
Proceedings of the Australasian Language Technology Workshop 2005, pages 32–39,
Sydney, Australia, December 2005.

Tagging Unknown Words with Raw Text Features

David Vadas and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{dvadas1,james}@it.usyd.edu.au

Abstract

Processing unknown words is disproportionately
important because of their high information con-
tent. It is crucial in domains with specialist vocab-
ularies where relevant training material is scarce,
for example: biological text. Unknown word pro-
cessing often begins with Part of Speech (POS) tag-
ging, where accuracy is typically 10% worse than
on known words.

We demonstrate that features extracted from large
raw text corpora can significantly increase accuracy
on unknown words. These features supply a large
part of what we are missing with unknown words:
context information about how the word is used. We
describe a Maximum Entropy modelling approach
which usesreal-valued featuresto represent unan-
notated contextual information. Our initial experi-
ments with real-valued features have resulted in an
increased accuracy from 87.39% to 88.85% on un-
known words.

1 Introduction

Part of Speech (POS) tagging involves assigning ba-
sic grammatical classes such as verb, noun and ad-
jective to individual words, and is a fundamental
step in many Natural Language Processing (NLP)
tasks. The tags it assigns are used in other process-
ing tasks such as chunking and parsing, as well as in
more complex systems for question answering and
automatic summarisation.

All POS taggers suffer a significant decrease in
accuracy onunknown words, that is, words that have
not been previously seen in the annotated training
set. A loss of up to 10% is typical for mostPOStag-
gers e.g. Brill (1994) and Ratnaparkhi (1996). This
decreased accuracy has a flow on effect for the accu-
racy of both followingPOS tags and later processes
which utilise them.

Unknown words also occur a significant amount
of the time, ranging from 2% – 5% (Mikheev, 1997),
depending on the training and test corpus. These
figures are much higher for domains with large spe-

cialist vocabularies, for example biological text.
We improve the performance of a Maximum En-

tropy POS tagger by implementing features with
non-negative real values. Although Maximum En-
tropy is typically described assuming binary-valued
features, they are not in fact required to be binary
valued. The only limitations come from the optimi-
sation algorithm. For example, the Generalised Iter-
ative Scaling (Darroch and Ratcliff, 1972) algorithm
used in these experiments imposes a non-negativity
constraint on feature values.

Real-valued features can encapsulate contextual
information extracted from around unknown word
occurrences in an unannotated corpus. Using a large
corpus is important because this increases the relia-
bility of the real-values. By looking at the surround-
ing words, we can formulate constraints on what
POS tag(s) could be assigned. This can be seen in
the sentence below:

(1) Thefrub house is up on the hill

Here,frub is the unknown word which, as com-
petent speakers of the language, we can surmise is
probably a noun or adjective. This is because it sits
between a determiner and a noun, which is a posi-
tion frequently assumed by words with these syn-
tactic categories. Also, if we can find the wordfrub
in other places, then we can get an even better, more
reliable idea of what its correct tag should be.

It is not necessary to know the correctPOS tags
for theandhouse. We can determine from the words
themselves thatfrub is occupying a position similar
to adjectives likebig or nouns likeclub.

The fact thattheprecedes our unknown word tells
us a lot by itself, as this is a very common word.
Since we see it so often, we know the types of words
that follow it quite well. Other words that occur less
frequently don’t give as strong an indication of what
is to follow, simply because the evidence is sparser.

Our aim then, is to take this intuitive reason-
ing for determining the correct tag for an unknown
word, and create features that aid the Maximum En-
tropy model in doing the same.

32



2 Unknown word processing
POStaggers have reached such a high degree of ac-
curacy that there remain few areas where perfor-
mance can be improved significantly. Unknown
words are one of these areas, with state-of-the-art
accuracy in the range 85 – 88%, which is well be-
low the∼97% accuracy achievable over all words.

The prevalence of unknown words is also prob-
lematic, although somewhat dependant on the size
and type of corpus being used. We train on sections
0–18 of the Penn Treebank (Marcus et al., 1993),
and test on sections 22–24. This test set then con-
tains 2.81% (approximately 4000) unknown words.
Also, when applying aPOS tagger to a specialised
area of text, such as technical papers, the number of
unknown words and their frequency would be ex-
pected to increase dramatically, due to specific jar-
gon terms being used.

