
CCG parsing with one syntactic structure per n-gram

Tim Dawborn and James R. Curran
School of Information Technologies

University of Sydney
NSW, 2006, Australia

{tdaw3088,james}@it.usyd.edu.au

Abstract

There is an inherent redundancy in natural
languages whereby certain common phrases
(or n-grams) appear frequently in general sen-
tences, each time with the same syntactic anal-
ysis. We explore the idea of exploiting this re-
dundancy by pre-constructing the parse struc-
tures for these frequent n-grams. When pars-
ing sentences in the future, the parser does not
have to re-derive the parse structure for these
n-grams when they occur. Instead, their pre-
constructed analysis can be reused. By gen-
erating these pre-constructed databases over
WSJ sections 02 to 21 and evaluating on sec-
tion 00, a preliminary result of no signifi-
cant change in F-score nor parse time was ob-
served.

1 Introduction

Natural language parsing is the task of assigning
syntactic structure to text. Initial parsing research
mostly relied on manually constructed grammars.
Statistical parsers have been able to achieve high ac-
curacy since the creation of the Penn Treebank (Mar-
cus et al., 1993); a corpus of Wall Street Journal text
used for training. Statistical parsers are typically in-
efficient, parsing only a few sentences per second
on standard hardware (Kaplan et al., 2004). There
has been substantial progress on addressing this is-
sue over the last few years. Clark and Curran (2004)
presented a statistical CCG parser, C&C, which was
an order of magnitude faster than those analysed in
Kaplan et al. (2004). However the C&C parser is
still limited to around 25 sentences per second.

This paper investigates whether the speed of sta-
tistical parsers can be improved using a novel form
of caching. Currently, parsers treat each sentence
independently, despite the fact that some phrases
are constantly reused. We propose to store analyses
for common phrases, instead of re-computing their
syntactic structure each time the parser encounters
them.

Our first idea was to store a single, spanning
analysis for frequent n-grams. However, the most
frequent n-grams often did not form constituents.
Given that n-gram distributions are very long-tailed,
this meant that the constituent n-grams covered only
a small percentage of n-grams in the corpus.

We then turned our attention to the n-grams that
were not forming constituents. First, we found that
some actually should form constituents. However,
the structure of noun-phrases in the Penn Treebank
is underspecified, leading to incorrect derivations
in the C&C parser’s training corpus (Hockenmaier,
2003). Secondly, we investigated whether the spuri-
ous ambiguity of CCG derivations could be exploited
to force frequent n-grams to compose into con-
stituents, while still producing a semantically equiv-
alent derivation. Here we encountered problems us-
ing the composition rule to create new constituents.
Some of these problems were due to further issues
with the analyses in the corpus, while others were
due to the ambiguity of the n-grams.

The sparsity of n-grams in a corpus of this size
meant that we had very few caching candidates to
work with. Our approach may be more successful
when the caching process is performed using a data
set.



2 Background

We are interested in storing the parse structure for
common n-grams, so that the analysis can be reused
across multiple sentences. In a way, this is an exten-
sion of an important innovation in parsing: the CKY

chart parsing algorithm (Younger, 1967). Our pro-
posal is an attempt to memoise sections of the chart
across multiple sentences.

Most constituency parsers use some form of chart
for constructing a derivation, so our investigation
could have begun with a number of different parsers.
We decided to use the C&C parser (Clark and Cur-
ran, 2007) for the following reasons. First, the aim
of the caching we are proposing is to improve the
speed of a parser. It makes sense to look at a parser
that has already been optimised, to ensure that we
do not demonstrate an improvement that could have
been achieved using a much simpler solution. Sec-
ondly, there are aspects of the parser’s grammar for-
malism, Combinatory Categorial Grammar, that are
relevant to the issues we want to consider.

