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Abstract

Providing timely and individualised feedback
to students in large undergraduate classes is
problematic. In this paper we describe our
approach to creating a simple, surface-based,
domain-independent natural language tutor
which uses simple machine learning tech-
niques as a step towards resolving this issue.
The focus of our efforts was on developing
a high-quality tutorial dialogue plan, creating
well-designed questions, and building a model
of student responses derived from real student
data. We present some early evaluation results
and briefly outline the opportunities that our
approach and the new tutorial dialogue system
present.

1 Introduction

The study this paper describes arose out of a practi-
cal need expressed by one of the coordinators of an
undergraduate first year health sciences course:

For large class sizes of 1500-1800 stu-
dents, is it possible to use technology
to provide timely individualised feedback
to students on their understanding of key
concepts?

Natural language intelligent tutoring systems (ITS)
seemed to offer some promise for supporting and en-
hancing student understanding of key concepts in
this domain. For example, Circsim Tutor (Evens
and Michael, 2006) is a natural language tutor de-
signed expressly to develop health sciences student
understanding of the baroreceptor reflex in humans

(the baroreceptor reflex is one of the mechanisms
for maintaining blood pressure in humans). Nev-
ertheless derision and dismisal of ITS as a failed
enterprise are common views among many educa-
tional researchers and practising teachers, for exam-
ple, Laurillard (2002) and Ramsden (2003). With
a few exceptions, even today, within Higher Educa-
tion, ITS are hardly in widespread practical use for
teaching and learning (Reeves and Hedberg, 2003).
There are some good practical reasons for this. Mur-
ray (1999), in his review of ITS authoring systems,
addresses a key one:

Building an explicit model of anything
is not an easy task, and requires analy-
sis, synthesis, and abstraction skills along
with a healthy dose of creativity. . . . it is
difficult to reduce the entire design task
to low level decisions that yield a quality
product. . . some degree of holistic under-
standing and abstract thinking will even-
tually have to come into play.

Worse still, in practice it is seldom feasible to
adapt a system designed for a specific teaching and
learning context to another. So for example, while
Circsim Tutor deals with the baroreceptor reflex it
deals with it at a level which is too advanced for the
broader introductory-level course on cardiovascular
homeostasis that we were dealing with. Even if this
were not the case, there would likely be differences
in emphasis in terms of the curriculum and adapting
a deep system like Circsim would be a non-trivial
task.
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As the authors’ primary focus is on teaching and
learning development across a tertiary institution,
we required a system that would be both respon-
sive and practical in real class settings and which
could be readily adapted to a wide range of do-
mains. We decided to build a very simple, surface-
based, domain-independent natural language tutor
using simple machine learning techniques, and to
focus our efforts on developing a high-quality les-
son plan. The lesson plan should have two compo-
nents. Firstly, there should be a well-designed set
of questions for the tutor to ask, to probe students’
knowledge of the domain. Secondly, for each ques-
tion there should be a good model of the range of
common answers which students are likely to pro-
vide, so that the tutor can give suitable responses to
each of these, and give students the individualised
feedback which is the key goal of the system.

This development method hinges firstly on in-
depth interactions with the teaching staff of the
course, and secondly on the acquisition of high-
quality training data from actual students. Conse-
quently, there were two stages in the development of
the system. In the first stage, we produced a detailed
set of questions, in close liaison with the teaching
staff, and devised a detailed script, providing for
possible student responses to each question, along
with appropriate tutor actions, and then used an ex-
isting surface-based dialogue engine to put these
questions to students and give responses based on
simple pattern-matching techniques. This stage-one
system was mainly intended as a means for gath-
ering training data for the full system, though of
course we intended it to have some educational merit
as well. In the second stage, we refined the script we
had developed in the first stage to add new response
categories, manually classified student responses to
each question, trained a set of classifiers on the re-
vised set of categories and developed a second dia-
logue manager which deployed these classifiers.

