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A b s t r a c t  

This article summarizes work on developing a 
learning theory account for the major learning 
and statistics based approaches used in natural 
language processing. It shows that  these ap- 
proaches can all be explained using a single dis- 
tribution free inductive principle related to the 
pac model of learning. Furthermore, they all 
make predictions using the same simple knowl- 
edge representation - a linear representation 
over a common feature space. This is signifi- 
cant both to explaining the generalization and 
robustness properties of these methods and to 
understanding how these methods might be ex- 
tended to learn from more structured, knowl- 
edge intensive examples, as part of a learning 
centered approach to higher level natural lan- 
guage inferences. 

1 I n t r o d u c t i o n  

Many important  natural  language inferences 
can be viewed as problems of resolving phonetic, 
syntactic, semantics or pragmatics ambiguities, 
based on properties of the surrounding context. 
It is generally accepted that  a learning compo- 
nent must have a central role in resolving these 
context sensitive ambiguities, and a significant 
amount of work has been devoted in the last few 
years to developing learning methods for these 
tasks, with considerable success. Yet, our un- 
derstanding of when and why learning works in 
this domain and how it can be used to support  
increasingly higher level tasks is still lacking. 
This article summarizes work on developing a 
learning theory account for the major learning 
approaches used in NL. 

While the major statistics based methods 
used in NLP are typically developed with a 
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Bayesian view in mind, the Bayesian principle 
cannot directly explain the success and robust- 
ness of these methods, since their probabilistic 
assumptions typically do not hold in the data. 
Instead, we provide this explanation using a sin- 
gle, distribution free inductive principle related 
to the pac model of learning. We describe the 
unified learning framework and show that, in 
addition to explaining the success and robust- 
ness of the statistics based methods, it also ap- 
plies to other machine learning methods, such 
as rule based and memory based methods. 

An important  component of the view devel- 
oped is the observation that  most methods use 
the same simple knowledge representation. This 
is a linear representation over a new feature 
space - a transformation of the original instance 
space to a higher dimensional and more expres- 
sive space. Methods vary mostly algorithmicly, 
in ways they derive weights for features in this 
space. This is significant both to explaining 
the generalization properties of these methods 
and to developing an understanding for how and 
when can these methods be extended to learn 
from more structured, knowledge intensive ex- 
amples, perhaps hierarchically. These issues are 
briefly discussed and we emphasize the impor- 
tance of studying knowledge representation and 
inference in developing a learning centered ap- 
proach to NL inferences. 

2 Learning Frameworks 

Generative probability models provide a princi- 
pled way to the study of statistical classification 
in complex domains such as NL. It is common 
to assume a generative model for such data, es- 
t imate its parameters from training data and 
then use Bayes rule to obtain a classifier for 
this model. In the context of NL most clas- 
sifters are derived from probabilistic language 
models which estimate the probability of a sen- 
tence 8 using Bayes rule, and then decompose 
this probability into a product  of conditional 



probabilities according to the generative model. 

Pr(s) = Pr(wl, W 2 , . . .  Wn) ---- 

= H~=lPr(wilwl,...wi-1) = H~=lPr(wilhi) 

where hi is the relevant history when predicting 
wi, and s is any sequence of tokens, words, part- 
of-speech (pos) tags or other terms. 

This general scheme has been used to de- 
rive classifiers for a variety of natural lan- 
guage applications including speech applica- 
tions (Rab89), pos tagging (Kup92; Sch95), 
word-sense ambiguation (GCY93) and context- 
sensitive spelling correction (Go195). While the 
use of Bayes rule is harmless, most of the work 
in statistical language modeling and ambiguity 
resolution is devoted to estimating terms of the 
form Pr(wlh  ). The generative models used to 
estimate these terms typically make Markov or 
other independence assumptions. It is evident 
from studying language data that  these assump- 
tions are often patently false and that  there 
are significant global dependencies both within 
and across sentences. For example, when using 
(Hidden) Markov Model (HMM) as a generative 
model for pos tagging, estimating the probabil- 
ity of a sequence of tags involves assuming that  
the pos tag ti of the word wi is independent of 
other words in the sentence, given the preced- 
ing tag ti-1. It is not surprising therefore that  
this results in a poor estimate of the probabil- 
ity density function. However, classifiers built 
based on these false assumptions nevertheless 
seem to behave quite robustly in many cases. 