2.1 Chart Parsing

The chart is a triangular hierarchical structure used
for storing the nodes in a parse tree, as seen in Fig-
ure 1. A chart for a sentence consisting of n tokens
contains n(n+1)

2 cells, represented as squares in the
figure. Each cell in the chart contains the parse of
a contiguous span or sequence of tokens of the sen-
tence. As such, a cell stores the root nodes of all pos-
sible parse trees for the tokens which the cell cov-
ers. This coverage is called the yield of that node.
This is illustrated as the linked-list style data struc-
ture highlighted as being the contents of cell (1, 3) in
Figure 1. The cell (p, s) in the chart contains all pos-
sible parses for all of the tokens in the range [p, p+s)
for a given sentence. The chart is built from the bot-
tom up, starting with constituents spanning a single
token, and then increasing the span to cover more
tokens, until the whole sentence is covered.

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a lexicalised grammar formalism.
This means that each word in a sentence is assigned
a composite object that reflects its function in the
derivation. In CCG, these objects are called lexical
categories.

Categories can be built recursively from atomic

0 321 4

2

3

4

5

1

pos
span

cell (1, 3)

Figure 1: An illustration of the chart data structure used
in parsing algorithms such as CKY

units, such as S (sentence), N (noun), and NP (noun
phrase). Recursive construction of categories means
that very few atomic units need to be used. For in-
stance, there is no atomic category for a determiner
in CCG. Instead, a determiner is a function which
maps from a noun to a noun phrase.

Similarly, verbs are functions from some set of
arguments to a complete sentence. For example, the
transitive verb likewould be assigned the category
(S\NP)/NP . Here, the slashes indicate the direc-
tionality of arguments, stating that an NP object is
expected to the right, and an NP subject is expected
to the left. An example CCG derivation containing
the transitive verb like is:

I like the cat

NP (S [dcl ]\NP)/NP NP [nb]/N N
>

NP [nb]
<

S [dcl ]\NP
<

S [dcl ]

This derivation uses the rules of forward and
backward application to build the representation of
the sentence. Most of the information is contained
in the lexical categories.

2.2 The C&C Parser
The C&C parser makes use of this property of CCG

by dividing the parsing problem into two phases,
following (Bangalore and Joshi, 1999). First, a su-
pertagger proposes a set of likely categories for each
token in the sentence. The parser then attempts to
build a spanning analysis from the proposed cate-
gories, using the modified CKY algorithm described
in Steedman (2000). The supertagging phase dra-
matically reduces the search space the parser must



explore, making the C&C parser very efficient.

3 Motivation

It is important to note that the concepts motivating
this paper could be applied to any grammar formal-
ism. However, our experiments were conducted us-
ing CCG and the C&C parser for a number of rea-
sons, which are outlined throughout the paper.

In order for our “one structure per n-gram” idea
to work in practice, the parsed data must possess two
properties. Firstly, there must be a small number of
n-grams which account for a large percentage of the
total n-grams in the corpus. If this property was not
present, this this would imply that most of the n-
grams within the text appear very infrequently. As a
result, the size of the database containing the mem-
oised analyses would grow in size, as there are no
n-grams which clearly are more useful to memoise
than others. The result of this would be that the time
taken to load the analyses from the database would
exceed the time taken to let the parser construct a
derivation from scratch.

The second property is that the most frequent n-
grams in the corpus must have on average very few
distinct analyses. If the most frequent n-grams in the
corpus all occurred with a large number of different
analyses, then every time we see these frequent n-
grams in the future, these multiple analyses will all
have to be loaded up from the database. This again
would result in more time taken in the database load-
ing than letting the parser construct the derivation
from scratch. If the most frequent n-grams in the
corpus thus only occur with a very small number
of analyses, then the time taken to load the pre-
constructed structures should be less than the time
the parser will take to construct the derivation from
scratch.

4 Analysis

By analysing all of the n-grams within sections 02 to
21 of CCGbank for varying n, we were able to show
that, under a very basic analysis, CCGbank satisfies
both the properties discussed in Section 3. The re-
sults of this analysis can be seen in Table 1.