Unknown words are also more likely to carry a
greater semantic significance than known words in
a sentence. That is, they will often contain a larger
amount of the content of the sentence than other
words. This is because unknown words are unlikely
to be from closed-class categories such as determin-
ers and prepositions, but quite likely to be in open-
class categories such as nouns and verbs. It is these
classes that generally convey most of the informa-
tion in a sentence. Further, rarer words often have
a more specialised meaning, and thereby classify-
ing them incorrectly will potentially lose a lot of
information. For these reasons, it is quite impor-
tant that unknown words are POS tagged correctly,
so that the information carried by them can be ex-
tracted properly in future stages of an NLP system.

Previous work on tagging unknown words has fo-
cused on morphological features, and using com-
mon affixes to better identify the correct tag. This
has been done using manually created, common En-
glish endings (Weischedel et al., 1993), with Trans-
formation Based Learning (TBL) (Brill, 1994), and
by comparing pairs of words in a lexicon for dif-
ferences in their beginnings and endings (Mikheev,
1997). Our existing tagger (Curran and Clark, 2003)
already makes use of such features, while we aim to
incorporate additional sources of information from
a larger unannotated corpus.

3 Maximum Entropy modelling
A Maximum Entropy model is defined in terms of a
number ofconstraintson the expected occurrences
of featuresthat represent the training data. Once
these constraints on the model are met, the model
assumes nothing further, giving a uniform distribu-
tion to all unknowns, that is, the model withmaxi-

mum entropy(Ratnaparkhi, 1996). In this way, the
model makes use of all the information available,
but does not favour any further unfounded hypoth-
esis, giving equal chance to all possibilities (Berger
et al., 1996).

The empirical expectation of these features, as
observed in the training data, is calculated by:

p̃(f) ≡
∑

x,y

p̃(x, y)f(x, y) (1)

We attempt to make our model’s estimated value:

p(f) ≡
∑

x,y

p̃(x)p(y|x)f(x, y) (2)

an accurate reflection of the training data, so that,

p(f) = p̃(f) (3)

and therefore,

∑

x,y

p̃(x)p(y|x)f(x, y) =
∑

x,y

p̃(x, y)f(x, y) (4)

The training algorithm we use to achieve this
is Generalised Iterative Scaling (GIS) (Darroch and
Ratcliff, 1972). Each iteration of the algorithm in-
volves updating allλi as follows:

λ
(t+1)
i = λ

(t)
i +

1

C
log

p̃(f)

p(t)(f)
(5)

whereC is the maximum of the sum of the feature
functions over all instances, and̃p(f) and p(t)(f)
are the expectations of the probabilities observed in
the training data, and the probabilities in the current
model respectively. If̃p(f) is greater thanp(t)(f),
then the log of the ratio will be positive andλi will
be increased. This will in turn increasep(t+1)(f),
and move towards convergence and equality be-
tween the two probability expectations. Conversely,
if p̃(f) is less thanp(t)(f), then λi will be de-
creased, again bringing the two expectations more
into line.

We also use a Gaussian prior (Chen and Rosen-
feld, 1999) which prefers weights close to a nor-
mal distribution. This form of smoothing alters the
function we are attempting to maximise, so that no
feature receives an inordinately high or low weight.
Our code is based on theC& C tagger. (Curran and
Clark, 2003).

4 Real-valued features
Maximum Entropy models have always been de-
fined in terms ofbinary features of the form:

f(x, y) =

{

1 if x andy = class
0 otherwise (6)
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The fact that these are binary features, implies cer-
tain limitations of the representation, which make
them unsuitable for some attributes. For example,
the length of the word cannot be represented easily,
as this value could range from one to ten or more,
rather than being either present or absent.

Discretizing (or binning) the feature value is the
easiest way to get around this constraint. For exam-
ple, one scheme for encoding the length of the word
would involve bins of length 1-3, 3-6, 6-9, and 10
or more. Then each word would have a particular
feature present, depending on which bin they fitted
into. However, it may be hard to find a discretiza-
tion scheme that performs optimally.

