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I. Introduction 

Computational studies in linguistics 
have led to a variety of proposals~ for 
semantic representations of natural 
language. To a first approximation these 
all have a number of features in common. 
First, there is some formal language onto 
which, with the aid of a grammar, surface 
forms are mapped. Secondly, there is a 
formal language (usually, but not 
necessarily, the same as the first) for the 
representation of world knowledge and which 
is used to perform inferences necessary for 
integrating the surface form into the 
knowledge structure, and/or for answering 
questions. Finally, there is, or should be 
[5,18] a specification of the semantics of 
these formal languages. 

There seem to be three dominant 
proposals for semantic representations: 

(I) Procedural semantics [16,17] where 
the underlying representation consists of 
procedures in some executable language. 

(2) Network structures [11,13,14] which 
represent knowledge by appropriate graphical 
data structures. 

(3) Logical representation [3,7,12] which 
express world knowledge by formulae in some 
formal calculus. 

These distinctions are not nearly as 
clear as one might like. Both logical and 
network representations often appeal to 
procedural components, networks appear to be 
representable as logical formlae via fairly 
direct mappings [15], while logical formulae 
have straight-forward procedural 
representations [6]. 

In this paper I shall discuss 
mechanisms for formal reasoning within 
logical representations. I shall make the 
(gross) assumption that surface forms have 
aleady been mapped onto some form of 
predicate calculus representation. In 
particular, I make no claims about the role 
or nature of the inferences required in 
mapping from surface structures to a logical 
deep structure. Neither do I take any 
position on the primitives of this deep 
structure. They may derive from a case 
oriented grammar, conceptual dependency 
theory etc. Ultimately, of course, the 
extent to which the choice of these 
primitives facilitates inference will be a 
factor affecting this choice. I take it as 
self evident that no semantic representation 
can explicitly contain all of the 
information required by a language 
understanding system so there is a need for 
inferring new knowledge from that explicitly 
represented. In this connection it is worth 
observing that, contrary to some prevailing 
opinions, formal reasoning does not preclude 
fuzzy or imprecise reasoning. There are no 
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a priori reasons why notions like 
"probably", "possibly", etc. cannot be 
formalized within a logical calculus and new 
imprecise knowledge deduced from old by 
means of prefectly definite and precise 
rules of inference. 

In the remainder of this paper I 
discuss two paradigms for formal reasoning 
with which I have worked - resolution and 
natural deduction - and argue in favour of 
the latter approach. I also indicate how 
other semantic representations - procedures 
and networks - might fit into this paradigm. 
Finally, I discuss some problems deriving 
from computational linguistics which have 
not been seriously considered by researchers 
in formal inference but which I think might 
fruitfully be explored within a logical 
framework. 

2. Paradigms for Formal Reasoning 
A. Resolution [10] 

The resolution principle is based on 
five key concepts, two of which (the 
elimination of quanifiers through the 
introduction of Skolem functions, 
unification) are of particular relevance to 
problems in the representation of linguistic 
deep structures. 

I) The elimination of quantifiers 

One miht choose to assign to the 
statement "Every animal has a nose" a 
logical representation of the form 

(x)(3y)[ANIMAL(x)~HAS-AS-PART(x,y) 
NOSE(y)] (I) 

As is well known, the sequence of 
quantifiers at the head of this formula is 
critical to its interpretation - 
interchanging them assigns a totally 
different meanng to the formula. Hence each 
quantifier is assigned a scope which, 
roughly speaking, is the maximal part of the 
formula governed by that quantifier. 
Unfortunately, the representation of 
quantifiers and their scope leads to some 
complexity in processing this information. 
(Anyone who has faced this problem in 
semanic net representations is well aware of 
the difficulties.) An elegant solution is to 
replace each existentially quantified 
variable (y in (I)) by a new Skolem function 
(which in (I) we can call "nose") whose 
arguments are all of the universally 
quantified variables (x in (I)) in whose 
scope the existential variable lies. (Thus 
y is replaced by nose(x) in (I)). Next, all 
of the quantifiers are deleted. The 
resulting formula is logically equivalent to 
the original. The quantifier-free formula 
of (I) is 

ANIMAL(x)~HAS-AS-PART(x,nose(x)) 
NOSE(nose(x)) (2) 

The reduction of formulae to 
quanifier-free form also admits a primitive 
form of inference by pattern matching 
(unification). 

(ii) Unification 

In effect the unification algorithm 
answers questions like "Is formula A an 



instance (special case) of formula B?" or 
"Is there a special case common to both A 
and B?" Unification is simply consistent 
pattern matching i.e. if a variable in one 
position matches an expression, it must 
match the identical expression in some other 
position. Thus ANIMAL(x) unifies with 
ANIMAL(fritz) under the substitution 
fritzlx. HAS-AS-PART(fritz,nose(fritz)) 
unifies with HAS-AS-PART(x,nose(x)) again 
with fritzlx. P(x,f(x),y) unifies with 
P(z,f(a),b) under the substitution 
alz,alx,bly, but fails to unify with 
P(b,f(a),b). 