One interesting result here is the average number
of derivations varying n-grams occur with. On its
first attempt at parsing a sentence, the C&C parser

n-gram size 2 3 4
Avg number derivations 1.19 1.09 1.04

Always form constituents 23% 10% 5%
Never form a constituent 73% 89% 93%

Table 1: Statistics about varying sized n-gram in CCG-
bank sections 02 to 21

bigram # No # Yes # Uniq
the company 8 1157 1

a share 3 1082 7
New York 4 868 7
a year 34 572 9
do n’t 0 474 9

the market 37 410 1
did n’t 0 378 11
is n’t 1 367 21

The company 0 359 1
does n’t 0 328 10

Table 2: Constituent statistics about the 10 most frequent
bigrams in CCGbank 02 to 21 which form constituents
the majority of the time

assigns on average 1.27 CCG categories per word
(Clark and Curran, 2007). Since the average num-
ber of derivations for varying sized n-grams is less
than the ambiguity introduced during the first at-
tempt at the parsing process, this process of in-
serting pre-built chart structures can potentially de-
crease the overall parsing time, as the pre-built struc-
tures would introduce less ambiguity to the overall
parse compared to what the parser would provide
normally.

4.1 Constituents

The first idea explored is how well can we do by
storing only n-grams which primarily form con-
stituents. Table 2 shows the 10 most frequent bi-
grams in CCGbank sections 02 to 21 which primar-
ily form constituents. The columns show the num-
ber of times the n-gram was seen not forming and
not forming a constituent, as well as the number of
unique constituent-forming analyses formed.

A number of interesting observations can be made
here. Firstly, the number of times these bigrams oc-
cur drops off very quickly, with the 4th most fre-
quent bigram appearing just under half the number



of times the most frequent bigram occurs. This drop
off contradicts our first desirable property for the
corpus, that there should be a large number of fre-
quent n-grams.

Observing the numbers in the last column of Ta-
ble 2, it is easily seen that only 3 of the top 10
bigrams occur with less than 5 unique derivations,
which goes against our second desirable property,
that the most frequent n-grams occur with very few
unique derivations.

These two factors indicate that an approach which
persists only constituent-forming n-grams in these
databases will not perform well, as neither of the two
properties discussed in Section 3 are fulfilled.

4.2 Non-constituents

Section 4.1 showed that an approach to this problem
which utilises only constituent-forming n-grams
most likely will not produce the desired speed boost
due to the properties mentioned in Section 3 not be-
ing upheld.

The next natural direction to take is to the stor-
ing of analyses for the non-constituent-forming n-
grams. The use of CCG type raising and composition
allow us to store non-constituent-forming analyses
in these databases for n-grams, yet still be able to
use these derivations later on to form correct seman-
tically correct spanning analyses. For example, one
of the frequent non-constituent-forming occurrences
of the phrase of the in CCGbank is

of the company

(NP\NP)/NP NP/N N
>

NP
>

NP\NP

The is forward applied to company before of can
be joined with the. Instead, we could construct
the following derivation and insert it into the pre-
constructed database

of the

(NP\NP)/NP NP/N
>B

(NP\NP)/N

Here we use CCG forwards composition to com-
bine of and the into a constituent-forming analy-
sis. This chart structure could be reused with CCG

forwards application to construct a span of the orig-
inal phrase in the following manner

of the company

(NP\NP)/NP NP/N N
>B

(NP\NP)/N
>

NP\NP

Using the forward composed version of the bi-
gram of the, an analysis for the whole phrase
was still able to be constructed, even though in the
original derivation of and the did not form a con-
stituent. This technique of utilising CCG forward
composition and type raising allows us to add these
n-grams which primarily do not form constituents,
into the database.

