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Abstract

Many computer-assisted language learning
(CALL) systems offer gap-fill items, often
with multiple choices in order to facilitate im-
mediate feedback. Automatic distractor gener-
ation can therefore be helpful in providing the
multiple choices. While existing algorithms
focus on proposing the most plausible distrac-
tors, many realistic scenarios make use of dis-
tractors at a variety of difficulty levels. This
paper evaluates the use of a neural language
model to rank distractors in terms of difficulty.
Experiments show that BERT outperforms se-
mantic similarity measures, in terms of both
correlation to human judgment and classifica-
tion accuracy of distractor plausibility.

1 Introduction

Many computer-assisted language learning
(CALL) systems offer gap-fill items, also known
as cloze or fill-in-the-blank items. A gap-fill item
consists of a carrier sentence in which one word
— called the key, or target word — is blanked
out. Table 1 shows an example carrier sentence
whose target word is ‘served’.

To enable automatic feedback, multiple choices
are sometimes provided for filling the gap. As
shown in Table 1, these choices include the tar-
get word itself and several distractors. Judicious
selection of distractors is important for generating
effective items. A distractor should produce a sen-
tence that seems plausible, yet unacceptable. Lan-
guage pedagogy literature generally recommends
that the target word and distractors belong to the
same word class (Heaton, 1989), and be semanti-
cally related, ideally “false synonyms” (Goodrich,
1977). An empirical study confirmed that distrac-
tors indeed tend to be syntactically and semanti-
cally homogenous (Pho et al., 2014).

To reduce the manual effort and time needed for
selecting distractors, there has been much interest
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(a) served [target word]
(b) acted [distractor]
(c) brought [distractor]

Table 1: A multiple-choice gap-fill item consists of a
carrier sentence with a blank, and choices for filling the
blank. In this example, the choices include two distrac-
tors and the target word (correct answer).

in developing algorithms for automatic distractor
generation. Existing algorithms typically take a
two-step approach (Jiang and Lee, 2017; Susanti
et al., 2018). The first step generates distractor
candidates, typically in a list ranked according to
measures of semantic similarity and collocation
strength. The second step removes candidates that
are acceptable answers, using n-gram and colloca-
tion frequency or other criteria.

Evaluations on distractor generation tend to
be limited to the highest-ranked distractors, for
example the top-ranked or top three candidates
only (Jiang and Lee, 2017; Susanti et al., 2018).
Many practical scenarios, however, require not
only the most challenging distractors, but distrac-
tors across the spectrum of plausibility. When au-
thoring test items, for example, it can be useful to
generate items at various difficulty levels for com-
prehensive assessment. In a CALL system, it can
be effective to personalize distractor difficulty ac-
cording to the user’s language proficiency.

It is informative, then, to evaluate distractor al-
gorithms on their ability to generate distractors at
different levels of plausibility. We therefore pro-
pose to investigate the correlation between the es-
timated ranking of distractors and human judg-
ment on plausibility. This research direction has
indeed been taken up in item generation in the nat-



ural sciences (Liang et al., 2018; Gao et al., 2019).
However, to the best of our knowledge, it has not
yet been attempted for gap-fill items for language
learning.

Language models provide a natural framework
for this task by predicting how likely a word ap-
pears in a gap within the sentence. This pa-
per is the first attempt to apply BERT (Devlin
et al., 2019), a state-of-the-art model trained on
the masked language modeling objective, on the
task of distractor ranking. Experimental results
show that BERT outperforms semantic similarity
measures, in terms of both correlation to human
judgment and classification accuracy of distractor
plausibility.

The rest of the paper is organized as follows.
In Section 2, we review related research areas. In
Section 3, we outline our approach for distractor
generation. In Section 4, we report experimental
results on ranking distractors for gap-fill items for
learning Chinese as a foreign language. Finally,
we conclude in Section 5.

2 Previous work

For the target word in a carrier sentence, a distrac-
tor generation algorithm aims to optimize two ob-
jectives: the distractor should look plausible for
filling in the gap; but it should also not produce
an acceptable sentence. Reflecting the twin goals,
most existing algorithms perform two tasks (Jiang
and Lee, 2017; Susanti et al., 2018). The first,
Candidate Generation, identifies all possible dis-
tractor candidates. The second, Candidate Filter-
ing, seeks to remove those candidates that are also
acceptable answers, leaving only the distractors
that are “reliable”, i.e., those that yield an incor-
rect sentence.

Section 2.1 reviews existing approaches for the
Candidate Generation task, which is the research
focus of this paper. Section 2.2 then surveys re-
lated tasks in computer-assisted learning that have
adopted evaluation on candidate ranking.

