
In: Proceedings o/CoNLL-2000 and LLL-2000, pages 49-54, Lisbon, Portugal, 2000. 

Overfitting Avoidance for Stochastic Model ing of 
Attribute-Value Grammars 

T o n y  M u l l e n  
Alfa- Informat ica  

Universi ty of Groningen  
mullen@let, rug. nl 

M i l e s  O s b o r n e  
Division of Informat ics  

Universi ty of Ed inburgh  
osborne@cogsci, ed. ac. uk 

A b s t r a c t  

We present a novel approach to the problem 
of overfitting in the training of stochastic mod- 
els for selecting parses generated by attribute- 
valued grammars. In this approach, statistical 
features are merged according to the frequency 
of linguistic elements within the features. The 
resulting models are more general than the orig- 
inal models, and contain fewer parameters. Em- 
pirical results from the task of parse selection 
suggest that  the improvement in performance 
over repeated iterations of iterative scaling is 
more reliable with such generalized models than 
with ungeneralized models. 

1 I n t r o d u c t i o n  

The maximum entropy technique of statistical 
modeling using random fields has proved to be 
an effective way of dealing with a variety of lin- 
guistic phenomena, in particular where mod- 
eling of attribute-valued grammars (AVG's) is 
concerned (Abney, 1997). This is largely be- 
cause its capacity for considering overlapping 
information sources allows the most to be made 
of situations where data is sparse. Neverthe- 
less, it is important  that  the statistical features 
employed be appropriate to the job. If the infor- 
mation contributed by the features is too spe- 
cific to the training data, overfitting becomes a 
problem (Chen and Rosenfeld, 1999; Osborne, 
2000). In this event, a peak in model perfor- 
mance will be reached early on, and continued 
training yields progressive deterioration in per- 
formance. From a theoretical standpoint,  over- 
fitting indicates that  the model distribution is 
unrepresentative of the actual probabilities. In 
practice, it makes the performance of the model 
dependent upon early stopping of training. The 

point at which this must be done is not always 
reliably predictable. 

This paper describes an approach to feature 
selection for maximum entropy models which 
reduces the effects of overfitting. Candidate fea- 
tures are built up from basic grammatical el- 
ements found in the corpus. This "composi- 
tional" quality of the features is exploited for 
the purpose of overfitting reduction by means 
of ]eature merging. In this process, features 
which are similar to each other, save for cer- 
tain elements, are merged; i.e, their disjunc- 
tion is considered as a feature in itself, thus 
reducing the number of features in the model. 
The motivation behind this methodology is sim- 
ilar to that  behind that  of Kohavi and John 
(1997), but  rather than seeking a proper subset 
of the candidate feature set, the merging pro- 
cedure a t tempts  to compress the feature set, 
diminishing both  noise and redundancy. The 
method differs from a simple feature cutoff, such 
as that  described in Ratnaparkhi  (1998), in 
that  the feature cutoff eliminates statistical fea- 
tures directly, whereas the merging procedure 
at tempts  to generalize them. The method em- 
ployed here also derives inspiration from the no- 
tion of Bayesian model merging introduced by 
Stolcke and Omohundro (1994). 

Section 2 describes parse selection and dis- 
cusses the "compositional" statistical features 
employed in a maximum entropy approach to 
the task. Section 3 introduces the notion of fea- 
ture merging and discusses its relationship with 
overfitting reduction. Sections 4 and 5 describe 
the experimental models built and the results of 
merging on their performance. Finally, section 
6 sums up briefly and indicates some further di- 
rections for inquiry on the subject. 
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2 M a x i m u m  e n t r o p y - b a s e d  p a r s e  
s e l e c t i o n  

The task of parse selection involves selecting the 
best possible parse for a sentence from a set 
of possible parses produced by an AVG. In the 
present approach, parses are ranked according 
to their goodness by a statistical model built us- 
ing the maximum entropy technique, which in- 
volves building a distribution over events which 
is the most uniform possible, given constraints 
derived from training data. Events are com- 
posed of features, the fundamental statistical 
units whose distribution is modeled. The model 
is characterized by constraints upon the dis- 
tributions of features, derived from the fea- 
tures' empirical frequencies. An untrained (thus 
unconstrained) max ent model is by defini- 
tion characterized by the uniform distribution. 
The constraints which characterize the model 
are expressed as weights on individual features. 
Training the model involves deriving the best 
weights from the training data by means of 
an algorithm such as Improved Iterative Scaling 
(IIS) (Della Pietra et al., 1995). 

