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Abstract cialist vocabularies, for example biological text.

We improve the performance of a Maximum En-
opy POs tagger by implementing features with
non-negative real values. Although Maximum En-
tropy is typically described assuming binary-valued
features, they are not in fact required to be binary
valued. The only limitations come from the optimi-
sation algorithm. For example, the Generalised Iter-
ative Scaling (Darroch and Ratcliff, 1972) algorithm

Processing unknown words is disproportionately,[r
important because of their high information con-
tent. It is crucial in domains with specialist vocab-
ularies where relevant training material is scarce
for example: biological text. Unknown word pro-
cessing often begins with Part of Speeeb§ tag-
ging, where accuracy is typically 10% worse than

on known words. used in these experiments imposes a non-negativit
We demonstrate that features extracted from Iarg% onstraint on fe a?ur e values P 9 y

raw text corpora can significantly increase accuracy Real-valued features can encapsulate contextual

on unknown words. These features supply a Iarg?nformation extracted from around unknown word

art of what we are missing with unknown words: . .
(F:Jontext information about h(g)w the word is used. We_ oo ences inan unannotated corpus. Using alarge
" " corpus is important because this increases the relia-

\(/jvisigﬁkiji;:srlt\eﬂi(\lglﬂg d Efgggj F:Z g?gerlgggn?pupr:gﬁ_chbility of the real-values. By looking at the surround-
P ing words, we can formulate constraints on what

O o - £08180(5) could be assigned. T can be seen
rt]he sentence below:

increased accuracy from 87.39% to 88.85% on un-
known words. (1) Thefrub house is up on the hill

Here,frub is the unknown word which, as com-
petent speakers of the language, we can surmise is
Part of Speechr(09 tagging involves assigning ba- probably a noun or adjective. This is because it sits
sic grammatical classes such as verb, noun and agetween a determiner and a noun, which is a posi-
jective to individual words, and is a fundamental tion frequently assumed by words with these syn-
step in many Natural Language Processingr) tactic categories. Also, if we can find the wdrdb
tasks. The tags it assigns are used in other procesgr other places, then we can get an even better, more
ing tasks such as chunking and parsing, as well as ireliable idea of what its correct tag should be.
more complex systems for question answering and |t is not necessary to know the correabstags
automatic summarisation. for theandhouse We can determine from the words

All postaggers suffer a significant decrease inthemselves thdtub is occupying a position similar
accuracy omnknown wordsthat is, words that have to adjectives likebig or nouns likeclub.
not been previously seen in the annotated training The fact thatheprecedes our unknown word tells
set. A loss of up to 10% is typical for mosbstag-  us a lot by itself, as this is a very common word.
gers e.g. Brill (1994) and Ratnaparkhi (1996). ThisSince we see it so often, we know the types of words
decreased accuracy has a flow on effect for the accuhat follow it quite well. Other words that occur less
racy of both followingpostags and later processes frequently don'’t give as strong an indication of what
which utilise them. is to follow, simply because the evidence is sparser.

Unknown words also occur a significant amount Our aim then, is to take this intuitive reason-
of the time, ranging from 2% — 5% (Mikheev, 1997), ing for determining the correct tag for an unknown
depending on the training and test corpus. Thesword, and create features that aid the Maximum En-
figures are much higher for domains with large spetropy model in doing the same.

1 Introduction

Proceedings of the Australasian Language Technology Workshop 2005, pages 32-39,
Sydney, Australia, December 2005.
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2 Unknown word processing mum entropyRatnaparkhi, 1996). In this way, the

postaggers have reached such a high degree of agjodel makes use of all the information available,
curacy that there remain few areas where perforPut do€s not favour any further unfounded hypoth-