Of the few readily available domain-independent
tutorial dialogue systems, TuTalk from the Learning
Research and Development Centre at the University
of Pittsburgh, is one that provides a relatively easy
way to author dialogues using only a text editor and
scripts can be authored much like writing a natural
one-to-one dialogue. The TuTalk scripting language
represents each tutor turn as a finite state machine

(FSM) and the author can define multiple classes of
student response that lead from the current tutor turn
to the next tutor turn or state. A simple chat-style
interface is all that is required for a user to interact
with the system (Jordan, 2007).

However, TuTalk ‘out of the box’ includes many
features and options that we did not need and added
processing overhead to response times especially for
longer responses. We were also aware that the basic
natural language understanding module that came
with it was fairly rudimentary and yielded poor pre-
cision and recall when classifying most student re-
sponses other than those to simple binary or limited-
option questions. Nevertheless, with the addition of
a web interface, a large cohort of students could po-
tentially access and use the system, and early feed-
back from students indicated that even though their
responses were often not well ‘understood’ they
found the dialogue useful as a study and revision
tool (the default position was always to provide a
model answer): for these reasons we felt that TuTalk
would allow us to rapidly acquire a large corpus of
authentic student responses to questions posed in the
dialogue. Once we had captured this data we could
then proceed to build a very simple, surface-based
natural language dialogue system which retained a
FSM model for representing the dialogue. The large
corpus acquired via the TuTalk system would be
used to both train the new system and to inform re-
vision of the script itself.

In the next section of this paper we describe
collecting the dialogue corpus and evaluating per-
formance. The third section outlines the new di-
alogue system architecture and describes how we
have utilised components from the Natural Lan-
guage Toolkit (Bird, 2006). The fourth section de-
scribes the iterative process we are using to both
develop the script and build a set of classifiers for
student responses based on insights and intuitions
from real student data. In the fifth section we present
some early classifier test results and in the final sec-
tion we discuss the educational research opportuni-
ties that both our approach and new tutorial dialogue
system present.
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Dialogue excerpt
TUTOR: Would you like more practice with the
ideas we’ve discussed so far, before we move on?
STUDENT: yes please
TUTOR: If heart rate drops and stroke volume re-
mains the same, what will happen to cardiac out-
put?
STUDENT: decrease
TUTOR: Well done.
Cardiac Output is determined in part by Stroke
Volume. How do you calculate CO?
STUDENT: co = heart rate x stroke volume
TUTOR: Cool, that’s right. If cardiac output in-
creases and TPR remains the same what will hap-
pen to mean arterial pressure?
STUDENT: increase

Table 1: Tutorial dialogue excerpt

2 Collecting the dialogue corpus

In close consultation with the course lecturers an ini-
tial tutorial script covering the curriculum on cardio-
vascular homeostasis was developed. The script was
written by a medical graduate using lecture notes,
laboratory manuals and self-directed learning ma-
terial from the course and required approval from
the teaching team before it could be deployed for
students. The teaching team wanted to be certain
the script contained no errors of fact and that it had
some educational merit. Table 1 shows an excerpt
from a tutorial dialogue session. The script was
refined by incorporating utterances, captured from
pilot dialogue interactions between the system and
student and staff volunteers (N=34), back into the
script. Incorrect behaviour of the script was dealt
with through adjustments to tutor turns and improve-
ments to script flow was made following feedback
from students and tutors on the course and from
examination of the dialogue transcripts. Feedback
from students and some of the teaching staff indi-
cated to us that the system even without much in
the way of ‘understanding’ still had some value as
a learning and teaching tool because it always pro-
vided model answers to questions.

2.1 Student responses

The cardiovascular homeostasis tutorial was re-
leased to the first year undergraduate class at the be-
ginning of their module on the human cardiovascu-
lar system. Tutorial use was optional. 437 students
accessed the system during the course (total class
enrolment=1800) and produced a total of 532 dia-
logues; several students accessed the dialogue more
than once. However from the total number of dia-
logues, only 242 dialogues were completed through
to the half-way point and only 127 dialogues were
completed to the end. A handful of dialogues were
interrupted because of system-related problems but
the majority that terminated before completion did
so because because the students simply ended their
session. Feedback from course tutors and comments
from the students themselves supported our inuti-
tion that poor system ‘understanding’ of student di-
alogue contributions was probably a key reason for
the fall-off in use. Nevertheless, it served its purpose
in capturing a large quantity of training data which
is mainly what it was for.

