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Abstract

One of the potentially most relevant pieces
of metadata for filtering studies in environ-
mental science is the geographic region in
which the study took place (the “study re-
gion”). In this paper, we apply support
vector machines to the automatic classifi-
cation of study region in a dataset of ti-
tles and abstracts from environmental sci-
ence literature, using features including fre-
quency distributions of resolved toponyms
and a bag of word unigrams. We found
that we can determine the study region with
high accuracy, with the strongest classifier
achieving an accuracy of 0.892 combin-
ing toponym resolution from DBpedia and
GeoNames with the bag-of-toponyms fea-
tures.

1 Introduction

One of the potentially most relevant pieces of
metadata for filtering studies in environmental
science is the region in which the study took
place, as users making queries are often looking
for studies performed in a specific area. However,
bibliographic databases do not systematically in-
clude information on study location. The Eco Ev-
idence database, a compendium of literature cita-
tions and linked evidence items that is used for ev-
idence synthesis in companion software (Webb et
al., 2011), is one such system for which location
information is very helpful. However, the manual
annotation of such metadata over large quantities
of literature is a tedious and time-consuming task.
One possible solution to this issue is to have

this information automatically extracted with the
aid of natural language processing (NLP) tech-
niques. The abstracts of studies, which are com-
monly available in bibliographic databases, fre-
quently contain geographic references of various

granularities. If identified and resolved, these to-
ponyms provide the potential to make a strong es-
timation of the overall location of the study. In
these experiments, we evaluate the performance
of various NLP techniques for automatic classi-
fication of the study region in environmental sci-
ence literature abstracts.
Beyond the aim of being able to quickly as-

semble a collection of literature from a given
area, our motivation in applying NLP to automati-
cally extract information from environmental sci-
ence literature is driven by our interest in mov-
ing towards an evidence-based model of decision-
making in the environmental sciences (Sutherland
et al., 2004). Similar to evidence-based medicine
(Sackett et al., 1996), such a model relies heav-
ily on systematic literature reviews as a means
of synthesizing evidence from the literature. The
Eco Evidence database (Webb et al., in press) is a
compendium of literature citations and linked evi-
dence items that is used for systematic review and
evidence synthesis in companion software (Webb
et al., 2011). The database is in active use in a
number of research projects currently, and evi-
dence therein has also formed the basis of several
published systematic reviews (Webb et al., 2012).
However, all evidence in the database is currently
manually annotated.

2 Background Work

Our motivation in applying NLP to automati-
cally extract information from environmental sci-
ence literature is driven by our interest in mov-
ing towards an evidence-based model of decision-
making in the environmental sciences (Sutherland
et al., 2004), similar to evidence-based medicine
(Sackett et al., 1996). Our work is directly moti-
vated by the possibility of streamlining the pop-
ulation of the Eco Evidence database by auto-
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matically extracting location information, but has
wider potential application to other bibliographic
databases where there is a geospatial dimension
to the data.
Comparable work in the biomedical domain

has focused on the automatic extraction of Med-
ical Subject Headings (MeSH) terms in abstracts
(Gaudinat and Boyer, 2002), labeling documents
based on specific terms in the abstract which are
to be resolved to more general categories.
The unique opportunities and challenges spe-

cific to retrieving geospatial information have
been well documented, particularly in the context
of geospatial information retrieval where queries
and documents have a geospatial dimension (San-
tos and Chaves, 2006). Aside from finding loca-
tions in the text, the disambiguation of what exact
location a term in a text is referring to presents
a unique challenge in itself, and a variety of ap-
proaches have been suggested and demonstrated
for this task (Overell and Rüger, 2006).
The methodology described in this work is

based on a standard approach to geographic in-
formaton retrieval, which was demonstrated by
Stokes et al. (2008) in their study of the perfor-
mance of individual components of a geographic
IR system. In particular, the named entity recog-
nition and toponym resolution (TR) components
are the basis for all the main classifiers in this
study.

3 Method

3.1 Dataset

The dataset for these experiments consists of
the titles and abstracts for 4158 environmental
science studies recorded in the Eco Evidence
database. One such sample abstract (Fu et al.,
2004) can be read below:

Title: Hydro-climatic trends of the Yellow River
basin for the last 50 years

Abstract: Kendall’s test was used to analyze the
hydro-climatic trends of the Yellow River over
the last half century. The results show that: ...1

Study regions for these papers have been manu-
ally annotated, providing a gold standard for pur-
poses of training and evaluation. The study region
can be chosen from ten different options: Europe,

1The sample abstract has been truncated here, but con-
tains no further toponyms.