4.2.1 Prepositional Phrase Attachment
This technique does not work all of the time, how-

ever it does work for many cases. One situation
where this technique does not work is is with prepo-
sitional phrase attachment. The correct CCG deriva-
tion for the phrase on the king of England
is

X on the king of England

NP (NP\NP)/NP NP [nb] NP\NP
<

NP
>

NP\NP
<

NP

If we were to use in this example the same for-
wards composed derivation of the bigram of the
as described earlier for the bigram on the, the
wrong analysis would be constructed.

X on the king of England

NP (NP\NP)/N N NP\NP
>

NP\NP
<

NP
<

NP
While an NP was still the resultant overall cat-

egory assigned to the phrase, the internal noun
phrases are incorrect; the named entity the king
of England is not represented within this incor-
rect derivation.

From an implementation point of view, being able
to construct and use this forward composed parse
structure for of the involves violating one of the
normal-form constraints proposed in Eisner (1996)
to eliminate CCG’s “spurious ambiguity”. The con-
straint which was violated states that the left child



of forward application cannot be the result of for-
ward composition, as is the case in our previous ex-
ample. The C&C parser implements these Eisner
constraints, and as such a special rule was added to
the parser to allow any chart structures which were
loaded from a pre-constructed database to violate the
Eisner constraints.

4.2.2 Coordination
In CCG parsing, commas can be parsed in one

of two ways depending on their semantic role in
the sentence. They are either used for coordina-
tion or they are absorbed. Consider the CCG deriva-
tion for the sentence shown in Figure 2. The sec-
ond comma between England and owned is ab-
sorbed, as shown in the second last line of the deriva-
tion. The first comma, however, between George
and the king of England, is used to express
apposition. Apposition in CCG is represented using
the same coordination structure which and uses; the
conjoining combinator. This combinator is denoted
as conj or Φ in CCG. The type signature of this com-
binator is

X conj X ′⇒Φ X ′′

stating that the CCG category has to be the same on
both sides of a conj , and when the functor is in-
voked, the resultant category is the same. Our n-
gram pre-construction attempts to memoise analy-
ses based purely on the tokens of n-grams. Because
comma appears as a conj , we are unable to use any
n-grams which contain commas in our database, as
at the token level it is not possible to determine if the
comma will be absorbed or will be used in apposi-
tion.

4.3 Statistics
Table 3 shows the 15 most frequent bigrams in CCG-
bank sections 02 to 21. The first thing to note about
this table is that only two of the top 15 most frequent
bigrams primarily form a constituent, again leading
to a conclusion that using only constituent-forming
bigrams is not the correct approach to the problem.
The second point to observe is that seven out of these
15 bigrams contain a comma, which as described in
Section 4.2.2, implies these cannot be used in our
database.

The Σ column shows an accumulative sum of the
number of tokens covered in sections 00 to 21 just by

using the bigrams in the table. The coverage figures
shown in the neighbouring column show this sum as
a percentage of the total number of tokens in sec-
tions 00 to 21. This shows that by considering just
the 15 most frequent bigrams, a coverage of 6.5%
of the total number of tokens has been achieved. If a
trend like this continues linearly down this list of fre-
quency sorted bigrams and a pre-constructed analy-
sis for the first 1000 bigrams could be memoised, for
example, there is a great potential for the parse time
to be improved.

5 Evaluation

The effect of these n-gram databases on the parsing
process is evaluated in terms of the overall parsing
time, as well as the accuracy of the resultant deriva-
tions. The accuracy is measured in terms of F-score
values for both labelled and unlabelled dependen-
cies when evaluated against the predicate-argument
dependencies in CCGbank (Clark and Hockenmaier,
2002). The parsing times reported do not include the
time to load the grammar, statistical models, or our
database.

6 Implementation

6.1 Data

The models used by the C&C parser for our experi-
ments were trained using two different corpora. The
WSJ models were trained using the CCG version of
the Penn Treebank, CCGbank (Hockenmaier, 2003;
Hockenmaier and Steedman, 2007), which is avail-
able from the Linguistic Data Consortium1. The
second corpus is a version of CCGbank where the
noun phrase bracketing has been corrected (Vadas
and Curran, 2008; Vadas, 2009).