mance can be improved significantly. Unknown ESIS: giving equal chance to all possibilities (Berger
words are one of these areas, with state-of-the-af¢t al-» 1996). _
accuracy in the range 85 — 88%, which is well be- The em_pmcal e>_<p_ectat|on pf these features, as
low the ~97% accuracy achievable over all words. ©PSe€rved in the training data, is calculated by:
The prevalence of unknown words is also prob- ~ .
lematic, although somewhat dependant on the size p(f) =Y _plz.y)f(z,y) (1)
and type of corpus being used. We train on sections Y , i
0-18 of the Penn Treebank (Marcus et al., 1993)yve attempt to make our model’s estimated value:
and test on sections 22—24. This test set then con- ~
tains 2.81% (approximately 4000) unknown words. p(f) = X p(@)p(ylo) f(z,y) (2)
Also, when applying @ostagger to a specialised Y
area of text, such as technical papers, the number
unknown words and their frequency would be ex- B
pected to increase dramatically, due to specific jar- p(f) = p(f) (3)
gon terms being used. and therefore,
Unknown words are also more likely to carry a
greater semantic significance than known words in - _ -
a sentence. That is, they will often contain a larger Zp(m)p(y|x)f(x’y) - Zp(w’y)f(x’y) ()
amount of the content of the sentence than other o
words. This is because unknown words are unlikely The training algorithm we use to achieve this
to be from closed-class categories such as determirs Generalised Iterative Scaling§) (Darroch and
ers and prepositionS, but quite ||ke|y to be in Open_RatC“ff, 1972) Each iteration of the algorithm in-
class categories such as nouns and verbs. It is the¥glves updating alh; as follows:
classes that generally convey most of the informa- _
tion in a sentence. Further, rarer words often have AHD O 1 log p(f) (5)
a more specialised meaning, and thereby classify- ‘ 0T pl(f)
ing them incorrectly will potentially lose a lot of whereC'is the maximum of the sum of the feature
information. For these reasons, it is quite impor-functions over all instances, andf) and p®(f)
tant that unknown words are POS tagged correctlyare the expectations of the probabilities observed in
so that the information carried by them can be exthe training data, and the probabilities in the current
tracted properly in future stages of an NLP system.model respectively. If(f) is greater thap®(f),
Previous work on tagging unknown words has fo-then the log of the ratio will be positive and will
cused on morphological features, and using combe increased. This will in turn increagé*b (),
mon affixes to better identify the correct tag. Thisand move towards convergence and equality be-
has been done using manually created, common Erfween the two probability expectations. Conversely,
glish endings (Weischedel et al., 1993), with Trans4f 5(f) is less thanp®(f), then A; will be de-
formation Based LearningrgL) (Brill, 1994), and  creased, again bringing the two expectations more
by comparing pairs of words in a lexicon for dif- into line.
ferences in their beginnings and endings (Mikheev, We also use a Gaussian prior (Chen and Rosen-
1997). Our existing tagger (Curran and Clark, 2003)feld, 1999) which prefers weights close to a nor-
already makes use of such features, while we aim tonal distribution. This form of smoothing alters the
incorporate additional sources of information from function we are attempting to maximise, so that no

&n accurate reflection of the training data, so that,

a larger unannotated corpus. feature receives an inordinately high or low weight.
Our code is based on the® c tagger. (Curran and
3 Maximum Entropy modelling Clark, 2003).

A Maximum Entropy model is defined interms ofa 4 Regl-valued features

number ofconstraintson the expected occurrences Maxi £ dels h | b q
of featuresthat represent the training data. OnceMaximum Entropy models have always been de-

these constraints on the model are met, the modé\ned in terms obinary features of the form:
assumes nothing further, giving a uniform distribu- B 1 if zandy = cl ass 5
tion to all unknowns, that is, the model withaxi- ,Y) 0 otherwise (6)
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The fact that these are binary features, implies cer- FEATURE | UNKNOWN

tain limitations of the representation, which make original 87.39
them unsuitable for some attributes. For example, pw t he 87.39
the length of the word cannot be represented easily, nw conma 87.59
as this value could range from one to ten or more, pw was 87.37
rather than being either present or absent. pw det er mi ner 87.42