A different, distribution free inductive princi- 
ple that  is related to the pac model of learning 
is the basis for the account developed here. 

In an instance of the agnostic variant of pac 
learning (Val84; Hau92; KSS94), a learner is 
given data elements (x, l) that  are sampled ac- 
cording to some fixed but  arbitrary distribu- 
tion D on X x {0, 1}. X is the instance space 
and I E {0, 1} is the label 1. D may simply re- 
flect the distribution of the data as it occurs 
"in nature" (including contradictions) without 
assuming that  the labels are generated accord- 
ing to some "rule". Given a sample, the goal 
of the learning algorithm is to eventually out- 
put  a hypothesis h from some hypothesis class 
7/ that  closely approximates the data. The 

1The model can be extended to deal with any discrete 
or continuous range of the labels. 

true error of the hypothesis h is defined to 
be errorD(h) = Pr(x,O~D[h(x) 7~ If, and the 
goal of the (agnostic) pac learner is to com- 
pute, for any distribution D, with high prob- 
ability (> 1 - 5 ) ,  a hypothesis h E 7/ with 
true error no larger than ~ + inffhenerrorD(h). 
In practice, one cannot compute the true er- 
ror errorD(h). Instead, the input to the learn- 
ing algorithm is a sample S = {(x i,l)}i=li m of 
m labeled examples and the learner tries to 
find a hypothesis h with a small empirical er- 
ror errors(h) = I{x e Slh(x) ¢ l}l/ISl, and 
hopes that  it behaves well on future examples. 
The hope that  a classifier learned from a train- 
ing set will perform well on previously unseen 
examples is based on the basic inductive prin- 
ciple underlying learning theory (Val84; Vap95) 
which, stated informally, guarantees that  if the 
training and the test data  are sampled from the 
same distribution, good performance on large 
enough training sample guarantees good per- 
formance on the test data (i.e., good "true" er- 
ror). Moreover, the quality of the generalization 
is inversely proportional to the expressivity of 
the class 7-/. Equivalently, for a fixed sample 
size IsI, the quantified version of this princi- 
ple (e.g. (Hau92)) indicates how much can one 
count on a hypothesis selected according to its 
performance on S. Finally, notice the underly- 
ing assumption that  the training and test data 
are sampled from the same distribution; this 
framework addresses this issue. (See (GR99).) 

In our discussion functions learned over the 
instance space X are not defined directly over 
the raw instances but  rather over a transforma- 
tion of it to a feature space. A feature is an in- 
dicator function X : X ~ {0, 1} which defines a 
subset of the instance space - all those elements 
in X which are mapped  to 1 by X- X denotes 
a class of such functions and can be viewed as 
a transformation of the instance space; each ex- 
ample (Xl , . . .  xn) E X is mapped  to an example 
(Xi, . . .Xlxl)  in the new space. We sometimes 
view a feature as an indicator function over the 
labeled instance space X x {0, 1} and say that  
X(x, l) = 1 for examples x E x ( X )  with label l. 

3 E x p l a i n i n g  P r o b a b i l i s t i c  M e t h o d s  

Using the abovementioned inductive principle 
we describe a learning theory account that  ex- 
plains the success and robustness of statistics 
based classifiers (Rot99a). A variety of meth- 



ods used for learning in NL are shown to make 
their predict ion using Linear Statistical Queries 
(LSQ) hypotheses.  This  is a family of linear 
predictors over a set of features which are di- 
rectly related to the independence assumptions  
of the probabilistic model  assumed. The  success 
of these classification methods  is then  shown to 
be due to the combinat ion of two factors: 
• Low expressive power of the derived classifier. 
• Robustness  propert ies shared by all linear sta- 
tistical queries hypotheses.  

Since the hypotheses are computed  over a fea- 
ture space chosen so tha t  they perform well on 
training data,  learning theory implies tha t  they 
perform well on previously unseen data,  irre- 
spective of whether  the under lying probabilistic 
assumptions  hold. 

3.1 R o b u s t  L e a r n i n g  

This  section defines a learning algori thm and 
a class of hypotheses  wi th  some generaliza- 
t ion properties,  tha t  capture many probabilis- 
tic learning methods  used in NLP. The  learn- 
ing a lgor i thm is a Statistical Queries(SQ) algo- 
r i thm (Kea93). An SQ algor i thm can be viewed 
as a learning a lgor i thm tha t  interacts with  its 
environment  in a restricted way. Rather  than  
viewing examples, the a lgor i thm only requests 
the values of various statistics on the distribu- 
t ion of the examples to construct  its hypothesis.  
(E.g. "What  is the probabil i ty tha t  a randomly 
chosen example (x, l) has xi = 0 and l = 1"?) 