IIS assigns weights to features which reflect 
their distribution and significance. With each 
iteration, these weights reflect the empirical dis- 
tribution of the features in the training data 
with increasing accuracy. In ideal circum- 
stances, where the distribution of features in 
the training data accurately represents the true 
probability of the features, the performance of 
the model should increase asymptotically with 
each iteration of training until it eventually con- 
verges. If the training data is corrupt, or noisy, 
or if it contains features which are too sparsely 
distributed to accurately represent their proba- 
bility, then overfitting arises. 

2.1 T h e  s t r u c t u r e  of  t h e  f ea tu r e s  

The statistical features used for parse selection 
should contain information pertinent to sen- 
tence structure, as it is the information encoded 
in these features which will be brought to bear 
in prefering one parse over another. Information 
regarding constituent heads, POS tags, and lex- 
ical information is pertinent, as is information 
on constituent ordering and other grammatical 
information present in the data. Most or all 
of these factors are considered in some form 
or another by current state-of-the-art statisti- 

cal parsers such as those of Charniak (1997), 
Magerman (1995) and Collins (1996). 

In the present approach, each feature in the 
feature set corresponds to a depth-one tree 
structure in the data, i.e. a mother node and 
all of its daughters. Within this general struc- 
ture various schemata may be used to derive ac- 
tual features, where the information about each 
node employed in the feature is determined by 
which schema is used. For example, one schema 
might call for POS information from all nodes 
and lexical information only from head nodes. 
Another might call for lexical information only 
from nodes which also contain the POS tag for 
prepositions. The term compositional is used 
in this context to describe features built up ac- 
cording to some such schema from basic linguis- 
tic elements such as these. Thus each compo- 
sitional feature is an ordered sequence of ele- 
ments, where the order reflects the position in 
the tree of the elements. Instantiations of these 
schemata in the data are used as the statistical 
features. The first step is to run a given schema 
over the data, collecting a set of features. The 
next step is to characterize all events in the data 
in terms of those features. 

This general structure for features allows con- 
siderable versatility; models of widely varying 
quality may be constructed. This structure for 
statistical features might be compared with the 
Data-Oriented Parsing (DOP) of Bod (1998) in 
that it considers subtrees of parses as the struc- 
tural units from which statistical information 
is taken. The present approach differs sharply 
from DOP in that its trees are limited to a depth 
of one node below the mother and, more impor- 
tantly, in the fact that the maximum entropy 
framework allows modeling without the inde- 
pendence assumptions made in DOP. 

Since maximum entropy allows for overlap- 
ping information sources, features derived using 
different schemata (that is, collecting different 
pieces of node-specific information) may be col- 
lected from the same subtrees, and used simul- 
taneously in a single model. 

3 F e a t u r e  merging and o v e r f i t t i n g  
reduction 

The idea behind feature merging is to reduce 
overfitting through changes made directly to 
the model. This is done by combining highly 
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Figure 1: An example of feature merging. The 
top two features are merged in the form of the 
bottom feature, where the lexical elements have 
been replaced by their disjunction. The merged 
feature represents the union of the sets of tokens 
described by the unmerged feature types. All 
instances of the original two features would now 
be replaced in the data by the merged feature. 

specific features which occur rarely to produce 
more general features which occur more often, 
resulting in fewer total features used. Even if 
the events are not noisy or inaccurate in actual 
fact, they may still contribute to overfitting if 
their features occur too infrequently in the data 
to give accurate frequencies. The merging pro- 
cedure seeks to address overfitting at the level of 
the features themselves and remain true to the 
spirit of the maximum entropy approach, which 
seeks to represent what is unknown about the 

data with uniformity of the distribution, rather 
than by making adjustments on the model dis- 
tribution itself, such as the Gaussian prior of 
Osborne (2000). 