Discretizing (or binning) the feature value is the nw punct uation 87.70

easiest way to get around this constraint. For exam-
ple, one scheme for encoding the length of the wordTable 1: Results for Probabilistic Context Features
would involve bins of length 1-3, 3-6, 6-9, and 10
or more. Then each word would have a particular

feature present, depending on which bin they fitted FEATURE | UNKNOWN | OVERALL
into. However, it may be hard to find a discretiza- 5 buckets, pw t he 87.20 96.97
tion scheme that performs optimally. 5 buckets, nw_conma 87.34 96.98
Another problem with binary features that dis- 13%5;1‘?;25\/""02% gg'zg gg'gg
cretization fails to solve, is that they are unable to 10 buckets, pw was 8734 96.96

capture the fact that certain values are related. The
values 1 and 50 would seem just as close as 2 and Table 2: Results using binned features
3. Even worse, the model would be unable to gen-

eralise further, to say that 4 is between 2 and 7.

A better representati(_)n can be found usiegl- To begin with, we chose a simple feature, that
valued featuressuch as in the example below: we can intuitively see should help discriminate be-
tween classes. This feature ps evi ous wor d
(pw) the, thatis, a real-valued feature describing

Here, f(z,y) can take on any value between 0 andthe proportion of times in wh_ich we selge beforg

1, inclusive, allowing a more continuous represen-the unknown word we are trylng to find information
tation. Such features are commonplace when us2": compared to how many times we see the word
ing other machine learners, but MaxEnt has, in mosft all. The idea of this feature is to tell when the
previous implementations, always been restricted t&'"known word we are looking at is a noun. This is
using binary features. This means that a large numPecause the determiner-noun pair is very common,
ber of features are required for even simple pieces gindtheis the most frequent determiner.

information. For example, rather that having a sin- More potential features were identified by look-

gle feature for the current word, there will instead being at the most common errors made by the tagger.
one feature for each word, with 0n|y the one for theWWe found that the most difficult distinction to make

current word turned on. MaxEnt classifiers are ceriS between adjectives and common nouns. Itis obvi-
tainly capable of working in this manner, but real- 0us that a feature with a better chance of increasing
valued features are able to do much more. performance would solve the most common errors,

|mp|ementing real-valued features adds an extr@.nd from this analysis it should therefore differenti-
layer of complexity on top of binary features. With ate chiefly between nouns and adjectives. The fea-
the latter, one only needs to know the features thature we found that satisfies this property,nisxt
are on for each training instance, since their valuegord (nw) conmm, thatis, the proportion of times
will always be one. For real-valued features how-that the word we are focusing on is followed by a
ever, we also need to know the particular value theeomma. Adjectives are only very infrequently fol-
feature holds in this instance. This is because thédwed by a comma, while nouns are in such a posi-
same real-valued feature will probably have differ-tion quite often.

f(x,y) = p(punctuationr) andy = class  (7)

ent values in each instance. Another feature that was also tried, again in an
o attempt to discriminate between the most problem-
S5 Probabilistic contexts atic cases, wasw was. This feature came from the

The Associated Press section of the Aquaint corpuiglea that adjectives will often follow the womlas
(Graff, 2002), containing over 100 million words, but nouns will not. The results from using each of
was used to calculate the probabilities for the realthese three features is shown in Table 1.