3 Dialogue system architecture

Clearly we needed to improve the ‘understanding’
performance of the dialogue system if we were to
hope to provide individualised feedback on free text
input: two options were considered. Either we
could continue to use TuTalk and replace the exist-
ing TuTalk natural language understanding (NLU)
module along with making adjustments to the script
design and dialogue manager (DM) or we could
build another dialogue system from scratch. In the
end we chose to start from scratch for three main
reasons. First, the natural language toolkit (NLTK)
already provided many of the functions required in
a simple dialogue system such as tokenisers, stem-
mers and a range of classifiers. Second, for our pur-
poses, we didn’t require many of the features built
into TuTalk and we had experienced some perfor-
mance issues with the system. Third, a very sim-
ple modular system that could be easily extended or
adapted, and which utilised well established libraries
would provide a solid base from which to do further
work in this area. Fig. 1 provides an overview of our
system architecture.

The dialogue system is written in python and
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Figure 1: Architecture of Dialogue System.

utilises several NLTK libraries, Peter Norvig’s ‘toy’
spell checker, and the Asyncore and Asynchat li-
braries to manage multiple simultaneous client con-
nections. The server can readily communicate
with any web-application front end using XML-
formatted messages. We have also built a java-based
web application through which multiple clients can
connect to the tutorial server (Fig. 2).

The structure of the tutorial dialogue is deter-
mined entirely by the dialogue script. We wanted to
use a FSM model for the dialogue since this permits
an organic authoring process and there is no theoreti-
cal limit to how deep or broad the dialogue becomes.

The script structure itself is based on Core and
Allen’s (1997) dialogue coding scheme and each
dialogue contribution is divided into forward and
backward functional layers. Jumping to alternative
parts of the script is embedded in the forward func-
tion rather than being treated as a separate layer.
This seems to work well with the notion of ‘action-
directive’ functions proposed by Core and Allen. In
effect the forward functions always advance the dia-
logue even if some elements are repeated along the
way. It also seems like a more intuitive and less con-
fusing approach than incorporating special tags in
either the backward layer, or inventing a new layer
to handle them. The script is an XML file which is
defined in our XML schema for the dialogue system
and which essentially comprises a series of dialogue
contributions.

An example of a single dialogue contribution,
called a contribution node is given in Figure 3. In

this example, the unique id of the dialogue contri-
bution is “check-hr”. Apart from the start and end
nodes of the dialogue, every contribution node has
a backward and forward layer. The backward layers
contains responses appropriate to the previous dia-
logue context, for example an utterance to establish
grounding (Clark and Schaefer, 1989), and the for-
ward layer sets up the next dialogue context.

Figure 3: check-hr contribution node

While the tutorial system is primarily designed for
single-initiative dialogue, the opportunity for limited
mixed-initiative is incorporated through classifying
question contributions at any stage of the dialogue
and searching for possible answers within the dia-
logue script. In addition, the script can be designed
to accomodate opportunities for eliciting further ex-
planation where the need is apparent from examina-
tion of previous student responses. (For an explana-
tion of this see Section 4).

Each client connection to the system creates an
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Figure 2: Screenshot of Dialogue System Web Client.

instance of the dialogue manager which sends tutor
contributions to the client according to the preloaded
script and receives student contributions which are
then classified and determine the next tutor contri-
bution. The pseudocode given in Fig. 4 illustrates
how the dialogue manager processes each contribu-
tion node.

The dialogue system is intended to be domain
neutral since the content and structure of the
dialogue is determined solely by the dialogue
script (note that we have yet to demonstrate this
by building scripts outside the domain discussed
in this paper). Scripts are designed according
to the XML schema specified for the dialogue
system. A domain-appropriate dictionary is
required for the spell checker: for our cardio-
vascular homeostasis tutorial we combined the
text from pilot student responses, the script itself,
the relevant section from an accessible human
physiology text (http://en.wikibooks.
org/wiki/Human_Physiology/The_
cardiovascular_system) and the NLTK
plain text ABC science corpus.

