedings of the Twelfth International Con-
ference on Machine Learning, Lake Tahoe, Cali-
fornia.

M.J Collins and J. Brooks. 1995. Prepositional
phrase attachment through a backed-off model.
In Proc. of Third Workshop on Very Large Cor-
pora, Cambridge.

W. Daelemans and A. Van den Bosch. 1992. Gener-
alisation performance of backpropagation learning
on a syllabification task. In M. F. J. Drossaers and
A. Nijholt, editors, Proc. of TWLT3: Connection-
ism and Natural Language Processing, pages 27-
37, Enschede. Twente University.

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis.
1996. MBT: A memory-based part of speech tag-
ger generator. In E. Ejerhed and I.Dagan, editors,
Proc. of Fourth Workshop on Very Large Corpora,
pages 14-27. ACL SIGDAT.

W. Daelemans, P. Berck, and S. Gillis. 1997a. Data
mining as a method for linguistic analysis: Dutch
diminutives. Folia Linguistica, XXXI(1-2).

W. Daelemans, A. Van den Bosch, and A. Weijters.
1997b. IGTree: using trees for compression and
classification in lazy learning algorithms. Artifi-
cial Intelligence Review, 11:407-423.

W. Daelemans, A. Van den Bosch, and J. Zavrel.
1999. Forgetting exceptions is harmful in lan-
guage learning. Machine Learning, 34(1-3):11-
43.

W. Daelemans, J. Zavrel, K. Van der Sloot, and
A. Van den Bosch. 2000. TiMBL: Tilburg Mem-

ory Based Learner, version 3.0, reference manual.
Technical Report ILK-0001, ILK, Tilburg Univer-
sity.

P. Domingos. 1995. The rise 2.0 system: A case
study in multistrategy learning. Technical Re-
port 95-2, University of California at Irvine, De-
partment of Information and Computer Science,
Irvine, CA.

P. Domingos. 1996. Unifying instance-based and
rule-based induction. Machine Learning, 24:141-
168.

J.R. Quinlan. 1993. c4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA.

L.A. Ramshaw and M.P. Marcus. 1995. Text chunk-
ing using transformation-based learning. In Proc.
of Third Workshop on Very Large Corpora, pages
82-94, June.

A. Ratnaparkhi, J. Reynar, and S. Roukos. 1994. A
maximum entropy model for prepositional phrase
attachment. In Workshop on Human Language
Technology, Plainsboro, N J, March. ARPA.

A. Ratnaparkhi. 1997. A linear observed time sta-
tistical parser based on maximum entropy models.
Technical Report cmp-lg/9706014, Computation
and Language, http://xxx.lanl.gov/list/cmp-lg/,
June.

D. Roth. 1998. Learning to resolve natural language
ambiguities: A unified approach. In Proceedings
of the National Conference on Artificial Intelli-
gence, pages 898-904.

A. Van den Bosch. 1997. Learning to pronounce
written words: A study in inductive language
learning. Ph.D. thesis, Universiteit Maastricht.

A. Van den Bosch. 1999a. Careful abstraction from
instance families in memory-based language learn-
ing. Journal for Experimental and Theoretical Ar-
tificial Intelligence, 11(3):339-368.

A. Van den Bosch. 1999b. Instance-family ab-
straction in memory-based language learning. In
I. Bratko and S. Dzeroski, editors, Machine
Learning: Proceedings of the Sixteenth Interna-
tional Conference, pages 39-48, Bled, Slovenia.

J. Veenstra. 1998. Fast NP chunking using memory-
based learning techniques. In Proceedings of
BENELEARN'98, Wageningen, The Netherlands.

S. Weiss and C. Kulikowski. 1991. Computer sys-
tems that learn. San Mateo, CA: Morgan Kauf-
mann.

J. Zavrel, W. Daelemans, and J. Veenstra. 1997. Re-
solving PP attachment ambiguities with memory-
based learning. In M. Ellison, editor, Proc. of the
Workshop on Computational Language Learning
(CoNLL'97), ACL, Madrid.

78