valued features described below. Using this corpus As a comparison, we also experimented with us-
gives us over a hundred times more words than théng traditional binary features. We used the binning
Penn Treebank across a wider range of topics. technique mentioned in the previous section, with
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five bins (divided as: 0, 0-1/3, 1/3-2/3, 2/3-1 and ~ TOKEN| # [TAG%[[TOKEN| # [TAG%
1), and also ten equally spaced bins (0-0.1, 0.1-0.2, , 11541 81 | million|1755 99
etc). As can be seen in Table 2, representing the .| 7894 78 on |1368 55
information in this way actually causes a decrease ~ @nd | 4856 70 ) was 11340 74
in accuracy. This demonstrates that real-valued fea- ?nf g%ﬁ 2;, ?gg gﬁ gg
tures can give an improvement that traditional bi- is 2260| 70 are 1196 73
nary features are unable to reproduce. s | 2173| 95 will 11178l 72

for 2029| 64 from |1177| 63

5.1 Higher frequency contexts

One reason why thew was feature may not be as  Table 3: Most frequent tokens that follow nouns
effective asnw comma, is that the wordvas does
not occur as frequently as commas do. Commas

(andthe) occur about five times as oftenwaas The TOKEN | # [TAG%][| TOKEN [#[TAG%
less frequent a word is, the less reliable it willbe as  than [1089 54 venture [82] 52
a feature in the way we are using it. The reason for quarter | 717} 75 ones 61 77

this it that it reduces the statistical reliability of the =~ week | 433} 52 | transactions |59| 51
counts we are using as input for the feature. The Income | 392 71 term 99| 55
counts overall will be lower, which increases the 22{52 g‘llg g; ?grtfr)ws 2(2) gg’
chan(_:e that one unusual context will be Seen more o anl 99 | 62 ||subordinated |48| 62
than it should be, compared to the context in which  hing | 91 | 58 ventures 42| 67
the word is normally seen. Also, there will be less
chance of finding counts greater than zero. Ther&able 4: Most frequent tokens that follow adjectives
may be many adjectives that are used a number of

times in the unannotated corpus, but still do not oc-

cur after the wordvas FEATURE | UNKNOWN
We next attempted to increase the counts ex- original 87.39
tracted from the unannotated corpus. Seeing as the nw of 87.42
idea of thepw t he feature was to identify nouns nw for 87.50
seen in a determiner-noun pair, one can expand the hw preposi tion 87.56
feature to becomeiw det er ni ner . Although the nw rfv\c/) be verbs 87.48
s . . nodal s 87.42
probabilities for what tags will follow a determiner nw and 87.42
are actually very close to those for the waine, the PW pOSsessi ve pronouns 87.42
number of determiners in the unannotated corpus is pw adj ecti ves 87.45
significantly larger than just the wotte pw adver bs 87.42
We can also apply this idea to oawv conma fea- _ _
ture, by expanding it into aw punct uat i on fea- Table 5: Results using analysis of the Treebank

ture. The results of experiments run with these new
expanded features are also shown in Table 1. O
can see that they were indeed more effective tha
the simpler features they replaced.

all Street Journal will clearly contain many such
words whose frequencies are not representative of
what they should be in more general text.
5.2 Contextsfrom the Penn Treebank We can compare these words to the most com-
In order to find new features, we are looking for mon words that follow adjectives, shown in Table 4.

words that occur frequenﬂy and Consistenﬂy haveThe obvious differences visible here mean that the
a certain tag before or after them. A list of tokensfeatures we apply from this analysis should discrim-
that meet these criteria can easily be found for eaciate between nouns and adjectives well. Using this
tag, by analysing the Penn Treebank. The results gfame technique for different classes, looking at pre-
this analysis are shown in Table 3. vious word and next, we are able to find a number
This table shows the most frequent tokens follow-Of features, each of which supplies a minor increase
ing nouns, and the percentage of the time that the{ performance. These are shown in Table 5.
follow a noun. The first entry, which contains a fea- e
ture we have already found to be useful, shows u§ Probabilistic lowercase features
that this analysis could give us more effective fea-Having explored features for better differentiation
tures. Some words howevanillion for example, between nouns and adjectives, we now move onto
are overly optimistic due to source of this data. Thefeatures for improving some other grammatical cat-
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1ST WORD| 2 FEATURES| UNKNOWN | OVERALL with -son the end, then we can assume it is plural in