Another problem with binary features that dis-
cretization fails to solve, is that they are unable to
capture the fact that certain values are related. The
values 1 and 50 would seem just as close as 2 and
3. Even worse, the model would be unable to gen-
eralise further, to say that 4 is between 2 and 7.

A better representation can be found usingreal-
valued features, such as in the example below:

f(x, y) = p(punctuation|x) andy = class (7)

Here,f(x, y) can take on any value between 0 and
1, inclusive, allowing a more continuous represen-
tation. Such features are commonplace when us-
ing other machine learners, but MaxEnt has, in most
previous implementations, always been restricted to
using binary features. This means that a large num-
ber of features are required for even simple pieces of
information. For example, rather that having a sin-
gle feature for the current word, there will instead be
one feature for each word, with only the one for the
current word turned on. MaxEnt classifiers are cer-
tainly capable of working in this manner, but real-
valued features are able to do much more.

Implementing real-valued features adds an extra
layer of complexity on top of binary features. With
the latter, one only needs to know the features that
are on for each training instance, since their values
will always be one. For real-valued features how-
ever, we also need to know the particular value the
feature holds in this instance. This is because the
same real-valued feature will probably have differ-
ent values in each instance.

5 Probabilistic contexts
The Associated Press section of the Aquaint corpus
(Graff, 2002), containing over 100 million words,
was used to calculate the probabilities for the real-
valued features described below. Using this corpus
gives us over a hundred times more words than the
Penn Treebank across a wider range of topics.

FEATURE UNKNOWN

original 87.39
pw the 87.39

nw comma 87.59
pw was 87.37

pw determiner 87.42
nw punctuation 87.70

Table 1: Results for Probabilistic Context Features

FEATURE UNKNOWN OVERALL

5 buckets, pw the 87.20 96.97
5 buckets, nw comma 87.34 96.98
10 buckets, pw the 86.76 96.94

10 buckets, nw comma 87.15 96.95
10 buckets, pw was 87.34 96.96

Table 2: Results using binned features

To begin with, we chose a simple feature, that
we can intuitively see should help discriminate be-
tween classes. This feature isprevious word
(pw) the, that is, a real-valued feature describing
the proportion of times in which we seethe before
the unknown word we are trying to find information
on, compared to how many times we see the word
at all. The idea of this feature is to tell when the
unknown word we are looking at is a noun. This is
because the determiner-noun pair is very common,
andthe is the most frequent determiner.

More potential features were identified by look-
ing at the most common errors made by the tagger.
We found that the most difficult distinction to make
is between adjectives and common nouns. It is obvi-
ous that a feature with a better chance of increasing
performance would solve the most common errors,
and from this analysis it should therefore differenti-
ate chiefly between nouns and adjectives. The fea-
ture we found that satisfies this property, isnext
word (nw) comma, that is, the proportion of times
that the word we are focusing on is followed by a
comma. Adjectives are only very infrequently fol-
lowed by a comma, while nouns are in such a posi-
tion quite often.

Another feature that was also tried, again in an
attempt to discriminate between the most problem-
atic cases, waspw was. This feature came from the
idea that adjectives will often follow the wordwas,
but nouns will not. The results from using each of
these three features is shown in Table 1.

As a comparison, we also experimented with us-
ing traditional binary features. We used the binning
technique mentioned in the previous section, with
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five bins (divided as: 0, 0–1/3, 1/3–2/3, 2/3–1 and
1), and also ten equally spaced bins (0–0.1, 0.1–0.2,
etc). As can be seen in Table 2, representing the
information in this way actually causes a decrease
in accuracy. This demonstrates that real-valued fea-
tures can give an improvement that traditional bi-
nary features are unable to reproduce.

5.1 Higher frequency contexts
One reason why thepw was feature may not be as
effective asnw comma, is that the wordwasdoes
not occur as frequently as commas do. Commas
(andthe) occur about five times as often aswas. The
less frequent a word is, the less reliable it will be as
a feature in the way we are using it. The reason for
this it that it reduces the statistical reliability of the
counts we are using as input for the feature. The
counts overall will be lower, which increases the
chance that one unusual context will be seen more
than it should be, compared to the context in which
the word is normally seen. Also, there will be less
chance of finding counts greater than zero. There
may be many adjectives that are used a number of
times in the unannotated corpus, but still do not oc-
cur after the wordwas.