Each feature, as described above, is made up 
of discrete elements, which may include such 
objects as lexical items, POS tags, and gram- 
matical attribute information, depending on the 
schema being used. The rarity of the feature 
in the data is largely--although not entirely-- 
determined by the rarity of elements within 
it. In the present merging scheme, a set of 
elements is collected whose empirical frequen- 
cies are below some predetermined cutoff point. 
Note that the use of the term "cutoff" here 
refers to the empirical frequency of elements of 
features rather than of features themselves, as 
in Ratnaparkhi (1998). All features containing 
elements in this set will be altered such that 
the cutoff element is replaced by a uniform dis- 
junctive element, effectively merging all simi- 
larly structured features into one, with the dis- 
parate elements replaced by the disjunctive el- 
ement. An example may be seen in figure 1, 
where the union of the two features at top of the 
figure is represented as the feature below them. 
The merged elements in this case are the lexical 
items offered and allow. Such a merge would 
take place on the condition that the empirical 
frequencies of both elements are below a certain 
cutoff point. If so, the elements are replaced by 
a new element representing the disjunction of 
the original elements, creating a single feature. 
This feature then replaces all instances of both 
of the original features. If both of the original 
features appear once each together in an event, 
then two instances of the merged feature will 
appear in that event in the new model. 

4 Experiments 

The experiments described here were conducted 
using the Wall Street Journal Penn Treebank 
corpus (Marcus et al., 1993). The gram- 
mar used was a manually written broad cov- 
erage DCG style grammar (Briscoe and Car- 
roll, 1997). Parses of WSJ sentences produced 
by the grammar were ranked empirically using 
the treebank parse as a gold standard accord- 
ing to a weighted linear combination of cross- 
ing brackets, precision, and recall. If more than 
fifty parses were produced for a sentence, the 
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best fifty were used and the rest discarded. For 
the training data, the empirical rankings of all 
parses for each sentence were normalized so the 
total parse scores for each sentence added to a 
constant. The events of the training data con- 
sisted of parses and their corresponding nor- 
malized score. These scores were furthermore 
treated as frequencies. Thus, high ranked parses 
would be treated as events occurring more fre- 
quently in the training data, and low ranked 
parses would be treated as occurring rarely. 

The features of the unmerged model consisted 
of depth-one trees carrying node information ac- 
cording to the following schema: the POS tag of 
the mother, POS tags of all daughters ordered 
left to right, HEAD+ information for the head 
daughter, and lexical information for all daugh- 
ters carrying a verbal or prepositional POS tag. 
The features themselves were culled using this 
schema on 2290 sentences from the training 
data. The feature set consisted of 38,056 fea- 
tures in total, of which 6561 were active in the 
model (assigned non-zero weights) after the fi- 
nal iteration of IIS. Two models using this fea- 
ture set were trained, one on only 498 training 
sentences, a subset of the 2290 sentences used 
to collect the features, and the other on nearly 
ten times that number, 4600 training sentences, 
a superset of the same set of sentences. 

Several merged models were made based on 
each of these unmerged models, using various 
cutoff numbers. Cutoffs were set at empirical 
frequencies of 100, 500, 1000, 1250, and 1500 
elements. For each model merge, all elements 
which occurred in the training data fewer times 
than the cutoff number were replaced in each 
feature they appeared in by the uniform dis- 
junctive element, and the merged features then 
took the place of the unmerged features. 

Iterative scaling was performed for 150 iter- 
ations on each model. This number was cho- 
sen arbitrarily as a generous but not gratuitous 
number of iterations, allowing general trends to 
be observed. 

The models were tested on approximately 
5,000 unseen sentences from other parts of 
the corpus. The performance of each model 
was measured at each iteration by binary best 
match. The model chose a single top parse and 
if this parse's empirical rank was the highest 
(or equal to the highest) of all the parses for the 

sentence, the model was awarded a point for the 
match, otherwise the model was awarded zero. 
The performance rating reflects the percentage 
of times that the model chose the best parse of 
all possible parses, averaged over all test sen- 
tences. 