Australia, Africa, Antarctica, Asia, North Amer-
ica, South America, Oceania, Multiple and Other.
The dataset is not evenly distributed: North Amer-
ica is the most commonly annotated study region,
covering 41.5% of the studies, while other classes
such as Antarctica and Other were extreme mi-
norities. Oceania represents all countries con-
tained in Australasia, Melanesia, Micronesia and
Polynesia, with the exclusion of Australia (which,
as a continent, has its own category). ‘Multiple’
refers to studies done across multiple regions, and
‘Other’ is used for studies where no particular re-
gion is evident or relevant to a work (i.e. a liter-
ature review). These two labels present difficulty
for methods based on toponym resolution, as stud-
ies with toponyms from multiple regions or none
at all are often still considered to be located in
one continent. However, Multiple and Other are
minority labels, comprising only 3.5% and 0.2%
of the dataset respectively.

3.2 Named Entity Recognition

The first component of our system involves ex-
tracting references to locations contained in the
abstract, a task which we approach using named
entity recognition (NER). NER is an NLP task in
which we seek to automatically extract ‘named
entities’, which refer to any term in a body of text
that represents the name of a thing considered an
instance of one of a predefined set of categories.
Our first experiments focused on evaluating the

performance of the off-the-shelf 3-class model of
the Stanford NER system (Finkel et al., 2005) in
detecting relevant named entities in the titles and
abstracts. The NER system classifies identified
entities as people, locations or organizations. For
our task, only named entities that are locations are
relevant, thus only these entities are extracted and
evaluated.

3.3 Toponym Resolution

Once the named entities tagged as locations for
each abstract were collected, we experimented
with resolving each location to its corresponding
continent using two different databases of geospa-
tial entities. Two methods were employed for
each database: (1) observing only the top result
to resolve the location; and (2) returning the fre-
quency distribution of the top-five results.
In each classifier where tags were resolved to

continents, we experimented with using each sys-
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tem separately as well as in combination, sim-
ply combining together the results from the two
databases.

3.3.1 DBpedia
First, we resolve toponyms with DBpedia

(http://www.dbpedia.org), a database of
structured content extracted from Wikipedia. If
the page retrieved for a given toponym has geo-
graphic coordinates available, these are extracted
and checked against a set of non-overlapping
bounding boxes, which were manually con-
structed by setting one or more ranges of longi-
tude and latitude for each possible label except
‘Multiple’ and ‘Other’. If the extracted coordi-
nates are within the range of one of the bounding
boxes, the corresponding label is applied to the
term.
For terms with multiple meanings, DBpedia

will contain a disambiguation page. For the top-
result TR approach, in the event that coordinates
are unavailable for the first possibility on the
disambiguation page, no resolution is recorded
for the term. For the top-5 approach, we con-
tinue to look for results until all disambiguations
have been exhausted or five resolutions have been
found.

3.3.2 GeoNames
Second, we resolve toponyms with GeoNames

(http://www.geonames.org), a gazetteer
which collects data from a wide variety of
sources. A query was done for each toponym
using the GeoNames search function, which di-
rectly provides a ranked list of results with conti-
nent codes.

3.4 Majority Vote
As a baseline, we use only the retrieved continents
from either DBpedia, GeoNames or both, and de-
termine the final classification by a simple major-
ity vote. When there is a tie in the top number of
resolutions, the continent that appears most fre-
quently in the training data is chosen. If the classi-
fier is unable to resolve any toponyms for a given
instance, the majority class label in the training
data (which is consistently North America, across
all folds of cross-validation) is used as a backoff.

3.5 SVM Classification
All our supervised classifiers are based on support
vector machines (SVMs), using LibSVM (Chang

Classifier F-score
Majority class 0.415
Oracle 0.969
Bag-of-Toponyms (BoT) 0.834
Bag-of-Words (BoW) 0.729
BoT + BoW 0.773

Table 1: Accuracy for classifiers w/o toponym resolu-
tion.

and Lin, 2011). With SVMs, instances are rep-
resented as points in n-dimensional space, with
each dimension representing a different feature,
and the classification of test instances is done
based on which side of a binary dividing hyper-
plane the instance falls on. In all our experiments,
we use a linear kernel, and all other LibSVM pa-
rameters are set to the default. The SVM method
is adapted to the multi-class task in LibSVM us-
ing the “one-against-one” method, in which bi-
nary classification is used between each two can-
didate labels and the label for which the instance
is classified to the highest number of times it is
selected. In this section, the features used to con-
struct the vectors are described.