We next attempted to increase the counts ex-
tracted from the unannotated corpus. Seeing as the
idea of thepw the feature was to identify nouns
seen in a determiner-noun pair, one can expand the
feature to become:pw determiner. Although the
probabilities for what tags will follow a determiner
are actually very close to those for the wordthe, the
number of determiners in the unannotated corpus is
significantly larger than just the wordthe.

We can also apply this idea to ournw comma fea-
ture, by expanding it into anw punctuation fea-
ture. The results of experiments run with these new
expanded features are also shown in Table 1. One
can see that they were indeed more effective than
the simpler features they replaced.

5.2 Contexts from the Penn Treebank
In order to find new features, we are looking for
words that occur frequently and consistently have
a certain tag before or after them. A list of tokens
that meet these criteria can easily be found for each
tag, by analysing the Penn Treebank. The results of
this analysis are shown in Table 3.

This table shows the most frequent tokens follow-
ing nouns, and the percentage of the time that they
follow a noun. The first entry, which contains a fea-
ture we have already found to be useful, shows us
that this analysis could give us more effective fea-
tures. Some words however,million for example,
are overly optimistic due to source of this data. The

TOKEN # TAG % TOKEN # TAG %
, 11541 81 million 1755 99
. 7894 78 on 1368 55

and 4856 70 was 1340 74
of 4171 87 said 1323 69
in 3311 63 has 1211 69
is 2260 70 are 1196 73
’s 2173 95 will 1178 74
for 2029 64 from 1177 63

Table 3: Most frequent tokens that follow nouns

TOKEN # TAG % TOKEN # TAG %
than 1089 54 venture 82 52

quarter 717 75 ones 61 77
week 433 52 transactions 59 51

income 392 71 term 59 55
period 240 67 factors 52 63
estate 213 93 spring 50 52

German 99 62 subordinated 48 62
thing 91 58 ventures 42 67

Table 4: Most frequent tokens that follow adjectives

FEATURE UNKNOWN

original 87.39
nw of 87.42
nw for 87.50

nw preposition 87.56
nw to be verbs 87.48

nw modals 87.42
nw and 87.42

pw possessive pronouns 87.42
pw adjectives 87.45
pw adverbs 87.42

Table 5: Results using analysis of the Treebank

Wall Street Journal will clearly contain many such
words whose frequencies are not representative of
what they should be in more general text.

We can compare these words to the most com-
mon words that follow adjectives, shown in Table 4.
The obvious differences visible here mean that the
features we apply from this analysis should discrim-
inate between nouns and adjectives well. Using this
same technique for different classes, looking at pre-
vious word and next, we are able to find a number
of features, each of which supplies a minor increase
in performance. These are shown in Table 5.

6 Probabilistic lowercase features
Having explored features for better differentiation
between nouns and adjectives, we now move onto
features for improving some other grammatical cat-
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1ST WORD 2 FEATURES UNKNOWN OVERALL

No No 87.83 97.01
No Yes 88.52 97.05
Yes No 87.86 97.01
Yes Yes 88.49 97.04

Table 6: Lower case frequency feature results

egories. One common problem is trying to deter-
mine whether a word is a proper noun or a common
noun. This becomes particularly difficult when the
best way of telling between these two classes: look-
ing at capitalisation of the first letter, is not infor-
mative. This can be the case when the word is the
first in the sentence or where the whole sentence is
in upper case. To solve this problem, we can use the
information from an unannotated corpus. If we see
a unknown word and it is capitalised, then we can
check the unannotated corpus for it, seeing whether
it ever occurs uncapitalised. If it does, then there is
a good chance that it is not a proper noun at all, but
has been capitalised in this case for another reason.

We will represent this information in the model
using a real-valued feature. It will be the proportion
of times in which the word occurs in the unanno-
tated corpus in lower case, compared to the number
of times it occurs at all.