5 R e s u l t s  

5.1 P e r f o r m a n c e  of  u n m e r g e d  mode l s  

Of the unmerged models, as expected, the one 
trained on the smaller set shows the worst per- 
formance and most drastic overfitting. Its peak 
at approximately 42.5% performance comes 
early, at around 20 iterations of IIS, and sub- 
sequently drops to 40.5% at around 50 itera- 
tions. At around 80 iterations, it plunges to 
about 39%, where it remains. This model's per- 
formance may be seen in figure 2 represented by 
the solid black line. 

In figure 3, the solid black line represents the 
original model trained on 4600 sentences. The 
feature set is the same, although in this case all 
of the 38,057 features are active. The advantage 
of having so much more training data is evident. 
The performance peaks at a much higher level 
and overfitting, although present, is much less 
drastic at the end of 150 iterations. Neverthe- 
less, the curve still reaches a maximum point 
fairly early on, at about 40 iterations, and the 
performance diminishes from there. 

5.2 P e r f o r m a n c e  of  m e r g e d  mode l s  

Different cutoffs yielded varying degrees of im- 
provement. A cutoff of 100 elements seemed to 
make no meaningful difference either way with 
either model. Increasing the cutoff for the 498 
sentence-trained model both lowered the peak 
before 40 iterations and raised the dip after 80 
in a fairly regular fashion. The best balance 
seemed to be struck with a cutoff of 1250. In 
this case the number of active features in the 
model was reduced to 4801. 

As can be seen from figure 2, the merged 
model, represented by the dotted line, shows a 
much more predictable improvement, its curve 
much closer to the optimal asymptotic improve- 
ment. In terms of actual performance, the early 
peak of the unmerged model is not present at all 
in the merged model, which catches up between 
around 40 and 80 iterations. After 80 iterations, 
the merged model begins to outperform the un- 
merged model, which has begun to suffer from 
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Figure 2: For the model trained on 498 sen- 
tences, features containing elements appearing 
fewer than 1250 times are merged. The early 
peak of the unmerged model gives way to dras- 
tic overfitting. The merged model, on the other 
hand, does not reach this peak, but overfitting 
is not present. 

severe overfitting. The merged model, on the 
other hand, shows no evidence of overfitting. 

Likewise, the merged model represented by 
the dotted line in figure 3 shows no overfitting 
either, an improvement in that  regard over its 
unmerged counterpart.  For this model, the best 
cutoff of those tried appeared to be 500, and 
the number of active features was reduced to 
77,286. Higher cutoffs led to slower rates of im- 
provement and lower levels of performance. 

Both merging operations may be viewed as 
yielding improvements over the unmerged mod- 
els, as the accuracy of the model should ide- 
ally increase with each iteration of the IIS al- 
gorithm until it converges. It is likely that  fur- 
ther iterations would yield even more clear im- 
provement, although it is also possible that  the 
merged models themselves would begin to ex- 
hibit overfitting after some point. The rate of 
increase in performance and the point of onset 
of overfitting varies from model to model. In 
general, predictable improvement, even if grad- 
ual, is preferable to sporadic peaking and dras- 
tic overfitting. This may not always be the case 
in practice. 

6 C o n c l u s i o n  

The feature merging strategy described in this 
paper may be employed to reduce overfitting in 

Figure 3: For the model trained on 4600 sen- 
tences, features containing elements appearing 
fewer than 500 times are merged. The overfit- 
ting in the unmerged model, represented by the 
solid line, is less drastic due to more extensive 
training material, but an improvement can still 
be seen in the curve of the merged model. 

situations where statistical features are built up 
compositionally from basic elements. As men- 
tioned, the merging strategy bears certain simi- 
larities with other methods of overfitting reduc- 
tion, such as standard feature cutoffs where en- 
tire features appearing less than some number 
of times are ignored (Ratnaparkhi, 1998). Intu- 
itively, it seems that  in a sparse data situation, 
it would be beneficial to retain the general in- 
formation in features, rather than ignoring rare 
features entirely. It would be worthwhile to ver- 
ify this suspicion by comparing the present ap- 
proach directly with a simple feature cutoff, and 
furthermore comparing a simple cutoff to one 
where the low-frequency features were merged 
according to the present scheme, rather than 
simply discarded. It is to be expected that a 
combination of both  approaches would be likely 
to outperform either individual approach. How 
much improvement may be gained remains to 
be seen. 
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