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Abstract

We offer a supervised machine learn-
ing approach for recognizing erroneous
words in the output of a speech recognizer.
We have investigated several sets of fea-
tures combined with two word configura-
tions, and compared the performance of
two classifiers: Decision Trees and Naïve
Bayes. Evaluation was performed on a cor-
pus of 400 spoken referring expressions,
with Decision Trees yielding a high recog-
nition accuracy.

1 Introduction
One of the main stumbling blocks for spoken Nat-
ural Language Understanding (NLU) systems is
the lack of reliability of Automatic Speech Rec-
ognizers (ASRs) (Pellegrini and Trancoso, 2010).
Recent research prototypes of ASRs yield Word
Error Rates (WERs) between 15.6% (Pellegrini
and Trancoso, 2010) and 18.7% (Sainath et al.,
2011) for broadcast news. However, the WER of
the ASR we employed (Microsoft Speech SDK
6.1) is 34% when trained on an open vocabulary
plus a small language model for our corpus. This
WER is consistent with that obtained in the 2010
Spoken Dialogue Challenge (Black et al., 2011).

In this paper, we offer a supervised machine
learning approach to detect erroneous words in
ASR output (this step will be followed by auto-
matic error correction). Our approach was evalu-
ated on a corpus of 400 spoken referring expres-
sions, with the best-performing option yielding an
average accuracy of 89% (Section 5).

The rest of this paper is organized as follows. In
the next section, we discuss related work. In Sec-
tion 4, we describe our experimental design, fo-
cusing on the features considered for our machine-
learning approach. In Section 5, we discuss our re-
sults, followed by concluding remarks.

2 Related Research
Approaches for improving the performance of
spoken NLU systems may be classified into pre-
vention and recovery.

Prevention avoids errors by constraining the
vocabulary (Gorniak and Roy, 2005; Sugiura et
al., 2009) and grammatical constructs (Brooks and
Breazeal, 2006) understood by an ASR. ASRs that
employ this approach can process expected utter-
ances efficiently, and work well in restricted do-
mains. However, these ASRs have trouble process-
ing unexpected utterances.

Recovery involves error detection followed
by correction. During detection, an NLU system
posits that a word in an utterance was incorrectly
recognized. Three approaches to error recovery
are described in (López-Cózar and Griol, 2010;
Ringger and Allen, 1996; Zhou et al., 2006).

López-Cózar and Griol (2010) consider statis-
tical information, and lexical, syntactic, semantic
and dialogue-related information to correct ASR
errors (i.e., replace, insert or delete words in a
textual ASR output), and syntactic approaches to
modify tenses of verbs and grammatical numbers
to better match grammatical expectations.

Ringger and Allen (1996) use statistical infor-
mation to construct a language model that quanti-
fies the likelihood of word sequences, and a noisy
channel model that predicts errors made by an
ASR. They perform error detection and correction
at the same time based on these models, which are
trained using the words expected in the domain.

Zhou et al. (2006) perform error detection and
correction of utterances, words and characters in
Mandarin. They experiment with the General-
ized Word Posterior Probability (GWPP) of an
utterance, computed from word hypotheses, ut-
terance length, language model, and acoustic ob-
servations; and features based on the N -best hy-
potheses, obtained from acoustic, language model
and purity scores. When an erroneous word is de-
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(a) Projective relations and “end, edge, corner” and “cen-
ter” of a table

(b) Colour, size, positional relation and intervening object
in a room

Figure 1: Two of the scenarios used to construct our corpus.

tected, all the characters in it are deemed to be
wrong. Correction is then performed using a list
of candidate alternatives for each erroneous char-
acter to generate a list of word hypotheses, and a
linguistic model based on mutual information and
trigrams to select the best word hypothesis.

Like these researchers, we offer corpus-based
techniques to detect ASR errors. However, we em-
ploy features of the ASR output, rather than actual
words or expectations from the context. By do-
ing this, we hope to avoid over-fitting to domain-
specific words and expectations.