3.5.1 Continent Resolutions
The continent-level results from DBpedia

and/or GeoNames were represented as frequency
distributions over the number of results for each
continent returned for a given instance. When
both DBpedia and GeoNames are used, the counts
are accumulated into a single frequency distribu-
tion.

3.5.2 Bag of Words Features
We used a bag-of-words model in two forms.

The first only considered the toponyms as tokens,
creating features of a count for each toponym over
the full dataset. The second type applied the stan-
dard bag-of-words model over all words found in
the abstracts.

3.6 Evaluation

In order to establish an upper bound for the task,
the first author manually performed the study
region classification task over 290 randomly-
sampled abstracts classified. The accuracy for this
“oracle” method was 0.969. In all of cases where
the manual annotation was incorrect, there was in-
sufficient data in the abstract to reasonably deter-
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Classifier DBp:1R Geo:1R D+G:1R DBp:MR Geo:MR D+G:MR
Majority Vote 0.802 0.830 0.875 0.788 0.822 0.851
SVM 0.829 0.832 0.877 0.813 0.843 0.862
SVM + BoT 0.879 0.877 0.892 0.873 0.879 0.887
SVM + BoW 0.855 0.862 0.889 0.846 0.868 0.884
SVM + BoT + BoW 0.862 0.868 0.891 0.854 0.873 0.886

Table 2: Accuracy for DBpedia/GeoNames classifiers (“1R” = top-1 toponym resolution; “MR” = multiple
resolutions)

mine the location of the study.2

Our primary evaluation metric for the overall
classification task is classification accuracy. For
all classifiers except the oracle annotation, the fi-
nal scores are the result of 10-fold stratified cross-
validation over the dataset.

4 Results

First, we evaluated the token-level accuracy of
the NER system over our dataset, to determine its
performance in the domain of environmental sci-
ence. 30 abstracts were selected randomly, and
all named entity locations were manually identi-
fied. Based on these annotations, the off-the-shelf
results for the Stanford NER were a respectable
0.875 precision, 0.778 recall, and 0.824 F-score.
One of the most common causes of false positive
was species names. The knock-on effect of incor-
rect or missed tags should be considered as one
source of error in the overall classification task.
Table 2 shows the results of the classifiers fea-

turing toponym resolution. Overall, the DBpedia
and GeoNames classifiers performed at a simi-
lar level, with most GeoNames classifiers slightly
outperforming their DBpedia counterparts. When
the resolutions from DBpedia and GeoNames
were combined, accuracy increased for all classi-
fiers. Combining the results basically doubles the
confidence of continents where there is agreement
between the databases, which can be particularly
helpful given the sparsity of tagged locations for
each abstract. Including the top-5 results (“MR”
in Table 2) consistently decreased the accuracy,
suggesting that noise in incorporating additional
possible disambiguations outweighs any gains in
capturing ambiguity.
Supervised learning is clearly beneficial to the

2In many cases, the gold-standard annotation was based
on the full-text paper, which we do not make use of in this
study.

task, as the majority-vote classifier is consistently
outperformed by the SVM classifiers, particularly
when bag-of-toponyms and/or bag-of-words fea-
tures are included. The bag-of-toponyms con-
sistently outperforms the unfiltered bag-of-words,
especially when isolated from TR frequency fea-
tures (shown in Table 2), indicating that including
other lexical information provides insufficient ad-
ditional relevance to outweigh the noise, and that
explicitly incorporating geospatial features boosts
accuracy. Ultimately, the best-performing classi-
fier utilised the top result from both DBpedia and
GeoNames, using the bag-of-toponyms and top-
result frequency features, achieving an accuracy
of 0.892, well above the accuracy of both the ma-
jority class baseline at 0.415 and the simple bag-
of-words classifier at 0.729, and only slightly be-
low the human-based upper bound of 0.969. The
difference between this best-performing SVM
classifer and the majority vote classifier of the
same toponym resolution approach was found to
be statistically significant (p = .001) using ran-
domization tests (Yeh, 2000).

5 Conclusion and Future Work

We have demonstrated that NLP approaches
paired with toponym resolution are highly suc-
cessful at identifying the study region from the
abstracts of publications within the environmental
science domain, with our best classifier achieving
an accuracy of 0.892, compared to a human-based
upper bound of 0.969.
Possible future work could include weight-

ing of different toponym granularities, exploit-
ing geo-spatial relationships between identified
toponyms, and domain-adapting a NER for the
environmental sciences.
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