4 Building classifiers and revising the
script

Tutorial dialogue script revision and classifier devel-
opment are currently underway. The approach we
have taken is to do these two tasks hand-in-hand.
In this section we describe the rationale for this ap-
proach by way of illustrative examples.

In general, a separate classifier is required for
each dialogue contribution in the script. So for ex-
ample, the dialogue contribution check-hr has its
own classifier. In this case, one of the possible
classes for text classified is correct-simple and this
is specified in the backward class attribute value.

Each backward layer must have a class attribute.
When the previous student dialogue contribution
matches this class, this contribution node becomes
the current node. In the example above, responses to
the parent contribution node check-hr are processed
by a single classifier into one of the classes listed in
Table 2. If classification fails then the dialogue con-
tribution which is specified as the default is chosen.

The process of building a classifier for each di-
alogue contribution requires a number of steps.
First, classification by hand of a training set derived
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Figure 4: Dialogue manager pseudocode

check-hr classifier
correct
correct-simpler
question
incomplete

Table 2: Possible classes for check-hr

from the student corpus. The XML schema of the
NPSChat corpus provided with the NLTK was a use-
ful model for us to follow in marking-up the corpus
and allowed us to use the appropriate NLTK cor-
pus reader directly. The classes used are created
based on inspection of student responses although
the class question and the class correct are used in
each classifier. For example, examination of student
responses to the question:

How would you check what someone’s
HR is?

led to us developing a class correct-simpler given
that a handful of students suggested using an ecg or
blood-pressure cuff and stethoscope. These methods
are not the easiest ways to achieve this but they are
valid answers and lend themselves to seeking a sim-
pler method in order to check student understanding.

This process in turn may require a new dialogue
contribution for the script. For example, the con-

Figure 5: hr-simpler contribution node

tribution node hr-simpler (Fig. 5.) was only cre-
ated after the classifier for check-hr had been built
and then became an addition to the original script.
This is why we suggest script revision and building
of classifiers should be done together.

For each dialogue context a training set is created.
Typically the first 100 student responses for each tu-
tor question are classified by a human marker, al-
though this number may be less where it is clear
that there is little variabiliy in student responses (for
example, in the case of binary questions) or more
where there is a wide range of student responses.
Once a suitable training set is marked up the set
is divided into 5 folds and a Naive Bayes classi-
fier trained on 4/5 folds initially using simple bag
of words as the featureset and then tested on the re-
maining fold. A 5-way cross-validation is carried
out and accuracies for each of the 5 test sets calcu-
lated. The average accuracy across the 5 test sets
and standard deviation is also recorded.

This process is then repeated using different fea-
turesets (for example, bag of words, word length,
first word, with/without stemming, with/without
stopwords etc) until the highest accuracy and least
variability in test set results is achieved. Some fea-
tures are particularly appropriate in a given context.
For example, length of response is a good predic-
tor of an incomplete answer in the check-hr context
above. A student common response in this context
was simply ‘pulse’ and the human classifier had de-
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Question
Type

Example

binary ‘Are you ready?’
limited-
option

‘How would you check somone’s
heart-rate?’

open ‘What is the pulse?’

Table 3: Question Types

cided these responses were incomplete and required,
‘count’ or ‘measure’ or a similar qualifier before ac-
cepting this as a correct answer. Response length
helped to distinguish these responses from correct
responses.

Once the best features for a given dialogue-
contribution classifier have been established the size
of the training set is increased in order to expose the
classifier to a larger number of samples and improve
accuracy. Finally, where uncommon but pedagogi-
cally useful student responses are found, the training
data may be weighted with these in order to increase
the likelyhood that similar responses are correctly
classified.

The classifier is evaluated with previously unseen
data and scored relative to a human marker. The en-
tropy of the probability distribution (E) is calculated
for each unseen response and this is used to deter-
mine appropriate thresholds for classification. For
example, if E is close to zero the classifier confi-
dence is generally very high. E 1 indicates low con-
fidence and less difference between the class rank-
ings.

Finally the classifier is serialised, along with its
associated feaureset parameters and saved for use in
the dialogue system itself.