We performed experiments firstly with the lower
case frequency of all words, and then using only in-
stances of a word that weren’t beginning a sentence.
This is because a word beginning a sentence is al-
ways capitalised in English, whether it is a proper
noun or not, which is precisely the bias we were try-
ing to avoid. We also tried using two features, with
one active for the first word in a sentence, while the
other was active for all other words. This is because
it is words that are first in the sentence that we are
specifically trying to correct errors with. With only
one feature, it would not get a strong enough weight,
since the information it is giving on words that are
not first in the sentence is not very useful. Having
two features however, frees them both to make bet-
ter decisions more specifically on the incorrect cases
we are trying to fix.

As can be seen from the results in Table 6, the
increase in performance was significantly more than
any that had been attained previously.

7 Probabilistic plural features

Next we attempt to solve the third most common
error that the model makes: incorrectly tagging sin-
gular proper nouns as plural proper nouns. The idea
we can use to distinguish between them, is that if we
find the unknown word in our unannotated corpus

with -son the end, then we can assume it is plural in
this case, and that it is singular where we are trying
to tag it. Although not all plurals are created by the
-sending, it is the case in the vast majority of times,
and so we believe it will be effective enough. Im-
plementing this as a feature, we attained an increase
in unknown word accuracy to 87.61%.

This increase is greater than what most other fea-
tures have achieved. It is interesting to note that
most of the errors of tagging singular proper nouns
as plural proper nouns consist of words such as
American Airlines. Here,Airlines should be tagged
as singular, but it still has the-sending, so we would
not expect our feature to help at all. An analysis of
the errors fixed by this new feature shows that it ac-
tually helped to distinguish between nouns and ad-
jectives. This can be understood, as if the unknown
word in the test corpus appears with an-s on the
end in our unannotated corpus, it suggests that it is
a noun in both cases. Adjectives are not affected
by the addition of an-s in any normal grammatical
way, and so we would expect the chance of seeing
such a construction to be much less.

8 Using multiple real-valued features
All the experiments we have described so far have
included only one feature at a time (with the excep-
tion of lower case frequency, which uses two). Of
course, we can use all of them at once, collecting
information from all of them.

We also tried combining the features in a differ-
ent way. Rather than having one feature for each
piece of information we are giving the model, we
could add up the counts used for each feature, cre-
ating one feature with larger, and hopefully more
reliable counts than any of those that it is made up
of. We then have one feature in the model for all
these pieces of information. The value for this fea-
ture could exceed one, and so we experimented with
limiting the value at one, or simply allowing it to
take on whatever value it would.

The features that we used included all those that
had individually given a positive result. Thelower
case frequency feature was also used, as was
word exists with -s, although these two were
not summed with the other features, as they are of a
different nature. The results achieved, are shown in
Table 7.

9 Analysis
Only about 3% of the words in the test set are un-
known words, while both the test and training sets
are made up of very similar text drawn from the
Wall Street Journal. What we would like, is to be
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COMBINATION METHOD UNKNOWN OVERALL

original 87.39 96.99
all positive 88.82 97.05

all positive, summed 88.85 97.05
all positive, summed with a limit of 1 88.82 97.05

Table 7: Accuracies from combining all positive features

UNKNOWN ORIGINAL nw punctuation lower case freq. ALL POSITIVE

WORD % UNK . ALL UNK . ALL UNK . ALL UNK . ALL

1 2.81 87.39 96.99 87.70 97.00 88.52 97.05 88.82 97.05
1/2 4.15 86.49 96.61 86.63 96.62 87.89 96.68 88.35 96.71
1/4 6.08 86.22 96.28 86.65 96.31 87.42 96.37 87.97 96.44
1/8 8.56 85.67 95.53 85.94 95.56 86.60 95.64 87.34 95.81
1/16 11.99 84.90 94.73 84.95 94.76 86.02 94.91 86.65 95.18

Table 8: Results with reduced training data

able to test our new features on a corpus from a dif-
ferent domain, since this is the kind of application
where our features should perform the best. Unfor-
tunately, there is no such corpus that is substantial
enough for our purposes, which has the annotations
that we would need to measure accuracy. As a result
of this limitation, we will instead rely on a different
technique to simulate tagging a piece of text with
more unknown words.

