
Overview of the 2013 ALTA Shared Task

Diego Molla
Department of Computing

Macquarie University
Sydney, NSW 2109

diego.molla-aliod@mq.edu.au

Abstract

The 2013 ALTA shared task was the fourth
in the ALTA series of shared tasks, where
all participants attempt to solve the same
problem using the same data. This year’s
shared task was based on the problem of
restoring casing and punctuation. As with
last year, we used Kaggle in Class as the
framework to submit the results and main-
taining a leaderboard. There was a strong
participation this year, with 50 teams par-
ticipating, of which 21 teams submitted re-
sults that improved on the published base-
line. In this overview we describe the
task, the process of building the training
set, and the evaluation criteria, and present
the results of the submitted systems. We
also comment on our experience with us-
ing Kaggle in Class.

1 Introduction

There are many situations when a piece of En-
glish text does not have information about cap-
italisation or punctuation. These situations may
arise, for example, when the text is the result of
automatic transcription from speech, or when the
text has been typed in a hurry, such as when tak-
ing quick notes or in quick responses in Web fo-
rums, or when using media such as text messages.
If such a text is to be processed automatically,
one may want to restore the missing capitalisation
and punctuation, so that the text can be processed
using conventional text processing tools and re-
sources. It has been shown that introducing a pre-
liminary step that automatically restores case in-
formation improves the results of machine transla-
tion (Lita et al., 2003) and information extraction
from speech transcripts (Niu et al., 2004).

The task of case and punctuation restoration
takes text such as the following as input:

... stored at the ucla television
archives the archived episodes were
telecast march 8 16 and 24 1971 april 1
and ...

The expected output is:

... stored at the UCLA Television
Archives. The archived episodes were
telecast: March 8, 16, and 24, 1971,
April 1 and ...

An interesting feature of case and punctuation
restoration is that training data can be obtained
cheaply. One only needs to take a piece of text
and remove case and punctuation. By doing this
we can obtain the input data (the text with the case
and punctuation information removed) and the tar-
get data (the original text). It has been observed
that using this approach to generate training data
suffices to obtain reasonable results (Niu et al.,
2004), and this observation agrees with the results
obtained in this shared task, as we will show in this
paper.

2 The 2013 ALTA Shared Task

Case and punctuation restoration can be formu-
lated as a text classification task. Baldwin and
Joseph (2009) used a multi-label classification ap-
proach where a word can have multiple labels,
each label indicating the information to be re-
stored in the word. For example, the set of
labels CAP1+FULLSTOP+COMMA indicates that
the word has the first character as uppercase and
is followed by a full stop and a comma. Thus,
if the word was corp, the labels indicate that the
word should be restored to Corp.,. There is a
label ALLCAPS to indicate that all letters in the
word need to be uppercased, and the specific label
NOCHANGE indicates that the word does not need
any special restoration.

Diego Molla. 2013. Overview of the 2013 ALTA Shared Task. In Proceedings of Australasian Language
Technology Association Workshop, pages 132−136.



ID WORD
255 stored
256 at
257 the
258 ucla
259 television
260 archives
261 the
262 archived
263 episodes
264 were
265 telecast
266 march
267 8
268 16
269 and
270 24
271 1971
271 april
273 1
274 and

Figure 1: Example of input text

The ALTA shared tasks primarily target univer-
sity students with programming experience, but
without necessarily much background on text pro-
cessing techniques. For this reason, the 2013
ALTA shared task is a simplification of the more
general task of case and punctuation restoration.
The participants are asked to build automatic sys-
tems that predict where a word should have any of
its characters in uppercase, and whether the word
is followed by any punctuation mark. They are not
required to predict which specific characters are
in uppercase, or which specific punctuation marks
are attached to the word. Furthermore, the only
punctuation characters to consider for the task are:

,.;:?!

The shared task was presented as a task of
multi-label classification with two possible labels:
Case and Punct. A word could be labelled with
any of the labels, both, or none. The participants
were given text that had been tokenised, all case
removed, and all punctuation (,.;:?!) removed.
Figures 1 and 2 show an example of input text and
the target, using the specific format required for
the task. According to the example in the figures,
word with ID 258 (ucla) has at least one character
in uppercase, and word with ID 260 (archives) has

Id,documents
Case,258 259 260 261 266 272
Punct,260 265 267 268 270 271

Figure 2: Example of target output

uppercase characters and punctuation marks.

3 The Training and Test Sets

We used the data by Baldwin and Joseph (2009)
to produce a training set and two test sets, plus
text from Wikipedia to produce additional training
data.