6.2 Tokyo Cabinet

Tokyo Cabinet2 is an open source, lightweight
database API which provides a number of dif-
ferent database implementations, including a hash
database, B+ tree, and a fixed-length key database.
Our experiments used Tokyo Cabinet to store the
pre-constructed n-grams because of its ease of use,
speed, and maximum database size (8EB). A large

1http://ldc.upenn.edu/
2http://tokyocabinet.sourceforge.net/



George , the king of England , owned the company

N , NP [nb]/N N (NP\NP)/NP N , (S\NP)/NP NP [nb]/N N
> >

NP NP [nb] NP NP [nb]
> >

NP\NP S\NP
<

NP [nb]
<Φ>

NP [nb]

NP [nb]
<

S

Figure 2: A CCG derivation containing commas used for apposition and absorption

bigram Constituent Coverage Ambiguity# No # Yes # Uniq Σ %
of the 4936 0 0 9872 1.06 1.031
in the 3911 5 1 17704 1.90 1.747
, the 3489 0 0 24682 2.66 1.005
, and 2219 9 3 29138 3.13 1.000
, a 2167 0 0 33472 3.60 1.000

, which 1705 0 0 36882 3.97 1.118
for the 1638 0 0 40158 4.32 1.958
to the 1588 1 1 43336 4.66 1.925
on the 1533 0 0 46402 4.99 1.962
, said 1258 0 0 48918 5.26 1.290
, but 1193 1 1 51306 5.52 1.045

the company 8 1157 1 53636 5.77 1.000
, he 1165 0 0 55966 6.02 1.000

that the 1150 0 0 58266 6.27 1.283
a share 3 1082 7 60436 6.50 1.107

Table 3: Constituent statistics about the 15 most frequent bigrams in CCGbank 02 to 21. The columns show the
number of times the bigram was seen forming a non-constituent, forming a constituent, and then the number of unique
constituent-forming chart structures. The next two columns show accumulatively what percentage of sections 02 to 21
these bigrams alone cover. The last column shows the ambiguity the C&C supertagger associates to each n-gram

DCB

3-gram
database

D ECBA

Figure 3: When creating the trigram database, if a trigram
forms a constituent in the chart, it is added to the database

maximum database size is important because more
data is better for the database construction phase.

6.3 Constructing the n-gram Databases
The construction of the final database is a multi-
stage process, with intermediate databases being

generated and then refined. The first stage in this
process is to parse all of the training data, which in
our case is WSJ sections 02 to 21. The parse tree
for every sentence is then analysed for constituent-
forming n-grams. If a constituent-forming n-gram
is found and its size (number of tokens) is one for
which we would like to construct a database for,
then the n-gram and its corresponding chart struc-
ture are written out to a database. These first stage
databases are implemented using a simple key-value
Tokyo Cabinet hash database. The structure of the
keys and values in this database are

Key = (n-gram, hash of chart)
Value = (chart, occurrence counter)



The chart attribute in the value is a serialised
version of the chart which can be unserialised at
some later point for reuse. The occurrence
counter is incremented each time an occurrence
of a key is seen in the parsed training data. A
record is also kept in the database for the number of
times a particular n-gram was seen forming a non-
constituent, for use in the filtering stage discussed in
later Section 6.4.

This process of n-gram chart serialisation is illus-
trated in Figure 3. When parsing the sentence A B
C D E, the trigram B C D formed a constituent in
the spanning analysis for the sentence. Because it
formed a constituent, the trigram is added to the first
stage trigram database.