9.1 Reducing the training dataset

We can reduce the amount of data used for train-
ing, thereby increasing the proportion of unknown
words. This will also mean the tagger has less idea
of the way words are used in general, which is an-
other effect that we would like to mimic. Although
the words themselves will still be drawn from the
same financial newspaper text, and therefore exhibit
all the same grammatical tendencies, we can still get
an idea of how effective our new features are in a
situation they are actually well-suited for.

Experiments were performed with a half, a quar-
ter, an eighth, and a sixteenth of the training data,
with the results shown in Table 8. The precentage
of unknown words grows exponentially as the size
of the training data decreases. This means that as
we move to smaller training sets, unknown words
rapidly become a more significant problem.

As would be expected, using a smaller training
set reduces the performance of the tagger quite con-
siderably. However, the improvements gained from
using the new features remain consistent.

Even more encouraging is the way the overall re-
sults begin to improve. This stems from the fact that
the unknown words are beginning to take up a more

significant proportion of the text. This demonstrates
that our new features are indeed able to raise accu-
racy in the area that they were designed to.

9.2 Cross Validation Experiments

We have also carried out an experiment using 10-
fold cross validation. We split the entire Penn Tree-
bank, putting every nth line into the nth fold. This
configuration results in a similar percentage of un-
known words as in previous experiments. The accu-
racy for the original system are 97.12% overall and
89.13% on unknown words only. Using the sum-
mation of all positive features, as well as the best
lower case frequency feature and theword
exists with -s feature, we achieved 97.15%
overall and 90.17% on unknown words. This is
an accuracy increase of 1.04% on unknown words
which confirms the statistical validity of the results
we have attained previously.

10 Named Entity Recognition

We have also experimented with the task of Named
Entity Recognition (NER) in almost the same man-
ner as we have described for POS tagging. We will
use contextual information from the same unanno-
tated corpus, in order to better classify a certain sub-
set of the test corpus. In this case, the named entities
themselves, while for POS tagging we looked at the
unknown words.

The data we used is from MUC7 (DARPA, 1998),
and uses seven entity categories: persons, organi-
sations, locations, dates, money amounts, percent-
ages, and times. 11% of the 84046 word-long cor-
pus is made up of these entities, which is signifi-
cantly more than the percentage of unknown words
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FEATURE PRECISION RECALL F-SCORE

original 86.55 86.78 86.66
nw preposition 86.64 86.87 86.75
pw preposition 86.69 86.69 86.69

pw locative preposition 86.79 86.87 86.83
pw said 86.64 86.87 86.75

pw speech marks 86.55 86.78 86.66

Table 9:NER results

in our POS tagging corpus. We performed an anal-
ysis on this dataset, as we did for POS tagging, at-
tempting to find words that could be used as suitable
features. Some of those we found are shown in Ta-
ble 9, as well as the increases in accuracy that come
from using them. We also experimented with the
features that performed well in POS tagging, and
found that they did not work as well at this task.

We can see that use of thepw locative
preposition feature provided the greatest in-
crease in accuracy. This feature was specifically
used to identify locations, as they are often pre-
ceeded by words such asto, from, andin.

11 Discussion

What we have seen is thatnw punctuation per-
forms the best out of the next word/previous word
features, whileword exists with -s is also
useful, outperforming many of them. Lower case
frequency is quite easily our best feature, as it cor-
rects so many of the errors that occur with proper
nouns. Using all our features together, we find that
even the minor increases gained by some of the indi-
vidual features can be translated to an overall gain.

Our second technique for combining multiple
features, that of summing the feature values to-
gether, has also been shown to give satisfactory re-
sults. The effect of having larger, more reliable
counts was apparently able to compensate for the
conflation of some information upon amalgamation.

All of our experiments and analysis have sug-
gested two measurable quantities to identify a good
feature. The first of these is to discriminate well be-
tween two possible classes, especially those classes
that exhibit a high level of confusion. Here,pw the
was not able to differentiate between noun and ad-
jectives, whilenw commawas. The second measure
is the frequency of the word we are basing our fea-
ture upon, with more common words being better.
For example, thepw was feature did not perform
nearly as well asnw comma.

