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Abstract

Pain is the main symptom that patients present
with to the emergency department (ED). Pain
management, however, is often poorly done
aspect of emergency care and patients with
painful conditions can endure long waits be-
fore their pain is assessed or treated. To im-
prove pain management quality, identifying
whether or not an ED patient presents with
pain is an important task and allows for further
investigation of the quality of care provided.
In this paper, machine learning was utilised to
handle the task of automatically detecting pa-
tients who present at EDs with pain from retro-
spective data. Experimental results on a manu-
ally annotated dataset show that our proposed
machine learning models achieve high perfor-
mances, in which the highest accuracy and
macro-averaged F1 are 91.00% and 90.96%,
respectively.

1 Introduction

There are over 8 million presentations to Aus-
tralian public hospital emergency departments
(EDs) each year (AIHW, 2018). Pain is the
most common symptom for patients seeking care
in EDs (Karwowski-Soulié et al., 2006; Hather-
ley et al., 2016; Todd, 2017; Varndell et al.,
2018). In particular, a study of 726 presentations
(Karwowski-Soulié et al., 2006) showed that 78%
of patients presented to EDs with pain. Despite
the large number of ED patients with pain, pain
is often poorly assessed and treated within the ED
(Hatherley et al., 2016; Varndell et al., 2018). This
leads to increases in waiting times for patients un-
til pain is assessed and pharmacological analgesia
is offered (Hatherley et al., 2016; Varndell et al.,
2018).

In this paper, we propose the task of identifying
patients presenting to EDs with pain, with the view
of improving care quality and the management of

pain. In particular, the identification of patients
presenting to EDs with pain allows for the scop-
ing of groups who may be receiving poor pain care
(Pletcher et al., 2008; Hwang et al., 2014; Todd,
2017). The ease of identification of patients with
pain also allows for the evaluation of targeted in-
terventions to improve care using large datasets.

However, manually handling the identification
task at a large scale, such as tens, hundreds
of thousands of ED patients is challenging as
it requires expensive human effort to determine
whether a patient presented to the ED with pain
or not. To handle this problem, we propose
to use machine learning including both conven-
tional feature-based and deep learning models
(Scholkopf and Smola, 2001; Liaw et al., 2002; El-
man, 1990; LeCun et al., 1998; Chung et al., 2014)
to automatically learn the hidden patterns to solve
the task.

Machine learning research in healthcare has
shown success in handling many other predictive
tasks, such as cancer staging from pathology re-
ports (McCowan et al., 2007), disease or diagno-
sis coding from health records (Koopman et al.,
2015; Mullenbach et al., 2018), predicting in-
hospital mortality, unplanned readmissions (Ra-
jkomar et al., 2018), atrial fibrillation risk (Nguyen
et al., 2019), and opioid overdose risk (Che et al.,
2017; Lo-Ciganic et al., 2019). To this end, we
construct a dataset of ED patients from an Aus-
tralian hospital in order to evaluate our proposed
machine learning models, in which each patient is
assigned with either a “Pain” or “No-Pain” label
if the patient is with or without the presence of
pain, respectively. Our main contributions are as
follows:

• We formally introduce the task of identifying
whether or not a patient presented at an ED
with pain.



• We propose conventional machine learning
as well as deep learning models to handle the
task.

• We perform extensive experiments on the
task-specific annotated dataset to show the ef-
fectiveness of the models.

The remainder of the paper is structured as fol-
lows. In Section 2, we present related work on
improving the pain management and care quality,
as well as the application of machine learning in
healthcare predictive tasks. Section 3 describes
the pain identification task as well as how we con-
structed the annotated dataset. In Section 4, we
first describe our machine learning models. We
then report the experimental results of the models
on the annotated dataset. Section 5 concludes the
paper.

2 Related Work

An overview of research to help improve the pain
management and care quality at emergency de-
partments, as well as the application of machine
learning in the healthcare domain, will be pre-
sented.