2.1 Candidate Generation

In most approaches, a distractor needs to have the
same part-of-speech (POS) as the target word (Co-
niam, 1997). In addition, a number of features
have been explored for ranking the candidates:

Word co-occurrence. Since a distractor should
collocate strongly with a word in the carrier sen-
tence (Hoshino, 2013), candidates are evaluated

according to their co-occurrence frequencies with
other words in the sentence. Various definitions
of co-occurrence have been used, including bi-
gram counts (Susanti et al., 2018) and, more gen-
erally, n-grams in a context window centered on
the distractor (Liu et al., 2005); dependency re-
lations (Sakaguchi et al., 2013); grammatical rela-
tions in a Word Sketch (Smith et al., 2010); as well
as pointwise mutual information (PMI) (Jiang and
Lee, 2017).

Learner error. Typical or frequent learner mis-
takes can be effective as distractors. When gen-
erating gap-fill items for prepositions, distractors
based on learner errors were indeed found to be
more challenging than those selected according
to word co-occurrence (Lee et al., 2016). Dis-
tractor candidates have been mined from learner
corpora and further selected with a discriminative
model (Sakaguchi et al., 2013).

Semantic similarity. The distractor should be
semantically close to the target word. Similarity
can be quantified by semantic distance in Word-
Net (Pino et al., 2008; Chen et al., 2015), the-
sauri (Sumita et al., 2005; Smith et al., 2010),
ontologies (Karamanis et al., 2006), hand-crafted
rules (Chen et al., 2006), and word embed-
dings (Jiang and Lee, 2017; Susanti et al., 2018).
Other approaches have also explored synonym of
synonyms (Knoop and Wilske, 2013); and words
that are semantically similar to the target word in
some sense, but not in the particular sense in the
carrier sentence (Zesch and Melamud, 2014).

A study on gap-fill items for learning Chinese
as a foreign language compared the quality of
distractors generated by a number of criteria, in-
cluding spelling, word co-occurrence and seman-
tic similarity (Jiang and Lee, 2017). Experimen-
tal results show that a semantic similarity mea-
sure, based on the word2vec model (Mikolov
et al., 2013), yields distractors that are signif-
icantly more plausible than those generated by
spelling similarity, and by word co-occurrence
strength as estimated by PMI.

2.2 Evaluation on candidate ranking

Although the output of most distractor generation
algorithms is a ranked list, most previous studies
on distractor quality in gap-fill items have limited
their attention to the top-ranked distractors. To the
best of our knowledge, quantitative evaluations on
ranking quality have been reported for item gen-



eration in the natural sciences, but not yet for lan-
guage learning; furthermore, the focus has been
on question-answering items, rather than gap-fill
items.

Given a dataset of distractors and non-
distractors, Liang et al. (2018) trained ranking
models to rank the distractors higher. Experi-
mental results suggested that random forest and
Lambda MART performed best. However, the
evaluation was restricted to pairwise prediction of
distractor difficulty.

Gao et al. (2019) addressed the task of gener-
ating questions from a paragraph. Using bidirec-
tional LSTMs, their system classified questions as
either “easy” or “difficult”. While their evalua-
tion methodology was similar to the one advocated
by this paper, it is applied to question generation
rather than distractor generation.

3 Approach

Following most previous approaches, we adopt a
two-step process for distractor generation: the first
step generates distractor candidates, and the sec-
ond step filters out candidates that constitute ac-
ceptable answers. Our research focus is on the first
step, to which we introduce a re-ranking process
with a neural language model.

3.1 Baseline

Our baseline uses semantic similarity measures,
which have been reported in previous research to
yield the best performance in identifying plausible
distractor candidates (Section 2.1).

Word embeddings have been shown to be effec-
tive in measuring word similarity and relatedness
in a large range of NLP tasks, including distrac-
tor generation (Jiang and Lee, 2017). We used
word embeddings trained by Skipgram with neg-
ative sampling on Baidu Encyclopedia (Li et al.,
2018). Specifically, we calculated cosine similar-
ity between the word embeddings of the distractor
candidate and the target word, and obtained candi-
dates with the highest scores.

3.2 Re-ranking

The appropriateness of a distractor may depend
not only on the target word but also on the con-
text of the carrier sentence. Consider the word
served as the target word. In the context of food
being served at a restaurant, the word brought may
be a plausible distractor since it is semantically

close to the target word. However, in the con-
text of serving in a position, the word acted would
be a more plausible distractor, for example for the
carrier sentences in Table 1. Hence, we propose
to re-rank the distractors in the baseline list (Sec-
tion 3.1) with a language model.