We used these ideas to find a number of produc-
tive features. Problem cases with the existing tag-
ger gave us particular areas for improvement, such

as the noun-adjective discrepancies. Further anal-
ysis of common word/tag combinations in the an-
notated corpus also gave us a number of worth-
while features. However, it should be noted that
we did require the annotations for this analysis, as
well as to implement some other features, such as
pw unambiguous adjective. Seeing as a large
annotated corpus, the Penn Treebank, is only avail-
able for English, we would have a problem shifting
our focus toPOStagging in another language.

One thing that we have achieved is the imple-
mentation and use of real-valued features. They
were able to outperform traditional MaxEnt fea-
tures, finding an increase in accuracy where dis-
cretized features could not. In particular, one would
not be able to represent the features that we are
using in the Maximum Entropy model, and still
gain an increase in performance, without using real-
valued features. One can easily see more possibil-
ities for their use, as they are a much more natural
way of representing many attributes in a machine
learner.

12 Future Work

The real-valued features we have described are
specifically designed at better classify unknown
words. We would therefore like to test our approach
in a domain where unknown words are more preva-
lent. We would also like to try using a different,
larger unannotated corpus, even when working with
the Penn Treebank test corpus.

Using a larger raw corpus would mean that more
of the unknown words could be found, and there-
fore that there would be a chance for correcting er-
rors with these unknown words. Also, the unknown
words that are already present in the Aquaint cor-
pus we used would have bigger counts in a larger
corpus. We would therefore be able to get more re-
liable information about them, and a better idea of
how they are used.

Another approach to reducing the effect that
small counts have is to perform smoothing on them.
The problem is that if a word is seen only once, then
one cannot be totally sure of its correct tag, no mat-
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ter what context it is in. That one instance will make
the feature value either 0 or 1, the two most extreme
values, which may be tremendously misrepresenta-
tive of what the true value should be.

There are many smoothing methods that can help
with this problem. The Good-Turing estimation is
one approach which calculates estimated values us-
ing the observed counts for the next most frequent
word (Good, 1953). It is extremely effective for
words with low counts, and would therefore be able
to solve this problem quite well.

Another smoothing issue comes from the Gaus-
sian prior that is used within the Maximum Entropy
training code. This prior has the effect of keeping
the weights within a normal distribution, slightly re-
laxing the constraints upon the model. It has the
effect of not allowing any single weight to get too
large, which could mean many tagging decisions
were made on a single, possibly unreliable, feature.
However, the algorithm does not take into account
the introduction of real-valued features, and there-
fore the possibility of non-binary feature values. As
a result of this, some real-valued features may be
prevented from having as large a weight as they
should, and thus having reduced impact. An investi-
gation into what effects this problem has, as well as
changing the implementation to calculate the update
values more correctly, would be beneficial.

13 Conclusion

We aimed to use the information in an unannotated
corpus — in particular, the contexts surrounding un-
known words — in order to increase performance
on POS tagging unknown words. Although a num-
ber of techniques have been applied to this problem
in the past, none attempted to draw upon the infor-
mation that could be found in a larger amount of
raw text. The new feature types we have demon-
strated are quite different to those previously used,
and we have shown the increase in performance that
they can give. The advantage of this method is that
it can derive contextual information from any unan-
notated corpus, and so it is easily portable to another
domain.

In particular, the use of real-valued features re-
sulted in a much larger improvement than binary
or discretized features would have given us. Maxi-
mum Entropy features in the past have always been
limited in this respect, and seeing the results we
attained, one cannot doubt the benefits that real-
valued features can bring. The increased flexibility
they give us, and their ability to capture relation-
ships between values, make them extremely advan-
tageous. One can see that the kind of information

we were trying to represent was a good example
case for their usage, but there are many other fea-
tures that would also be intrinsically suited to them.

The increase of 1.46% on tagging accuracy for
unknown words raises the result to a state-of-the-art
level, which will translate to benefits when perform-
ing otherNLP tasks based onPOS tagging informa-
tion. The smaller increase forNER shows that these
methods are also feasible for other tagging tasks,
and demonstrates once again, the usefulness of real-
valued features.
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