2.1 Pain-related Studies
Pain is the most common symptom of patients pre-
senting at EDs (Cordell et al., 2002; Karwowski-
Soulié et al., 2006). In particular, Cordell et al.
(2002) and Karwowski-Soulié et al. (2006) re-
vealed that pain accounts for up to 70% and 78%
of ED visits, respectively. Much research atten-
tion has focused on the need for improving the
pain management and care quality (Doherty et al.,
2013; Georgiou et al., 2015; Hatherley et al., 2016;
Todd, 2017; Varndell et al., 2018). Historically,
the detection, assessment and management of pain
are often neglected (Georgiou et al., 2015; Varn-
dell et al., 2018). This results in patients be-
ing forced to wait extra time before getting as-
sessed and/or treated (Doherty et al., 2013), which
leads to negative outcomes for the patient and the
healthcare system.

The use of opioids is a popular approach for
pain treatment (Todd, 2017). However, recent
studies of prescription opioid misuse and abuse re-
vealed that in Australia, it has been increasing to
levels of harm (Häuser et al., 2017). This leads
to a more urgent need of improving the pain man-
agement and care quality in Australia, which mo-
tivates this study.

2.2 Machine Learning in Healthcare

With the availability of Electronic Medical Record
(EMR) systems, electronic health records (EHRs)
of patients, collected during the patient clinical en-
counters, have been increasingly available. This
creates a great opportunity for using machine
learning to improve care management and qual-
ity (McCowan et al., 2007; Koopman et al., 2015;
Rajkomar et al., 2018; Mullenbach et al., 2018;
Che et al., 2017). In particular, McCowan et al.
(2007) utilised Support Vector Machine (SVM)
(Scholkopf and Smola, 2001) to automatically in-
fer and classify cancer stages from patient pathol-
ogy reports. (Koopman et al., 2015) applied SVM
to classify cancer-related International Classifica-
tion of Diseases (ICD) codes from free-text death
certificates.

Especially, with the huge amount of EHR data,
deep learning has shown to obtain state-of-the-
art (SOTA) results in many predictive tasks (Che
et al., 2017; Rajkomar et al., 2018; Mullenbach
et al., 2018). In particular, deep learning models
based on recurrent neural network (RNN) (Elman,
1990) and convolutional neural network (CNN)
(LeCun et al., 1998) have achieved SOTA perfor-
mances in a number of tasks, such as large-scale
ICD coding from hospital free-text discharge sum-
maries (Mullenbach et al., 2018) and prediction
of opioid overdose risk (Che et al., 2017). Che
et al. (2017) presented an RNN-based model for
classifying categories of opioid users and achieved
robust results on a large-scale dataset of over a
hundred thousand opioid users. Mullenbach et al.
(2018) proposed a CNN-based model to tackle
the ICD coding task and showed that the model
yielded SOTA performances on the MIMIC III
dataset (Johnson et al., 2016). Rajkomar et al.
(2018) demonstrated that deep learning models
achieved high accuracy for predictive tasks, such
as in-hospital mortality, unplanned readmission
and prolonged length of stay. In this study, we
take the advantages of both conventional machine
learning and deep learning models to handle a
new task of pain-related identification which is de-
scribed in Section 3.

3 Task Description and Dataset

In this section, the formulation of the task and the
dataset used for the task evaluation is presented.



3.1 Task Description
Given a patient who presents at an ED, the aim
is to identify whether or not that patient is with
the presence of pain on admission. This task can
be formulated as a two-class (binary) classification
problem, in which the ED data of the patient was
used to predict the pain class (i.e., either “Pain” to
represent patients with pain or “No-Pain” to rep-
resent patients without pain).

Unstructured free-text ED data fields, namely
“presenting problem” and “nurse assessment”,
were used for the classification task. These were
the two free text fields that ED nurses fill out on a
patient’s arrival to the ED. Table 1 illustrates ex-
amples of patients with and without pain. Note
that short-hand notations, abbreviations and typo-
graphical errors are common in the patient ED
data, which presents additional challenges to the
task.

Table 1: Examples of the ED data associated with pa-
tients with/without pain. The class of each patient was
manually annotated.

Patient ED Data Class
Presenting problem: 4/7 cough,
tight chest , myalgia// recent dx t2dm;

Nurse assessment: a=patent b= sponta-
neous, rr 19, reports it hurts to breath
and having difficulty breathing c= strong
reg radial pulse, tachycardic 120 very dry
mucous membranes not maintaining oral
intake d= gcs 15;

Pain

Presenting problem: mdma yesterday anx-
ious insomnia subjective tongue swelling
tachycardic; Nurse assessment: hr 120bpm
dry tongue doe not appear swollen;

No-Pain

It is worth noting that the focus was on identi-
fying patients with pain at admission. Other po-
tentially useful ED information, such as ICD-10
diagnosis codes, would not be available until the
patient is discharged.