BERT (Devlin et al., 2019) is a state-of-the-art
neural language model based on the Transformer
architecture (Vaswani et al., 2017). The model is
bi-directional, i.e., trained to predict the identity
of a masked word based on both the words that
precede and follow it. It has been shown to be ef-
fective in a variety of natural language processing
tasks. This paper is the first to apply it to distractor
generation.

Using its PyTorch implementation1, we masked
the target word in each carrier sentence and har-
vested the words most highly ranked by BERT for
the masked position. We then re-ranked the candi-
dates in the baseline list according to their relative
ranking in BERT.

An alternative to re-ranking would be to directly
use the ranked list from BERT. We did not adopt
this approach because the list can include distrac-
tor candidates that are not semantically similar to
the target word.

4 Experiments

We first present our dataset (Section 4.1), and then
analyze experimental results (Section 4.2).

4.1 Data

We derived our evaluation data from the dataset
compiled by Jiang and Lee (2017), which consists
of 37 carrier sentences taken from a number of
textbooks for Chinese as a foreign language. The
target words include 37 distinct nouns and verbs.

To construct a pool of distractor candidates for
the target word in each sentence, we intersected
these two sets: the 20 words that are most similar
to the target word according to the baseline algo-
rithm (Section 3.1); and the 50 most likely words
for the masked position according to BERT (Sec-
tion 3.2).

Out of this pool, we randomly selected a total
of 172 distractor candidates for human annotation.
Five human raters, all native speakers of Chinese,
independently annotated each candidate accord-
ing to the scheme used in Jiang and Lee (2017).

1https://pypi.org/project/pytorch-pretrained-bert/



Method Correlation Classification
Pearson’s r Spearman’s rho accuracy

Baseline -0.233 -0.263 42.52%
Re-ranking -0.455 -0.487 60.63%

Table 2: Evaluation of the baseline (Section 3.1) and re-ranking (Section 3.2) methods on correlation to human
judgment on plausibility (left); and on classification of distractor plausibility (right).

Figure 1: Correlation between human scores on the
plausibility of the distractor candidates, and their rank-
ing in BERT (Section 3.2).

Figure 2: Correlation between human scores on the
plausibility of the distractor candidates, and their se-
mantic similarity ranking (Section 3.1).

Each distractor candidate can be rated as “Obvi-
ously wrong”, “Somewhat plausible”, “Plausible”,
or “Correct” (and hence unacceptable as a distrac-
tor). The pairwise Kappa for the five human raters
was 0.420, which is considered a “Moderate” level
of agreement (Landis and Koch, 1977).

4.2 Results

Correlation with human judgment. Table 2
shows the level of correlation between the auto-
matically produced distractor ranking and the av-
erage human rating.2 A larger negative coefficient

2We assigned score 1 to the “Obviously wrong” candi-
dates, score 2 to “Somewhat plausible”, score 3 to “Plausi-
ble” and score 4 to “Correct” distractors.

indicates a higher degree of correlation, since dis-
tractors with higher plausibility scores should have
a smaller rank number. BERT achieved a Pear-
son correlation coefficient of -0.455; visualized in
Figure 1, the correlation is statistically significant
(p = 0.002). In contrast, the coefficient for the se-
mantic similarity baseline was only -0.233; visual-
ized in Figure 2, the correlation is not statistically
significant (p = 0.123). The trend was similar
with Spearman’s rho, for which BERT achieved
a coefficient of -0.487, which is statistically sig-
nificant (p = 0.0007). The baseline obtained a
coefficient of -0.263, which is not statistically sig-
nificant (p = 0.081).

Generation accuracy. We generated distrac-
tors by setting thresholds in the re-ranked list for
different plausibility levels. We tuned the thresh-
olds by leave-one-out cross-validation to optimize
accuracy in classifying a candidate as “Correct”,
“Plausible”3, or “Less Plausible”. The gold la-
bel is the majority label out of the five raters. As
shown in Table 2, BERT achieved 60.63% clas-
sification accuracy, outperforming the similarity
baseline, which achieved 42.52% by always pre-
dicting the majority label “Less plausible”. For
our dataset, the optimized thresholds for BERT
were to classify candidates ranked 1 to 10 as “Cor-
rect”; those ranked 11 to 39 as “Plausible”; and the
rest as “Less Plausible”.

5 Conclusions

To support automatic generation of gap-fill items
with distractors at a variety of plausibility lev-
els, we have introduced distractor ranking as a
new evaluation framework for distractor genera-
tion. This study is the first to apply BERT to the
task of distractor ranking. Experimental results
show that it outperforms semantic similarity mea-
sures in terms of both correlation to human judg-
ment on distractor plausibility, and classification
accuracy of distractor plausibility.

3The “Plausible” and “Somewhat Plausible” labels in the
human annotation were collapsed into the “Plausible” label.
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