A statistical query has the form IX, l, 7-], where 
X 6 X is a feature, l 6 {0, 1} is a further  (op- 
tional) restrict ion imposed on the query and ~" 
is an error parameter .  A call to the SQ oracle 
returns an es t imate  ~ n  of [x,z,~] 

P,[xDj] = P r D {  (X, i)lx(x) = 1 A i = l }  

which satisfies ]15x - Px] < T. (We usually omit  
T and /o r  l f rom this notat ion.)  A statistical 
queries algorithm is a learning a lgor i thm tha t  
constructs  its hypothesis  only using information 
received from an SQ oracle. An algor i thm is 
said to use a query space X if it only makes 
queries of the form [X, l, T] where X 6 A'. An 
SQ algor i thm is said to be a good learning al- 
gor i thm if, wi th  high probability, it ou tpu ts  a 
hypothesis  h wi th  small error, using sample size 
tha t  is polynomial  in the relevant parameters .  

Given a query [X, l, T] the  SQ oracle is sim- 
ulated by drawing a large sample S of labeled 
examples (x, l) according to D and evaluating 

Prs [x ( x ,  l ) ]  = I { ( x ,  l) : X(x, l )  = l l } / I S l .  
Chernoff bounds  guarantee tha t  the nUmber of 
examples required to achieve tolerance T with 
probabili ty at least 1 - 5 is polynomial  in 1/T 
and log 1/5. (See (Zea93; Dec93; AD95)). 

Let X be a class of features and f : {0, 1} 
a funct ion tha t  depends  only on the values 

~D for E X. Given x 6 X,  a Linear Statis- [x,~] X 
tical Queries (LSQ) hypothesis  predicts 

l argmaxte{o,1} ~ x e X  ^ D = f [ x j ]  ({P[x,z] } ) "  X(x). 
Clearly, the LSQ is a linear discriminator  over 
the feature space A', wi th  coefficients f that  
are computed  given (potentially all) the values 
^D P[x,t]" The  definit ion generalizes natural ly to 

non-binary classifiers; in this case, the discrim- 
inator between predict ing l and other values is 
linear. A learning a lgor i thm tha t  ou tputs  an 
LSQ hypothesis  is called an LSQ algorithm. 

E x a m p l e  3.1 The naive Bayes predictor 
(DH73) is derived using the assumption that 
given the label l E L the features' values are 
statistically independent. Consequently, the 
Bayes optimal prediction is given by: 

h(x) = argmaxteLH~n=l Pr(xill)Pr(1), 
where Pr(1) denotes the prior probability of l 
(the fraction of examples labeled l) and Pr(xill) 
are the conditional feature probabilities (the 
fraction of the examples labeled l in which the 
ith feature has value xi). Therefore, we get: 

C l a i m :  The  naive Bayes a lgor i thm is an LSQ 
algor i thm over a set ,.~ which consists of n + 1 
features: X0 --- 1, Xi -- xi for i = 1 , . . . , n  
and where f[1J]O = log/5[~z],, and f[x,J]O = 

^D ^D logP[x,,l]/P[1,l], i = 1, . . .  ,n. 
The  observation tha t  the LSQ hypothesis 

is linear over X' yields the first generalization 
proper ty  of LSQ. VC theory implies tha t  the 
VC dimension of the class of LSQ hypothe- 
ses is bounded  above by IXI. Moreover, if 
the LSQ hypothesis  is sparse and does not 
make use of unobserved features in X (as in 
Ex. 3.1) it is bounded  by the number  of features 
used (Rot00). Together  wi th  the basic general- 
ization proper ty  described above this implies: 

C o r o l l a r y  3.1 For LSQ, the number of train- 
ing examples required in order to maintain a 
specific generalization performance guarantee 
scales linearly with the number o/features used. 

3 



The robustness property of LSQ can be cast 
for the case in which the hypothesis is learned 
using a training set sampled according to a dis- 
tribution D, but tested over a sample from D ~. 
It still performs well as long as the distributional 
distance d(D, D') is controlled (Rot99a; Rot00). 