No No 87.83 97.01 this case, and that it is singular where we are trying
No Yes 88.52 | 97.05 to tag it. Although not all plurals are created by the
Yes No 87.86 97.01 -sending, it is the case in the vast majority of times,
Yes Yes 8849 | 97.04 and so we believe it will be effective enough. Im-

plementing this as a feature, we attained an increase
in unknown word accuracy to 87.61%.
This increase is greater than what most other fea-

egories. One common problem is trying to deter-tures have achieved. It is interesting to note that
mine whether a word is a proper noun or a commormost of the errors of tagging singular proper nouns
noun. This becomes particularly difficult when the @s plural proper nouns consist of words such as
best way of telling between these two classes: lookAmerican Airlines Here,Airlines should be tagged
ing at capitalisation of the first letter, is not infor- a@s singular, but it still has theending, so we would
mative. This can be the case when the word is th&0t expect our feature to help at all. An analysis of
first in the sentence or where the whole sentence ithe errors fixed by this new feature shows that it ac-
in upper case. To solve this problem, we can use théually helped to distinguish between nouns and ad-
information from an unannotated corpus. If we sedectives. This can be understood, as if the unknown
a unknown word and it is capitalised, then we canword in the test corpus appears with anon the
check the unannotated corpus for it, seeing whethegnd in our unannotated corpus, it suggests that it is
it ever occurs uncapitalised. If it does, then there i@ noun in both cases. Adjectives are not affected
a good chance that it is not a proper noun at all, buby the addition of ans in any normal grammatical
has been capitalised in this case for another reasoivay, and so we would expect the chance of seeing
We will represent this information in the model Such a construction to be much less.
using a real-valued feature. It will be the proportion ) )
of tir?wes in which the word occurs in the unanno-8 Using multiple real-valued features
tated corpus in lower case, compared to the numbeall the experiments we have described so far have
of times it occurs at all. included only one feature at a time (with the excep-
We performed experiments firstly with the lower tion of lower case frequency, which uses two). Of
case frequency of all words, and then using only incourse, we can use all of them at once, collecting
stances of a word that weren't beginning a sentencanformation from all of them.
This is because a word beginning a sentence is al- We also tried combining the features in a differ-
ways capitalised in English, whether it is a properent way. Rather than having one feature for each
noun or not, which is precisely the bias we were try-piece of information we are giving the model, we
ing to avoid. We also tried using two features, with could add up the counts used for each feature, cre-
one active for the first word in a sentence, while theating one feature with larger, and hopefully more
other was active for all other words. This is becauseaeliable counts than any of those that it is made up
it is words that are first in the sentence that we aref. We then have one feature in the model for all
specifically trying to correct errors with. With only these pieces of information. The value for this fea-
one feature, it would not get a strong enough weightture could exceed one, and so we experimented with
since the information it is giving on words that are limiting the value at one, or simply allowing it to
not first in the sentence is not very useful. Havingtake on whatever value it would.
two features however, frees them both to make bet- The features that we used included all those that
ter decisions more specifically on the incorrect casedad individually given a positive result. Thewer
we are trying to fix. case frequency feature was also used, as was
As can be seen from the results in Table 6, theword exi sts with -s, although these two were
increase in performance was significantly more thamot summed with the other features, as they are of a
any that had been attained previously. different nature. The results achieved, are shown in
Table 7.

Table 6: Lower case frequency feature results

7 Probabilistic plural features

Next we attempt to solve the third most common9 Analysis

error that the model makes: incorrectly tagging sin-Only about 3% of the words in the test set are un-
gular proper nouns as plural proper nouns. The ide&nown words, while both the test and training sets
we can use to distinguish between them, is that if weare made up of very similar text drawn from the
find the unknown word in our unannotated corpusWall Street Journal. What we would like, is to be
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COMBINATION METHOD | UNKNOWN | OVERALL

original 87.39 96.99

all positive 88.82 97.05

all positive, summed 88.85 97.05

all positive, summed with a limit of 1 88.82 97.05

Table 7: Accuracies from combining all positive features

UNKNOWN ORIGINAL nw punctuation | | ower case freq. | ALL POSITIVE
WORD % | UNK. | ALL [ UNK. | ALL UNK. | ALL UNK. | ALL