3 The Corpus
Error detection performance was evaluated using
the corpus constructed by Kleinbauer et al. (2013).
The corpus originally comprised 432 free-form
descriptions spoken by 26 trial subjects to refer to
12 designated objects in four scenarios (three ob-
jects per scenario, where a scenario contains be-
tween 8 and 16 objects; two scenarios appear in
Figure 1). Half of the participants were native En-
glish speakers, and half were non-native. All the
speakers were proficient in English, but the non-
native speakers had a foreign accent, and some had
idiosyncratic turns of phrase.

We manually filtered out 32 descriptions that
were broken up by the ASR due to pauses made
by the speakers, leaving 400 descriptions, which
comprise 3, 128 words in total, and 118 unique
words. The descriptions, which varied in length
and complexity, had an average length of 10 words
and a median length of 8 words, with the longest
description containing 21 words. Sample descrip-
tions are: “the green plate next to the screwdriver
at the top of the table”, “the large pink ball in the
middle of the room”, “the plate in the corner of the
table”, and “the picture on the wall”.

The ASR produced up to 50 alternative textual

interpretations for each spoken description, ranked
in descending order of probability. In total, 4, 249
texts, with 33, 927 words (706 unique) were gen-
erated. It is worth noting that more alternatives,
with a higher average WER for the top-ranked op-
tions, were generated for non-native speakers than
for native speakers.

We used the Levenshtein distance to align each
alternative produced by the ASR with the refer-
ence (correct) description. The words in the al-
ternative were then labeled as follows: Correct,
Inserted – absent from the reference interpreta-
tion, Replaced – an incorrect word instead of the
reference word, and Deleted – a placeholder for a
reference word that is not in the alternative. The
Inserted and Replaced words comprise the Wrong
class (Deleted words cannot be modeled).

4 Experimental Design
In this section, we discuss the classifiers we con-
sidered, our feature sets, and evaluation methods.

Classifiers. We investigated two classifiers to
decide whether a word in a text produced by the
ASR is correct: Decision Trees (DT) (Quinlan,
1993) and Naïve Bayes classifiers (NB) (Domin-
gos and Pazzani, 1997) (cs.waikato.ac.nz/ml/
weka/).1 For NB, we used equal-width binning to
discretize continuous features (Catlett, 1991; Ker-
ber, 1992).

Features. The target classes are Correct or
Wrong, and three types of features were computed
for each word w in a text: word based (5), sentence
based (6), and phoneme based (2).

Word-based features. (1) Part of Speech (PoS)
as determined by the Stanford PoS Tagger

1Initially we also considered linear chain Conditional
Random Fields (CRF) (Lafferty et al., 2001) (mallet.cs.
umass.edu), but they exhibited inferior performance.
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(nlp.stanford.edu/software/tagger.shtml);
(2) Stop Word as determined by the list in
webconfs.com/stop-words.php; (3) Position of
w in the text, defined as a nominal feature taking
one of the values Beginning, Middle or End;
(4) Time taken by the speaker to pronounce word
w (in fraction of a second); and (5) Confidence
Score given to word w by the ASR.

Sentence-based features. (6) Repetition Count
– number of alternatives where w is re-
peated; (7) Repetition Ratio (equivalent to purity
score (Zhou et al., 2006)) – Repetition Count di-
vided by the total number of alternatives; (8) Re-
placement Ratio – number of alternatives which,
when aligned with the current alternative, label w
with “R”, divided by the total number of alterna-
tives; (9) Insertion Ratio – number of alternatives
which, when aligned with the current one, label w
with “I”, divided by the total number of alterna-
tives; (10) Rank of the alternative containing w in
the ASR output; and (11) Sentence Length – num-
ber of words in the current alternative.