Theorem 3.2 Let .A be an SQ(T, X)  learning 
algorithm for a funct ion class ~ over the distri- 
bution D and assume that d(D, D I) < V (for V 
inversely polynomial in T). Then .A is also an 
SQ(T, ,~') learning algorithm for ~ over D I. 

Finally, we mention that the robustness of the 
algorithm to different distributions depends on 
the sample size and the richness of the feature 
class 2¢ plays an important role here. Therefore, 
for a given size sample, the use of simpler fea- 
tures in the LSQ representation provides better 
robustness. This, in turn, can be traded off with 
the ability to express the learned function with 
an LSQ over a simpler set of features. 

3.2 A d d i t i o n a l  E x a m p l e s  

In addition to the naive Bayes (NB) classifier 
described above several other widely used prob- 
abilistic classifiers can be cast as LSQ hypothe- 
ses. This property is maintained even if the NB 
predictor is generalized in several ways, by al- 
lowing hidden variables (GR00) or by assuming 
a more involved independence structure around 
the target variable. When the structure is mod- 
eled using a general Bayesian network (since we 
care only about predicting a value for a single 
variable having observed the others) the Bayes 
optimal predictor is an LSQ hypothesis over fea- 
tures that are polynomials X = IIxilxi2 • .. xik of 
degree that depends on the number of neighbors 
of the target variable. A specific case of great 
interest to NLP is that of hidden Markov Mod- 
els. In this case there are two types of variables, 
state variables S and observed ones, O (Rab89). 
The task of predicting the value of a state vari- 
able given values of the others can be cast as an 
LSQ, where X C {S, O, 1} × {S, O, 1}, a suitably 
defined set of singletons and pairs of observables 
and state variables (Rot99a). 

Finally, Maximum Entropy (ME) models 
(Jay82; Rat97) are also LSQ models. In this 
framework, constrains correspond to features; 
the distribution (and the induced classifier) are 
defined in terms of the expected value of the fea- 
tures over the training set. The induced clas- 

sifter is a linear classifier whose weights are de- 
rived from these expectations; the weights axe 
computed iteratively (DR72) since no closed 
form solution is known for the optimal values. 

4 Learning Linear Classifiers 

It was shown in (Rot98) that several other 
learning approaches widely used in NL work 
also make their predictions by utilizing a lin- 
ear representation. The SNoW learning archi- 
tecture (Rot98; CCRR99; MPRZ99) is explic- 
itly presented this way, but this holds also for 
methods that are presented in different ways, 
and some effort is required to cast them this 
way. These include Brill's transformation based 
method (Bri95) 2, decision lists (Yax94) and 
back-off estimation (Kat87; CB95). 

Moreover, even memory-based methods 
(ZD97; DBZ99) can be cast in a similar 
way (Rot99b). They can be reformulated as 
feature-based algorithms, with features of types 
that are commonly used by other features-based 
learning algorithms in NLP; the prediction com- 
puted by MBL can be computed by a linear 
funct ion over this set of features. 

Some other methods that have been recently 
used in language related applications, such as 
Boosting (CS99) and support vector machines 
are also making use of the same representation. 

At a conceptual level all learning methods 
are therefore quite similar. They transform the 
original input (e.g., sentence, sentence+pos in- 
formation) to a new, high dimensional, feature 
space, whose coordinates are typically small 
conjunctions (n-grams) over the original input. 
In this new space they search for a linear func- 
tion that best separates the training data, and 
rely on the inductive principle mentioned to 
yield good behavior on future data. Viewed this 
way, methods are easy to compare and analyze 
for their suitability to NL applications and fu- 
ture extensions, as we sketch below. 

The goal of blowing up the instance space to a 
high dimensional space is to increase the expres- 
sivity of the classifier so that a linear function 
could represent the target concepts. Within this 
space, probabilistic methods are the most lim- 
ited since they do not actually search in the 

eThis holds only in cases in which the TBL condi- 
tions do not depend on the labels, as in Context Sensi- 
tive Spelling (MB97) and Prepositional Phrase Attach- 
ment (BR94) and not in the general case. 
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space of linear functions. Given the feature 
space they directly compute the classifier. In 
general, even when a simple linear function gen- 
erates the training data, these methods are not 
guaranteed to be consistent with it (Rot99a). 
However, if the feature space is chosen so that  
they are, the robustness properties shown above 
become significant. Decision lists and MBL 
methods have advantages in their ability to rep- 
resent exceptions and small  areas in the feature 
space. MBL, by using long and very specialized 
conjunctions (DBZ99) and decision lists, due to 
their functional form - a linear function with 
exponentially decreasing weights - at the cost 
of predicting with a single feature, rather than 
a combination (Go195). Learning methods that  
a t tempt  to find the best linear function (relative 
to some loss function) are typically more flexi- 
ble. Of these, we highlight here the SNoW ar- 
chitecture, which has some specific advantages 
that  favor NLP-like domains. 