3.2 Dataset
A dataset of patients presenting at EDs was con-
structed by randomly extracting 2,000 ED adult
patients from an Australian hospital with the ar-
rival date from August to October 20181. The
dataset was annotated by an experienced medi-
cal student under the supervision of a senior med-
ical nurse, in which a patient was assigned a
“Pain” label if the patient presented with pain,

1Research ethics was obtained from the Metro North Hos-
pital and Health Service Human Research Ethics Committee.

Table 2: Basic dataset statistics

Dataset #Patients #Pain #No-Pain
Training 1,200 574 626
Development 400 171 229
Test 400 193 207

and “No-Pain” otherwise. In particular, the an-
notator was provided with a list of pain related
keywords (Hughes et al., 2019) to look for when
reviewing the triage nursing assessment. In ad-
dition to these keywords, the annotator also re-
viewed the documentation for a pain score, such
as “xx/10”, “severe pain”. When the annotator be-
lieved that the triage nursing assessment indicated
pain but was outside of the definition, discussion
was held between the student and the senior med-
ical nurse about whether this indicated the patient
arrived in pain. After annotating the data, the an-
notated dataset contained a total of 938 and 1,062
instances of “Pain” and “No-Pain” labels, respec-
tively.

The annotated dataset was split into training,
development and test sets containing 60%, 20%,
20% instances of the annotated dataset, respec-
tively. Table 2 shows the dataset statistics.

4 Methods

This section details the machine learning mod-
els used for the pain classification task. Specif-
ically, Support Vector Machine (SVM) and Ran-
dom Forest (RF) were used as our conventional
feature-based models, and Recurrent Neural Net-
work (RNN) and Convolutional Neural Networks
(CNN) were used as our deep learning models.

4.1 Conventional feature-based models

SVM (Scholkopf and Smola, 2001) and RF (Liaw
et al., 2002) were used as our conventional feature-
based models to handle the classification task.
Figure 1 shows the general architecture of the con-
ventional models. Here, both the models used the
same set of lexical and semantic features accord-
ing to (Yang et al., 2016; Vu et al., 2018) as fol-
lows:

Lexical features: Lexical features included n-
grams at both word and character levels (i.e. se-
quences of n words or characters). n-grams
at the character level were used to handle out-
of-vocabulary (OOV) words. For each type of
n-gram, only the top k most frequent n-grams
from the training set were kept. The value of
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Figure 1: Conventional machine learning models. The
model output is “No-Pain” for the input of “denies any
chest pain”.

each n-gram feature was calculated using the
term frequency-inverse document frequency (tf-
idf) weighting scheme.

Semantic features: Two approaches were applied
to semantically represent the patient. Firstly, the
average of pre-trained embeddings of words in the
patient ED data was used as the representation of
that patient. Secondly, latent semantic indexing
(LSI) (Papadimitriou et al., 2000) was used to cap-
ture the underlying semantics of the dataset.

Implementation details: For the experimental
dataset, tokens that contained no alphabetic or nu-
meric characters were removed (for example, re-
moving “//” but keeping “3/7”). All the remaining
tokens were lowercased. The “presenting prob-
lem” and “nurse assessment” fields of a patient
were concatenated to form the single text for the
patient. Regarding lexical features, we set k, the
top most frequent n-grams to 2,000 for both word
and character levels. For the semantic features,
fastText (Bojanowski et al., 2016) was applied to
train a subword embedding model on a large-scale
dataset of 8 million hospital clinical notes. We
found that the best experimental results on the de-
velopment set were achieved with the pre-trained
embedding size of 200. Moreover, we set the LSI
output size to 100.

The Scikit-learn implementations for both the
SVM and RF models (Pedregosa et al., 2011) were
used. For each model, a grid-search on hyper-
parameters was performed to find the best per-
forming model on the development set. Specifi-
cally, for each hyper-parameter setting, we trained
the machine learning model using the training set

and then evaluate the trained model on the devel-
opment set. The best-trained model was selected
using the macro-averaged F1 scores of “Pain” and
“No-Pain” labels on the development set. After
that, the best model was used for the evaluation on
the test set.