Phoneme-based features (according to the CMU
Pronunciation Dictionary, speech.cs.cmu.edu/

cgi-bin/cmudict). (12) Broad Sound Groups
(BSGs) – a vector of length 8 that represents the
number of times each BSG occurs in word w, e.g.,
the word “problem” has 2 vowels, 2 stops, 2 liq-
uids, and 1 nasal; and (13) Phonemes – a vector
of length 39 that represents the number of times
a phonetic symbol appears in w’s phonetic tran-
scription.

We experimented with the following sets of fea-
tures: (1) Word + Sentence features, (2) BSGs,
and (3) Phonemes. These features were computed
for the current word (C), which is being classi-
fied, and for the previous, current and next word
(PCN). For example, the following vector is pro-
duced when all 58 features are used for the cur-
rent word (the first and last word in an alternative
have missing features for P and N respectively):
f1, . . . , f5︸ ︷︷ ︸

Word

, f6, . . . , f11︸ ︷︷ ︸
Sentence

, f12, . . . , f19︸ ︷︷ ︸
BSGs

, f20, . . . , f58︸ ︷︷ ︸
Phonemes

.

Sets of features that included actual words pro-
duced accuracies of over 95%, but were unlikely
to generalize. This was evident by inspecting the
generated decision tree, which was shallow and
wide. In fact, when w was used, most other fea-
tures were ignored. Consequently, we decided not
to include the actual words in our feature sets.

Table 1: Accuracy of DT versus NB: Different fea-
ture combinations.

Classifier Features Micro- Macro-
average average

NB Word+Sentence, C 0.8156 0.8146
NB Word+Sentence, PCN 0.8060 0.8066
NB BSGs, C 0.6479 0.6446
NB BSGs, PCN 0.6476 0.6479
NB Phonemes, C 0.6610 0.6605
NB Phonemes, PCN 0.6722 0.6731
DT Word+Sentence, C 0.8110 0.8110
DT Word+Sentence, PCN 0.8082 0.8121
DT BSGs, C 0.7959 0.7974
DT BSGs, PCN 0.8308 0.8324
DT Phonemes, C 0.8614 0.8591
DT Phonemes, PCN 0.8771 0.8770

Evaluation method. We employed 13-fold
cross validation to train and test our corpus, where
each fold comprises descriptions spoken by one
native English speaker and one non-native speaker
(Section 3). The per-speaker split ensures that sen-
tences spoken by one trial subject do not appear
in both training and test sets; and the native/non-
native pairing balances the test sets, in the sense
that they are of similar size, and ASR performance
is similar for all sets (Section 3).

5 Results
Table 1 shows the results of our initial tests, which
compare the performance of DT with that of NB
in terms of micro- and macro-averaged accuracy
(recall that the majority class of Correct words is
66%, Section 1). The odd-numbered rows contain
the results for the three sets of features computed
only for C, and the even-numbered rows contain
the results for PCN. The statistically significant
best result is boldfaced (statistical significance was
calculated using the Paired Student’s t-test).

As seen in Table 1, compared to C, PCN has
a mixed effect on NB’s performance, depending
on the base features: PCN yields a statistically
significant drop in accuracy for Word+Sentence
(p-value=0.03), no statistically significant change
for BSGs, and an improvement for Phonemes (p-
value=0.015). The results are more consistent for
DT: there is no significant difference in perfor-
mance between C and PCN for Word + Sentence,
but PCN yields statistically significant improve-
ments for the other feature sets (p-value ≤ 0.05).

There were no statistically significant differ-
ences in accuracy between DT and NB for
Word+Sentence with C and PCN. However, DT
significantly outperformed NB in the remaining
tests (p-values << 0.01). In addition, PCN
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Table 2: Accuracy comparison for DT with
Phonemes plus different feature combinations.

Features Micro- Macro-
Phonemes, PCN + average average

0.8771 0.8770
Word+Sentence 0.8775 0.8787
BSGs 0.8776 0.8783
Word+Sentence and BSGs 0.8741 0.8754
PoS 0.8902 0.8906
PoS and BSGs 0.8972 0.8971

yielded a better performance than C for DT.
Hence, our next tests are carried out using DT with
PCN only.