SNoW determines the features' weights using 
an on-line algorithm that  a t tempts  to minimize 
the number of mistakes on the training data us- 
ing a multiplicative weight update  rule (Lit88). 
The weight update  rule is driven by the maxi- 
mum entropy principle (KW95). The main im- 
plication is that  SNoW has significant advan- 
tages in sparse spaces, those in which a few of 
the features are actually relevant to the tar- 
get concept, as is typical in NLP. In domains 
with these characteristics, for a given number 
of training examples, SNoW generalizes better 
than additive update methods like perceptron 
and its close relative SVMs (Ros58; FS98) (and 
in general,it has better learning curves). 

Furthermore, although in SNoW the transfor- 
mation to a large dimensional space needs to be 
done explicitly (rather than via kernel functions 
as is possible in perceptron and SVMs) its use of 
variable size examples nevertheless gives it com- 
putational advantages, due to the sparse feature 
space in NLP applications. It is also significant 
for extensions to relational domain mentioned 
later. Finally, SNoW is a multi-class classifier. 

5 F u t u r e  R e s e a r c h  I s s u e s  

Research on learning in NLP needs to be inte- 
grated with work on knowledge representation 
and inference to enable studying higher level NL 
tasks. We mention two important  directions the 
implications on the learning issues. 

The unified view presented reveals that  all 
methods blow up the dimensionality of the orig- 
inal space in essentially the same way; they gen- 
erate conjunctive features over the linear struc- 
ture of the sentence (i.e., n-gram like features in 
the word and/or  pos space). 

This does not seem to be expressive enough. 
Expressing complex concepts and relations 
necessary for higher level inferences will re- 
quire more involved intermediate representa- 
tions ("features") over the input; higher order 
structural and semantic properties, long term 
dependencies and relational predicates need to 
be represented. Learning will stay manageable 
if done in terms of these intermediate represen- 
tations as done today, using functionally simple 
representations (perhaps cascaded). 

Inductive logic programming (MDR94; 
Coh95) is a natural  paradigm for this. How- 
ever, computational  limitations that  include 
both learnability and subsumption render this 
approach inadequate for large scale knowledge 
intensive problems (KRV99; CR00). 

In (CR00) we suggest an approach that ad- 
dresses the generation of complex and relational 
intermediate representations and supports effi- 
cient learning on top of those. It allows the 
generation and use of structured examples which 
could encode relational information and long 
term functional dependencies. This is done us- 
ing a construct that  defines "types" of (poten- 
tially, relational) features the learning process 
might use. These represent infinitely many fea- 
tures, and are not generated explicitly; only 
those present in the data are generated, on the 
fly, as part of the learning process. Thus it 
yields hypotheses that  are as expressive as re- 
lational learners in a scalable fashion. This ap- 
proach, however, makes some requirements on 
the learning process. Most importantly, the 
learning approach needs to be able to process 
variable size examples. And, it has to be feature 
efficient in that  its complexity depends mostly 
on the number of relevant features. This seems 
to favor the SNoW approach over other algo- 
ri thms that  learn the same representation. 

Eventually, we would like to perform infer- 
ences that  depend on the outcomes of several 
different classifiers; together these might need to 
coherently satisfy some constrains arising from 
the sequential nature of the data  or task and do- 
main specific issues. There is a need to study, 



along with learning and knowledge representa- 
tion, inference methods that suit this frame- 
work (KR97). Work in this direction requires a 
consistent semantics of the learners (Val99) and 
will have implications on the knowledge repre- 
sentations and  learning m e t h o d s  used. Pre l im-  
inary  work in (PRO0) suggests  several ways to 
formalize this p rob lem and  is evalua ted  in the 
context  of  ident i fying phrase  s t ruc ture .  
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