1 281 87.39| 96.99| 87.70 97.00 88.52 97.05 88.82| 97.05
1/2 4.15 86.49| 96.61| 86.63 96.62 87.89 96.68 88.35| 96.71
1/4 6.08 86.22| 96.28 | 86.65 96.31 87.42 96.37 87.97| 96.44
1/8 8.56 85.67| 95.53| 85.94 95.56 86.60 95.64 87.34| 95.81
1/16 11.99 84.90| 94.73| 84.95 94.76 86.02 94.91 86.65| 95.18

Table 8: Results with reduced training data

able to test our new features on a corpus from a difsignificant proportion of the text. This demonstrates
ferent domain, since this is the kind of applicationthat our new features are indeed able to raise accu-
where our features should perform the best. Unforracy in the area that they were designed to.

tunately, there is no such corpus that is substantial o i

enough for our purposes, which has the annotationg-2 Cross Validation Experiments

that we would need to measure accuracy. As a resulie have also carried out an experiment using 10-
of this limitation, we will instead rely on a different fold cross validation. We split the entire Penn Tree-
technique to simulate tagging a piece of text withbank, putting every nth line into the nth fold. This

more unknown words. configuration results in a similar percentage of un-
_ o known words as in previous experiments. The accu-
9.1 Reducing thetraining dataset racy for the original system are 97.12% overall and

We can reduce the amount of data used for train89.13% on unknown words only. Using the sum-
ing, thereby increasing the proportion of unknownmation of all positive features, as well as the best
words. This will also mean the tagger has less idedower case frequency feature and thenord

of the way words are used in general, which is anexi sts with -s feature, we achieved 97.15%
other effect that we would like to mimic. Although overall and 90.17% on unknown words. This is
the words themselves will still be drawn from the @an accuracy increase of 1.04% on unknown words
same financial newspaper text, and therefore exhibivhich confirms the statistical validity of the results
all the same grammatical tendencies, we can still gete have attained previously.

an idea of how effective our new features are in a ) o

situation they are actually well-suited for. 10 Named Entity Recognition

Experiments were performed with a half, a quar-we have also experimented with the task of Named
ter, an eighth, and a sixteenth of the training dataEntity Recognition KER) in almost the same man-
with the results shown in Table 8. The precentagener as we have described for POS tagging. We will
of unknown words grows exponentially as the sizeuse contextual information from the same unanno-
of the training data decreases. This means that aated corpus, in order to better classify a certain sub-
we move to smaller training sets, unknown wordsset of the test corpus. In this case, the named entities
rapidly become a more significant problem. themselves, while for POS tagging we looked at the

As would be expected, using a smaller trainingunknown words.
set reduces the performance of the tagger quite con- The data we used is from MUC7 (DARPA, 1998),
siderably. However, the improvements gained fromand uses seven entity categories: persons, organi-
using the new features remain consistent. sations, locations, dates, money amounts, percent-

Even more encouraging is the way the overall re-ages, and times. 11% of the 84046 word-long cor-
sults begin to improve. This stems from the fact thatpus is made up of these entities, which is signifi-
the unknown words are beginning to take up a morecantly more than the percentage of unknown words
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FEATURE | PRECISION | RECALL | F-SCORE