6.4 Frequency Reduction

When constructing the initial set of databases over
a body of text, a large number of the n-grams
which were memoised should not be kept in the fi-
nal databases because they occur too infrequently, or
because the number of times they are seen forming a
non-constituent outweighs the number of times they
are seen forming a constituent. As such, a frequency
based filtering stage is performed on the initial set of
databases to produce the final database.

C0∑
k 6=0 Ck

< X (1)

m = arg max
k

Ck (2)

(
∑

k Ck)−m

m
< X ∧m > Y (3)

An n-gram was chosen to be filtered out differ-
ently depending on whether or not it was seen form-
ing a non-constituent during the database develop-
ment phase. Equations 1 and 3 describe the predi-
cates which need to be fulfilled in order for a par-
ticular n-gram not to be filtered out. In these in-
equalities, C is a mapping from chart structure to
frequency count for the current n-gram, the 0th in-
dex into C is the non-constituent-forming frequency
count, and X and Y are parameters to the filtering
process.

If an n-gram was seen forming a non-constituent
during the initial database development phase, then
Equation 1 is used. If an n-gram was never seen

A D ECB

A D ECB A D ECB

DCB
3-gram
database

DCBA EDCBA E

Figure 4: Illustration of using the n-gram databases.
The trigram B C D is loaded from the pre-constructed
database, and blocks out the corresponding cells

forming a non-constituent during the development
phase, then Equation 3 is used.

The values given to the X and Y parameters in
the filtering process were determined through a trial
and error process, training on sections 02 to 21 and
testing on section 00 of the noun phrase corrected
CCGbank. For all of our results, X was set to 0.05
and Y was set to 15.

6.5 Using the n-gram Databases

Once the n-gram database has been constructed, it
is used when parsing sentences in the future. For
every sentence that is parsed, the parser checks to
see if any n-gram contained within the current sen-
tence exists within the database, and if so, uses the
memoised analysis for the n-gram. This process is
illustrated in Figure 4.

This n-gram check is performed by iterating top
to bottom, left to right through the chart for the cur-
rent sentence. A consequence of this is that if two
n-grams overlap and both exist in the database, then
only the first n-gram encountered will have its anal-
yses loaded in from the database. Once the analyses
are loaded into the current chart for the n-gram, the
corresponding cells in the current chart are blocked
off from further use in the parse tree creation process
(CKY), as illustrated in Figure 4. It is due to this cell
blocking that the pre-constructed charts for the 2nd
overlapping n-gram are not also loaded.



Model Baseline 2-gram 3-gram
Time 82.8 82.8 82.6

WSJ LF 85.26 85.26 85.26
derivs UF 92.01 92.01 92.01

Cov 98.64 98.64 98.64
Time 84.1 83.8 83.9

WSJ LF 87.40 87.40 87.40
hybrid UF 93.10 93.10 93.10

Cov 98.64 98.64 98.64
Time 84.1 84.0 84.3

NP LF 83.60 83.60 83.60
derivs UF 90.48 90.48 90.48

Cov 98.54 98.54 98.54
Time 84.8 84.9 85.3

NP LF 85.88 85.88 85.88
hybrid UF 91.63 91.63 91.63

Cov 98.54 98.54 98.54

Table 4: The speed versus performance trade-off for vary-
ing sized n-grams evaluated on CCGbank 00 using dif-
ferent parsing models. The evaluation attributes are parse
time (s), labelled and unlabelled F-score (%), and per-
centage of sentences covered

7 Results

A set of experiments were conducted using CCG-
bank sections 02 to 21 as the corpus for developing
our database. This corpus was parsed using a va-
riety of statistical parsing models. Section 00 was
then used for evaluation. Table 4 shows our pre-
liminary results. The first two parsing models used
were trained on the original CCGbank (WSJ derivs
and hybrid), and the second two models were trained
on the noun phrase corrected CCGbank corpus de-
scribed in Vadas and Curran (2008) (NP derivs and
hybrid). The databases used to obtain these results
contained only constituent-forming n-grams.