For SVM, the “linear” kernel performed bet-
ter than the “polynomial”, “radial basis function
(rbf)” and “sigmoid” kernels. The grid search was
performed over loss function ∈ {“squared hinge”,
“hinge”}; C ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 3.0,
5.0}; max iteration ∈ {100, 200, 500, 1000,
2000}. We also set the penalty norm parameter
to l2. The highest average-macro F1 score was
archived with loss function = “hinge”, C = 0.3,
and max iteration = 1000.

For RF, the grid search was performed over
max depth ∈ [1− 10] and number of trees ∈ {10,
50, 100, 200, 300, 500, 1000}. A max depth = 6
and number of trees = 500 produced the highest
F1 score on the development set.

4.2 Deep learning models

RNN (Elman, 1990) and CNN (LeCun et al.,
1998) were used as deep learning models as they
have proved to work well in the tasks of mod-
elling sequence data (Mikolov et al., 2010) and
text classification (Kim, 2014; Yang et al., 2016).
Figure 2 shows the architecture of the deep learn-
ing models. For both models, the base/embedding
layer was obtained by concatenating the pre-
trained word embeddings (from a large-scale hos-
pital clinical note dataset) with the character-level
embeddings of that word (Kim et al., 2016). The
pre-trained word embeddings were fixed, while
character-level word embeddings were simultane-
ously trained with the other model parameters.
The character-level word embeddings help handle
the OOV words. The representations of words in
the ED data of a patient were concatenated to form
a sequence of word representation vectors.

RNN model: The sequence of word vectors were
fed into an RNN encoder to learn the represen-
tation of the patient. As RNN has struggled
with long-term dependencies, we applied a promi-
nent variant of RNN, Gated recurrent unit (GRU)
(Chung et al., 2014), which can handle the prob-
lem.2 The hidden state vector of the last word in

2GRU performed better than long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) as well as their
bi-directional counterparts for this task in our experiments.
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Figure 2: Deep learning models. The model output is
“Pain” for the input of “generalised abdominal pain”.

the patient data produced by GRU was used as the
patient representation. Finally, the representation
vector was fed into a one-hidden layer multilayer
perceptron (MLP) with softmax output for classifi-
cation which returns the class probabilities for the
patient.

CNN model: The sequence of word vectors was
fed into a CNN encoder which performed convo-
lution operations and max-pooling to produce the
representation vector of the patient. Similar to the
RNN model, the representation vector was fed into
a one-hidden layer MLP with softmax output to
produce the class prediction.

Implementation details: The same pre-trained em-
beddings model and data preprocessing detailed
in Section 4.1 was used. The deep learning mod-
els were implemented using Pytorch (Paszke et al.,
2017). We trained each model using the Adam op-
timiser (Kingma and Ba, 2014) with the default
learning rate of 0.001 and a fixed random seed.
The batch size and the number of training epochs
were respectively set to 32 and 50. The CNN-
based model proposed by (Kim et al., 2016) was
used to learn the character-level embeddings for
each word, in which the window size and the num-

ber of filters were set to 2 and 50, respectively. For
both models, we applied a dropout mechanism to
both the word representations (before the encoder)
and the patient representation (before MLP) with
the probability of 0.5.

For RNN, a grid search was performed over hid-
den size∈ {100, 200, 300, 400, 500} and the num-
ber of layers, n layers ∈ {1, 2, 3, 4, 5}. The best
performance was achieved with hidden size = 400
and n layers = 5. For CNN, we performed a grid
search of the number of filters, n filters ∈ {100,
200, 300, 400, 500} and the window sizes, ker-
nel sizes ∈ {2, 3, 4, 5, (2, 3), (4, 5), (3, 4, 5)}.
The setting of n filters = 400 and kernel sizes = 3
produced best performances.

4.3 Evaluation
Baseline: The proposed machine learning models
were compared with a rule-based baseline, RULE.
Specifically, the baseline used inclusion and ex-
clusion criteria predefined by a senior ED nurse
as detailed in a recent publication (Hughes et al.,
2019), for example, terms containing “pain’, “dis-
comfort”, “stab”, “burn”, “ache”. In the baseline,
Context/Negex (Chapman et al., 2011) was also
used to handle negation in the patient ED data, for
example, “denies neck pain”.
Metrics: The metrics used to evaluate the models
included accuracy, precision, recall and F1 which
are standard evaluation metrics for classification
tasks. For all metrics, higher values represent bet-
ter performances.