original 86.55 86.78 86.66

nw preposi tion 86.64 86.87 86.75

pw preposition 86.69 86.69 86.69

pw | ocative preposition 86.79 86.87 86.83
pw sai d 86.64 86.87 86.75

pw speech marks 86.55 86.78 86.66

Table 9:NER results

in our POS tagging corpus. We performed an analas the noun-adjective discrepancies. Further anal-
ysis on this dataset, as we did for POS tagging, atysis of common word/tag combinations in the an-
tempting to find words that could be used as suitablenotated corpus also gave us a number of worth-
features. Some of those we found are shown in Tawhile features. However, it should be noted that
ble 9, as well as the increases in accuracy that comee did require the annotations for this analysis, as
from using them. We also experimented with thewell as to implement some other features, such as
features that performed well in POS tagging, andow unanbi guous adj ecti ve. Seeing as a large
found that they did not work as well at this task. ~ annotated corpus, the Penn Treebank, is only avail-
We can see that use of thpw | ocative  able for English, we would have a problem shifting
preposi tion feature provided the greatest in- our focus toPostagging in another language.
crease in accuracy. This feature was specifically One thing that we have achieved is the imple-
used to identify locations, as they are often pre-mentation and use of real-valued features. They

ceeded by words such &g from, andin. were able to outperform traditional MaxEnt fea-
tures, finding an increase in accuracy where dis-
11 Discussion cretized features could not. In particular, one would

not be able to represent the features that we are
using in the Maximum Entropy model, and still
gain an increase in performance, without using real-

Lia(;[]tli, rleséu;/vglrl]% Vr\fnrig er)r(lla?\t Somt:ehm_ SL(')?N;IS:asevalued features. One can easily see more possibil-
' P 9 y ' ities for their use, as they are a much more natural

frequency is quite easily our best feature,_ as it Cor'vvay of representing many attributes in a machine
rects so many of the errors that occur with proper,
. , earner.

nouns. Using all our features together, we find tha{
even the minor increases gained by some of the indi;
vidual features can be translated to an overall gain.12 Future Work

Our second technique for combining multiple The real-valued features we have described are
features, that of summing the feature values tospecifically designed at better classify unknown
gether, has also been shown to give satisfactory rewords. We would therefore like to test our approach
sults. The effect of having larger, more reliable in a domain where unknown words are more preva-
counts was apparently able to compensate for thient. We would also like to try using a different,
conflation of some information upon amalgamation.larger unannotated corpus, even when working with

All of our experiments and analysis have sug-the Penn Treebank test corpus.
gested two measurable quantities to identify a good Using a larger raw corpus would mean that more
feature. The first of these is to discriminate well be-of the unknown words could be found, and there-
tween two possible classes, especially those classéare that there would be a chance for correcting er-
that exhibit a high level of confusion. Hegy t he  rors with these unknown words. Also, the unknown
was not able to differentiate between noun and adwords that are already present in the Aquaint cor-
jectives, whilenw conma was. The second measure pus we used would have bigger counts in a larger
is the frequency of the word we are basing our feacorpus. We would therefore be able to get more re-
ture upon, with more common words being better.liable information about them, and a better idea of
For example, thew was feature did not perform how they are used.
nearly as well asw comma. Another approach to reducing the effect that

We used these ideas to find a number of producsmall counts have is to perform smoothing on them.
tive features. Problem cases with the existing tagThe problem is that if a word is seen only once, then
ger gave us particular areas for improvement, suclone cannot be totally sure of its correct tag, no mat-

What we have seen is thatv punct uat i on per-
forms the best out of the next word/previous word
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ter what context it is in. That one instance will makewe were trying to represent was a good example
the feature value either 0 or 1, the two most extremease for their usage, but there are many other fea-
values, which may be tremendously misrepresentatures that would also be intrinsically suited to them.
tive of what the true value should be. The increase of 1.46% on tagging accuracy for

There are many smoothing methods that can helpnknown words raises the result to a state-of-the-art
with this problem. The Good-Turing estimation is level, which will translate to benefits when perform-
one approach which calculates estimated values u$ag otherNLP tasks based orostagging informa-
ing the observed counts for the next most frequention. The smaller increase foER shows that these
word (Good, 1953). It is extremely effective for methods are also feasible for other tagging tasks,
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