These results show a non-significant change in
speed nor F-score. One positive aspect of this non-
significant change is that performance did not de-
crease even though additional computation is needed
to perform our database lookups and chart insertion.
The C&C parser is already very fast, and the amount
of time taken to perform the chart loading and inser-
tion from the databases happens to be very similar
to the time taken to construct the derivations from
scratch.

Another experiment was then performed in or-
der to assess the potential of using non-constituent-

Baseline of the in the Combined
Time 67.2 67.0 65.8 66.0
LF 87.58 87.30 87.30 87.24
UF 93.14 92.86 92.89 82.83
Cov 94.30 94.30 84.41 84.30

Table 5: Memoised structures were constructed for the
most frequent derivations for varying non-constituent-
forming bigrams, which were then used and evaluated
against section 00 of the noun-phrase corrected CCGbank

forming n-grams for memoisation. The bigrams
of the and in the are the two most frequently
occurring non-constituent-forming bigrams in CCG-
bank sections 02 to 21. In order to assess the viabil-
ity of using non-constituents in our database, our ex-
periments here used only the most frequently occur-
ring analyses for these two bigrams. If no improve-
ment in performance is observed using the most fre-
quently occurring bigrams, then the idea is not worth
pursuing further.

The results of these experiments can be seen in
Table 5. As was the case in our constituent-forming
experiment, no significant change in performance
was achieved; positive or negative.

8 Conclusion

Through the analysis of this one structure per n-
gram idea using CCG, combined with a preliminary
set of empirical results, we have shown that memo-
ising parse structures based on frequently occurring
n-grams does not result in any form of performance
improvement.

9 Acknowledgments

We would like to thank the anonymous reviewers for
their useful feedback. This work was partially sup-
ported by the Capital Markets Cooperative Research
Centre Limited. Aspects of this work were carried
out as part of the Summer Research Workshop on
Machine Learning for Language Engineering at the
Center for Language and Speech Processing, Johns
Hopkins University.

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: an approach to almost parsing. Compu-



tational Linguistics, 25(2):237–265.
Stephen Clark and James R. Curran. 2004. Parsing the

WSJ using CCG and log-linear models. In Proceed-
ings of the 42nd Meeting of the Association for Com-
putational Linguistics, Main Volume, pages 103–110,
Barcelona, Spain, July.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Stephen Clark and Julia Hockenmaier. 2002. Evaluat-
ing a wide-coverage CCG parser. In Proceedings of
the LREC Workshop on Beyond Parseval, pages 60–
66, Las Palmas, Spain.

Jason Eisner. 1996. Efficient normal-form parsing for
combinatory categorical grammar. In Proceedings of
the 34th annual meeting on Association for Compu-
tational Linguistics, pages 79–86, Morristown, NJ,
USA. Association for Computational Linguistics.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
Bank: A corpus of CCG derivations and dependency
structures extracted from the penn treebank. Compu-
tational Linguistics, 33(3):355–396.

Julia Hockenmaier. 2003. Data and Models for Statisti-
cal Parsing with Combinatory Categorical Grammar.
Ph.D. thesis, University of Edinburgh.

Ronald M. Kaplan, Stefan Riezler, Tracy H. King, John
T. Maxwell III, and Er Vasserman. 2004. Speed
and accuracy in shallow and deep stochastic pars-
ing. In Proceedings of HLT-NAACL04, pages 97–
104, Boston, Massachusetts, USA, May. Association
for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

David Vadas and James R. Curran. 2008. Parsing noun
phrase structure with CCG. In Proceedings of the 46th
Meeting of the Association for Computational Lin-
guists: HLT, pages 335–343, Columbus, Ohio, June.
Association for Computational Linguistics.

David Vadas. 2009. Statistical Parsing of Noun Phrase
Structure. Ph.D. thesis, University of Sydney.

D Younger. 1967. Recognition and parsing of context-
free languages in time n3. Information and Control,
10(2):189–208.