The data by Baldwin and Joseph (2009) are
from the AP Newswire (APW) and New York
Times (NYT) sections of the English Gigaword
Corpus. Of the two test sets, one was used as
a “public” test set that participants could use to
check their progress in the development of their
systems. The participants did not have access to
the target output but they could submit the out-
put of their systems and they would receive instant
feedback with the results and how they compare
against other participants in the leaderboard. The
second test set was a “private” test set that was
used to determine the final scores. By having sep-
arate “public” and “private” test sets we aimed to
reduce the risk of some systems overfitting to the
actual test set, since each participant could submit
up to two runs every day. As training data we used
the third partition from Baldwin and Joseph (2009)
plus an extract from Wikipedia.

To download the Wikipedia text, shuffle the
paragraphs, and split the contents into smaller files
we used a method and scripts based on a blog
post1. We then used the Python NLTK toolkit
(Bird et al., 2009) to tokenise the words. We
lowercased the tokens and removed those that
matched our list of punctuation marks.

The Wikipedia training data consisted of 18
files with a total of 306,445 words. The data
from Baldwin and Joseph (2009) consisted of a
“train” file with 66,371 words, the “public” test
file with 64,072 words, and the “private” test file
with 65,903 words.

1http://blog.afterthedeadline.com/2009/12/04/generating-
a-plain-text-corpus-from-wikipedia/

133



4 Kaggle in Class

Kaggle2 is a Web-based framework for the cre-
ation of data-driven competitions. Kaggle pro-
vides the means for competition designers to up-
load the training data to distribute among partici-
pants, and private test data that is used when par-
ticipants submit a run. The winner is automat-
ically determined as the team who produces the
highest score on the private data.

Kaggle targets data analytics companies who
can use this framework to hire data modelling spe-
cialists. At a cost, Kaggle offers their outreach
solutions to find participants to the competitions.
Kaggle in Class3 is a free variant that allows class
instructors and organisations hold shared tasks
without incurring in management fees. The main
differences between Kaggle and Kaggle in class
are that Kaggle in Class has limited support ser-
vices, it has less flexibility in its setup, and does
not use Kaggle’s outreach services.

A very attractive feature of Kaggle in Class is its
ability to maintain a leaderboard that allows par-
ticipants to keep track of how they stand against
other participants. Participants can submit results
up to two times a day using the test set. The test
set has a “public” partition that is used to dis-
play the participants’ results in a public leader-
board, and a “private” partition that is used for
the final rating. Kaggle in Class also includes a
competition-specific Web forum for communica-
tion among participants and between organisers
and participants.

Kaggle in Class offers an array of evaluation
metrics. For this shared task we used the macro-
averaged F1 score, which allowed the evaluation
of the output of multi-label classification tasks by
averaging the class-specific F1 score. For exam-
ple, if the target output is as shown in Table 2, and
a system returns the following output:

Id,documents
Case,258 259 260 262 270
Punct,259 260 265 270

Then the computed F-scores are:

Case: P = 3/5; R = 3/6; F1 = 0.54

Punct: P = 3/4; R = 3/6; F1 = 0.6

Final score: (0.54+0.6)/2 = 0.57
2http://www.kaggle.com
3http://inclass.kaggle.com

Training data F1 (private) F1 (public)

Train data 0.2895 0.4355
Wikipedia 0-5 0.2761 0.4077
Wikipedia 0-10 0.2791 0.4173
Wikipedia 0-17 0.2789 0.4226
Train + Wikipedia 0.2876 0.4493

Table 1: Impact of training data on the baseline

5 The Baseline

We built a simple baseline and made the code
available to the participants. The baseline was
written in Python and it used NLTK’s Hid-
den Markov Model (HMM) trained on a single-
labelling variant of the task. The single-labelling
variant had 4 classes, one for each combination of
the Case and Punct labels. Table 1 shows the re-
sult of the system when trained on the “train” data,
and when trained on increasing portions of the
Wikipedia train data. We observed that the “train”
data was better than the Wikipedia train data, but
adding more Wikipedia data might have improved
the results. These findings are in line with the
findings of the winner of the shared task (Lui and
Wang, 2013, in these proceedings), who observed
better results as they added more training data. We
also observed a considerable difference between
the results of the “public” and the “private” test.
This may indicate that these two partitions do not
represent each other, although as we will observe
in Section 6, the results of the top participants are
consistent across the two test partitions.

6 Results

The specific format required for submitting the re-
sults to Kaggle in Class using the macro-averaged
F1 score did not allow to specify “public” and
“private” partitions on the test file. For this rea-
son we created two Kaggle in Class competitions:
a “public” competition where participants could
submit and observe the results in the leaderboard,
and a “private” competition for the final results.
However, it turned out that many participants who
submitted to the public competition did not sub-
mit to the private competition. Table 2 shows the
results of all teams in the public competition, in-
cluding the baseline (in boldface), and a test sys-
tem that used the same training data as the base-
line plus the private set. Table 3 shows the re-
sults of the private submissions. All team names

134



have been anonymised, and we have kept the same
names in both tables.