4.4 Results
Overall performance: Table 3 shows the main
experimental results of the models on the test set.
The rule-based model, RULE, achieves an accu-
racy of 84.75% indicating that the model per-
formed well for this task. The drawback of this
model is that it required expert knowledge for
the construction of the inclusion and exclusion
criteria. The results also show that all the pro-
posed machine learning models achieved higher
performances than RULE. Specifically, the ma-
chine learning models achieve absolute improve-
ments of at least 3.3% over the RULE baseline
with respect to the macro-averaged F1 scores. This
indicates that the proposed machine learning mod-
els can handle the task well even without expert
knowledge.

Noteworthy, without feature engineering, the
deep learning models (i.e., CNN and RNN) per-



Table 3: Experimental results (%) on the test set. ∗ indicates that the performance difference between the machine
learning model and the RULE baseline is significant at the significance level α of 0.1 using the Approximate
Randomisation test (Chinchor, 1992; Dror et al., 2018), with N= 5,000.

Model Accuracy Macro-averaged Pain No-Pain
Precision Recall F1 Precision Recall F1 Precision Recall F1

RULE 84.75 84.87 84.63 84.69 86.26 81.35 83.73 83.49 87.92 85.65
SVM 88.00 88.13∗ 87.90∗ 87.96∗ 89.62 84.97 87.23∗ 86.64 90.82 88.68∗

RF 88.00 88.31∗ 87.85∗ 87.93∗ 90.96∗ 83.42 87.03∗ 85.65 92.27∗ 88.84∗

RNN 91.00∗ 91.21∗ 90.88∗ 90.96∗ 93.37∗ 87.56∗ 90.37∗ 89.04∗ 94.20∗ 91.55∗

CNN 88.25 88.25∗ 88.30∗ 88.25∗ 86.50 89.64∗ 88.04∗ 90.00∗ 86.96 88.45

formed competitively or better than conventional
models (i.e., SVM and RF). RNN produced the
highest performance with an accuracy and macro-
averaged F1 score of 91.00% and 90.96%, which
were 6.25% and 6.27% absolute higher than
RULE, respectively. With regards to the “Pain”
label, RNN achieved the highest precision of
93.37% and F1 score of 90.37%. Meanwhile,
CNN achieved the highest recall of 89.64%. In
terms of the “No-Pain” label, CNN obtained the
highest precision of 90.00%, while RNN achieved
the highest recall of 94.20% and F1 of 91.55%.

Table 3 also presents the statistical significance
between the difference in performances between
the machine learning models and the RULE base-
line, using the Approximate Randomisation test
(Chinchor, 1992; Dror et al., 2018), with N =
5,000 and the significance level α of 0.1. The Ap-
proximate Randomisation test is a popular non-
parametric statistical significance test for NLP
tasks (Chinchor, 1992; Dror et al., 2018). We
found that the difference in performances be-
tween RNN and RULE were statistically signif-
icant across all classes as well as metrics. The
deep learning models were also consistently bet-
ter in terms of absolute values when compared to
conventional models.

Ablation study: In the previous sections, deep
learning models were shown to work better than
conventional machine learning models. In this
section, we evaluate the effectiveness of the
pre-trained and character-level word embeddings
on the performance of the deep learning mod-
els. Specifically, we perform an ablation study
on the development set, in which we evaluate
the best performing model, RNN, with differ-
ent ablation settings as follows: w/o char embeds,
w/o word embeds and w/o both denoting that the
model was trained without character-level word
embeddings, without pre-trained word embed-

dings3 and neither the embeddings, respectively.
We also presented the results of RNN when using
only the “presenting problem”, namely only PP
and using only the nurse assessment, namely
only NA ED data fields.4