Table 2 shows the results of combining
Phonemes, which give the best accuracy (Table 1),
with three feature sets: Word+Sentence, BSGs
and PoS. The last two rows in Table 2 (bold-
faced) show the feature sets that yield the high-
est (statistically equivalent) accuracies. These re-
sults, which were obtained with PoS, with and
without BSGs, are significantly better than those
achieved when Word + Sentence features or BSGs
were used (p-value ≤ 0.05). Also, combining
Phonemes with Word+Sentence, BSGs and both
Word+Sentence and BSGs does not yield signifi-
cant performance changes.

The most significant features in the best-
performing decision trees are (in descending or-
der): presence of the phonemes TH and Z, num-
ber of occurrences of N (≤1 versus 1<), whether
PoS=JJ (adjective), and whether the next word
contains a stop BSG (at level 5 in the tree). This
indicates that certain phonemes are prone to ASR
mis-interpretation — an insight that has signifi-
cant implications for the next stage of the ASR
process, which consists of proposing replacements
for words that are classified as Wrong. For ex-
ample, we could create a confusion matrix be-
tween error-prone phonemes produced by the ASR
and likely replacement phonemes, and suggest re-
placement words that include these hypothesized
phonemes (Thomas et al., 1997; Zhou et al., 2006).
It is worth noting that the ASR’s Confidence Score
was not used in the best-performing DTs. In fact,
we observed that this score is often inconsistent
with the Correct/Wrong class of a word.

As mentioned in Section 4, using the actual
words as a classification feature yielded deci-
sion trees that over-fitted the data. Thus, it is
possible that a similar effect takes place when
Phonemes are used. Additional tests on differ-
ent datasets should be conducted to rule out this

Table 3: Accuracy comparison for DT with BSGs
plus different feature combinations.

Features Micro- Macro-
BSGs, PCN + average average

0.8308 0.8324
Word+Sentence 0.8640 0.8626
PoS 0.8639 0.8632

possibility. Notice, however, that BSGs with PCN
yield a creditable performance (third last row
in Table 1), which improves statistically signifi-
cantly (p-value << 0.01) when BSGs are com-
bined with PoS and Word+Sentence (Table 3).
This is noteworthy because BSGs are abstrac-
tions of Phonemes, and hence are less likely than
Phonemes to fit a small number of words. Further,
a correction procedure similar to that suggested for
Phonemes would be applicable for BSGs.

6 Conclusions and Future Work
We have proposed a supervised learning method
to predict the correctness of words in an ASR
output. Our best classifier yields 89% accuracy.
However, these results were obtained on a rela-
tively small corpus with a limited vocabulary (Sec-
tion 3). Hence, further tests with larger, more di-
verse corpora are needed to verify our results.

As mentioned in Section 3, we aligned the al-
ternatives returned by the ASR with the reference
text in order to label the words in each alterna-
tive. In addition, we aligned the alternatives with
each other to compute multi-alternative features,
such as Repetition count and Replacement ratio.
In doing so, we implicitly assumed that there is a
one-to-one mapping between the words in an al-
ternative and those in the reference text, and also
between the words in alternatives generated for the
same spoken description. However this assump-
tion is not always valid: we have observed cases
where one word has been split into two words by
the ASR, or a few words have been merged into
one. Ringger and Allen (1996) have proposed a
statistical solution to this problem, but unfortu-
nately their method relies heavily on the vocab-
ulary on which the system was trained. This prob-
lem will be addressed in the future.

The methods offered in this paper do not distin-
guish between a Wrong word and Noise (sighs or
hesitations that are often mis-heard by the ASR as
“and”, “on” or “in”). In the future, we propose to
retrain our system to deal with three classes, viz
Correct, Wrong and Noise.
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