We can observe a number of participants with
the same score as the baseline. Since the code of
the baseline was made available, it is likely that
these participants simply ran the baseline. The two
top participants in the public competition submit-
ted to the private competition and obtained similar
results. We could not locate one of the two re-
maining participants of the private competition in
the public competition, but we observed a very dif-
ferent score for one participant (“Team A”) across
the two competitions. Unfortunately too few par-
ticipants submitted to the private competition to
confirm whether the “private” test data tends to
lower the scores of poor submissions. Given that
our baseline also had a reduced score with the pri-
vate test data, it appears that this is the case.

7 Conclusions

This year’s shared task had a much larger partici-
pation than in past tasks. The main reason for this
was the use of the task as part of an assignment of
a Masters unit at University of Melbourne.

A large percentage of participants outdid our
baseline task, and the top participants did much
better than our baseline. The best results outper-
formed the results reported by Baldwin and Joseph
(2009), who achieved an F-score of 0.619. Even
though our shared task was a simplification, it
shows the good skills of the top participants, who
were PhD and Masters students. The top team
used Conditional Random Fields and is described
elsewhere in these proceedings (Lui and Wang,
2013).

We observed that a key component to improve
the results was the use of additional training data.
Since training data is easy to obtain for this task,
the only issue would be the increasing computa-
tional costs involved in adding additional data.

The use of Kaggle in Class was very conve-
nient due to its easy interface for the creation of
the task, its ability to maintain a leaderboard, and
its automatic partition into public and private test
data. Unfortunately, the actual evaluation score
that we used, macro-averaged F1, did not allow
the automatic partition into public and private test
sets. Our solution was to create an additional “pri-
vate” competition, but very few participants sub-
mitted to the new competition, possibly because
they could observe that they were not at the top of

Rank Team Score

1 Winner 0.73763
2 Second 0.68360
3 (anonymous) 0.63232
4 (anonymous) 0.63109
5 (anonymous) 0.60251
6 (anonymous) 0.60147
7 (anonymous) 0.59517
8 (anonymous) 0.58332
9 (anonymous) 0.56832
10 (anonymous) 0.56747
11 (anonymous) 0.55793
12 (anonymous) 0.55606
13 (anonymous) 0.55087
14 (anonymous) 0.52261
15 (anonymous) 0.51954
16 (anonymous) 0.51167
17 (anonymous) 0.49311
18 (anonymous) 0.47622
19 (test system) 0.46667
20 (anonymous) 0.46490
21 (anonymous) 0.45986
22 (anonymous) 0.45291

Baseline 0.44930

23 (8 systems) 0.44930
32 (anonymous) 0.44914
33 (anonymous) 0.42710
34 (anonymous) 0.42257
35 (anonymous) 0.41692
36 (anonymous) 0.40239
37 (anonymous) 0.38812
38 (anonymous) 0.38113
39 (anonymous) 0.32594
40 (anonymous) 0.32320
41 (anonymous) 0.30988
42 (anonymous) 0.29891
43 (anonymous) 0.29304
44 (anonymous) 0.27642
45 (anonymous) 0.23504
46 Team A 0.23108
47 (anonymous) 0.21930
48 (anonymous) 0.21771
49 (anonymous) 0.21291
50 (anonymous) 0.20226
51 (anonymous) 0.13397
52 (anonymous) 0.00000

Table 2: Results of the public submissions

Rank Team Score

1 Winner 0.73660
2 Second 0.64934
3 (anonymous) 0.30037
4 Team A 0.07656

Table 3: Final results of the private submissions

135



the leaderboard.

References
Timothy Baldwin and Manuel Paul Anil Kumar Joseph.

2009. Restoring Punctuation and Casing in En-
glish Text. In AI ’09 Proceedings of the 22nd Aus-
tralasian Joint Conference on Advances in Artificial
Intelligence, pages 547–556.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. tRuEcasIng. In Proc.
ACL 2003, pages 152–159.

Marco Lui and Li Wang. 2013. Recovering casing and
punctuation using conditional random fields. In Pro-
ceedings of the 2013 Australasian Language Tech-
nology Workshop, Brisbane, Australia.

Cheng Niu, Wei Li, Jihong Ding, and Rohiri K. Srihari.
2004. Orthographic Case Restoration Using Su-
pervised Learning without Manual Annotation. In-
ternational Journal on Artificial Intelligence Tools,
13(1):141–156, March.

136