5 Testing classifiers

In general there are three types of tutor question
in our cardiovascular homeostasis dialogue: binary,
limited-option and open. An example of each is
given in Table 3.

Evaluation of classifiers for binary questions has
resulted in the highest accuracy with the smallest
amount of training data (98-99 percent on training
set size of 200). Typically, for this question type,
there are only two class options plus a third to cater
for a question initiative from the student. In this

section we focus on classifying responses for the
remaining two question types, limited-option and
open, since these tend to be more educationally in-
teresting and relevant, and harder to classify. Data is
presented for an example of each type of question.

1. Limited-option. The check-hr dialogue con-
tribution is a good example. Even with free text,
there is a reasonably limited number of ways to an-
swer the question, ‘How would you check some-
one’s heart-rate?’. Indeed the great majority of stu-
dent responses were of the form count the pulse,
measure the pulse, take the pulse, etc. Best results
were achieved using a combination of the NLTK
Porter stemmer on tokenised words, word length,
first word, and a custom regular expression feature
to pick up reference to ECG or blood pressure. Us-
ing these features, accuracy increased from a best
of 0.72 to 0.90 when training data increased from
a fold size of 19 to a fold size of 204 (Refer Fig.
3). Variability in training set accuracy was reduced
when stopwords were removed from less than 0.03
to less than 0.01.

Evaluation on the trained classifier on a previ-
ously unseen sample of 20 was surprisingly 100 per-
cent with entropy values between 0.00 for a student
response, ‘by measuring their pulse rate’ to 0.81 for
‘by listening to their pulse’.

2. Open. A good example in this case, is the ques-
tion, ‘What is the pulse?’. There is a wide range of
ways in which an answer to this question could be
reasonably expressed. The model answer given is
‘The pulse is a pressure wave or a pulsatile wave
generated by the difference between systolic and di-
astolic pressures in the aorta.’ To give an idea of how
open this type of question is, the following is an al-
ternate but valid expression of the same idea, ‘The
pulse is generated by contraction of the heart during
systole and is transmitted as a wave to the peripheral
arteries.’

Similar to the first case the average accuracy of
the classifier we created for this question plateaued
at 0.89 with a training data fold size of 194, how-
ever it performed far worse on smaller training sets
achieving an average accuracy of only 0.41 with a
training data fold size of 19. The most useful fea-
tures in this case were word stems, word length and
first word. We had a total of 8 classes as there was
a wider range of student responses to the question.
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Figure 6: check-hr Training data. Fold size vs Average accuracy

Two of these classes were needed to deal with com-
monly occuring misconceptions. However one of
the classes is redundant. The incorrect class regu-
larly failed to correctly identify incorrect answers.
The reason for this is likely to be the high degree of
variability in incorrect answers unless they demon-
strate a commonly held misconception. We ex-
pect to achieve better results on our unseen evalua-
tion data after removing the incorrect class from the
training set.

6 Discussion

Our goal was to build a very simple, surface-based,
domain-independent natural language tutor using
simple machine learning techniques, and to focus
our efforts on developing a high-quality lesson plan,
so that the tutor can ask well-designed questions,
and has a good model of the range of possible an-
swers which students will provide for these. Our
development method requires in-depth interactions
with the teaching staff of the course, plus the acqui-
sition of high-quality training data from actual stu-
dents.

In this paper we have focussed particularly on de-
scribing the system and reporting our approach to
building classifiers and script revision in order to
achieve this goal. The results of our early classi-

fier evaluations look promising in terms of the abil-
ity of the system to ‘understand’ student responses
and take appropriate action. Our next task is to eval-
uate our system and revised tutorial script with a new
cohort of first-year health sciences students. We also
plan to compare student learning outcomes against
the same script using a multi-choice selection rather
than free text responses. Previous investigations in
this area have produced equivocal results. For exam-
ple, Corbett et al. (2006).

We see potential for our approach and the sys-
tem in a number of areas: supporting the rapid
capture of tutorial corpora across a range of sub-
ject domains, developing faster and more flexible
approaches to authoring tutorial dialogues and of
course we hope to make headway with the problem
of providing timely and individualised feedback to
students which is so keenly sought by our colleagues
teaching large undergraduate courses.
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