As can be seen from Table 4, without character-
level word embeddings slightly decreases the
RNN performance. Without pre-trained word em-
bedding significantly degrades the RNN perfor-
mances by about 4%. The largest decline in the
performance of about 4.8% was observed when
both embedding types were not used. We further
see that without using presenting problem data
(i.e. “only NA”) results in a significant decrease
of more than 23% in the performance. This is per-
haps caused by the fact that there were 276 out
of 2,000 (∼ 14%) patients who did not have any
nursing assessment data. Another reason may be
due to the presenting problem field being more in-
formative in terms of containing more pain-related
information than in the nurse assessment field.
Further investigation revealed that 38% of the pre-
senting problems in the development set contained
pain-related keywords (detailed in the baseline,
RULE) compared to 25.50% of the non-empty
nurse assessment data. We also found that with-
out using nurse assessment (i.e. “only PP”) de-
grades the performance by about 3.8%. This in-
dicates that the concatenation of the two free-text
fields was important to the task.

4.5 Application

The immediate application of the research is to
provide machine learning assistance to process
and analyse very large datasets for the purposes of
research or clinical audit. Apart from that, it can
also be a potential real-time clinical application,

3In this case, the word embeddings were initialised ran-
domly and then fine-tuned with the training of other model
parameters.

4For the ED data field ablation study, we used the RNN
with both pre-trained word and character-level embeddings.



Table 4: Ablation study performance (%) on the devel-
opment set.

Model Accuracy F1

RNN 90.00 89.80
w/o char embeds 89.75−0.25 89.61−0.19

w/o word embeds 86.00−4.00 85.50−4.30

w/o both 85.25−4.75 84.99−4.81

only PP 86.25−3.75 85.88−3.92

only NA 67.42−22.58 66.32−23.48

such as a smart support assistant to help improve
the quality of triage related to presentations that
involve or are likely to involve pain. Specifically,
in the scenario of a patient who presents to triage,
the triage nurse asks about the problem/symptoms
and records in electronic notes. If pain or a con-
dition likely to be associated with pain is recorded
then the triage nurse should also ask the patient
about the level of pain and record a pain score.
The smart support assistant will monitor the elec-
tronic notes in real-time and if a pain score is not
recorded in the notes when it should be, then it will
provide a suggestion of adding the information to
the triage nurse. Pain is a common symptom that
the ED sees everyday but still does not do a good
job at assessing. These applications are able to
be expanded to different hospital departments and
units, such as Intensive Care Units where assess-
ing pain may also be challenging (Suominen et al.,
2009).

4.6 Limitations and Future Work

As in the previous section, the best accuracy on the
development set was 90%, achieved using RNN.
This meant that there were 10% ∼ 40 instances,
namely the “error” set, where RNN produced in-
correct labels. The “error” set was reviewed by a
senior ED nurse to determine the underlying rea-
sons for the system discrepancies.

On review, we found cases where the ED nurse
had difficultly in classifying pain. In these more
difficult cases, half of the “error” cases could have
been classified differently.5 This shows that even
with a medical background, there exist the more
difficult cases where there may be uncertainty in
the labels. In future, we plan to handle the uncer-
tainty problem by involving multiple annotators
and an adjudicator.

5This indicates that our proposed machine learning ap-
proaches could have achieved higher performances if the
dataset labels relating to “error” cases were corrected.

Another limitation of the proposed deep learn-
ing model was that although it produced the high-
est performance, it was still difficult to understand
and locate the evidence it used for prediction,
which is an important aspect of text analytics in
the healthcare domain. In future work, we aim to
integrate neural attention mechanisms to our deep
learning models to make it interpretable (Bah-
danau et al., 2014; Luong et al., 2015; Vaswani
et al., 2017).

5 Conclusions

In this paper, we presented the task of identifying
patients who presented to EDs with pain. Both
conventional feature-based machine learning and
deep learning models were proposed to handle the
task. Experimental results on a 2,000 ED patient
annotated dataset showed that our machine learn-
ing models performed well on this task with the
highest accuracy and macro-averaged F1 score of
91.00% and 90.96%, respectively.

It was shown that the machine learning mod-
els achieved higher results than a rule-based base-
line. Moreover, deep learning models performed
competitively or better than conventional models.
The ablation study indicated that pre-trained word
embeddings and character-level word embeddings
played an important role leading to the success of
the deep learning models. These learnings are ben-
eficial for similar research on other clinical tasks
but also sets a solid foundation for further improv-
ing performances on the “pain” models as well as
improve the clinical utility of the model through
explainability, with the aim to scale the “pain”
study to other hospitals and regions.
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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