(iii) Canonical form for formulae 

The resolution paradigm requires that a 
quantifier-free formula be converted to 
clausal form, i.e. a conjunct of disjuncts 
called clauses. The conversion algorithm is 
quite straightforward involving Boolean 
transformatons of the form A~B~AV B, 
AB~AW B, AW BC~(A~ B)(AV C) etc. The 
formula (2) has two clauses in its canonical 
form: 

AN'IMAL(x) ~ HAS-AS-PART(x, nose(x)) 
~ x ~  V NOSE(nose(x)) (3) 

(iv) The resolution rule of inference 

There is but one rule of inference in 
resolution theory: If LIV~and L2~are two 
clauses such that (a) LI and L2 are 
complementary literals. (A literal is a 
predicate symbol together with its 
arguments, or the negation of same. Two 
literals are complementary if they have the 
same predicate symbol, and one is unnegated 
while the other is negated.) 
(b) The argument list of LI is unifiab~ with 
that of L2 under a substitution , then one 
can infer the new clause (gV~)~. For 
example, if we know tha cats are animals, or 
in clausal form 

~'~(y) V ANIMAL(y) 
then by unifying ANIMAL(y) on its 
complementary literal ANIMAL(x) in (3), we 
can infer 

~T(F) V HAS-AS-PART(y,nose(F)) 
CAT(y) NOSE(nose(y)) (4) 

i.e. cats have noses. If in addition it is 
known that CAT(fritz), then by unifying this 
on CAT(y) in (4), we can deduce the two 
clauses 

HAS-AS-PART(fritz,nose(fritz)) (5.1) 
NOSE(nose(fritz)) (5.2) 

(v) Completeness 

Resolution is a refutation loJ~ic i.e. 
if T is some statement to be proved, the 
clausal form of its negation is added to the 
clauses representing the knowledge base, and 
an attempt is made to derive a contradiction 
by means of the single resolution inference 
rule. For exmple, to prove that Fritz has a 
nose i.e. 
(~z)[NOSE(x) A HAS-AS-PART(fritz,z)] 
first negate, yielding__ 
(z)[N--6-~E(z) ~ HAS-AS-PART(fritz,z)], 
then remove the universal quantifier which 
i~ds the clause 
NOSE(z)v HAS-AS-PART(fritz,z). Resolving 
with (5.1) yields NOSE(nose(fritz)) which 
contradicts (5.2). 
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Resolution is also complete. This 
means that if T is indeed logically valid (T 
is true under all possible interpretations 
in which the knowledge base is true) then 
there is a refutation proof of T with 
resolution as the sole rule of inference. 
There are two observations one can make 
here. The first is that resolutin is very 
much a competence model for formal 
inference. By no stretch of the imagination 
can it be construed as a performance model, 
in part because of its canonical 
representatin for formulae, in part because 
of its "unnatural" rule of inference. 
Secondly, by virtue of its completeness 
resolution is provably adequate as a 
competence model, in contrast with 
linguistic competence models for which the 
adequacy of any proposed theory is largely 
an empirical question. 

It is the combination of 
representational security deriving from 
completeness and theoretical elegance 
deriving from the simplicity of the 
underlying logic that has led to so much 
intensive research into resolution. In 
particular, attempts to deal with the gross 
inefficiency of the theory have been largely 
syntactic, designed to constrain the 
possible inferences that can be made, but 
without sacrificing the completeness 
security blanket. Very little research has 
been devoted to the representation and use 
of domain knowledge, primarily, I think, 
because the ways in which humans use such 
knowledge have no correspondents within the 
resolution paradigm. 

B. Natural Deduction Systems[l,8,9] 

These can best be characterized as 
attempts to define a performance model for 
logical reasoning, in contrast to resolution 
as a competence model. In particular, any 
such model must make use of all of the 
domain specific "non-logical" knowledge 
available to a human, and make use of it in 
corresponding ways. Among the features of 
such systems are the following: 

(i) Formulae are quantifier-free, but remain 
in their "natural" form. Thus, (I) is 
represented in the form (2), not as (3). 

(ii) There are many (not just one) rules of 
inference~ each corresponding to some 
observable inference mechanism used in human 
reasoning. Some examples: (grossly 
simplified. In particular the role of 
unification is suppressed.) 

(a) Generalized modus ponens. If 
AAB~C~D is a known fact, and if A,B and C 
are all known facts, then D may be deduced 
as a new known fact. If one of A,B or C is 
not known, no deduction is made. 

(b) Back-chaining. If the current subgoal 
is to prove D, and if W~D is known, then a 
possible next subgoal is to prove W. 

(c) Case analysis. If AV B is known, 
generate two cases, one a context in which A 
is assumed true, the other a context in 
which B is true, and proceed with the proof 
for each context. 

(d) Splitting conjunctive subgoals. If 
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the current subgoal is to prove AAB, first 
prove A, then prove B. 

(e) Implicative subgoals. If the current 
subgoal is to prove A~B, update the current 
context with A, and prove B. 

Quite a number of additional inference 
rules are possible. I have given a few 
examples only to indicate the flavour of the 
approach, and its naturalness. Some 
observations. First, the logic yields 
direct proofs, each of which must be 
provable assuming that its ancestor 'is 
Drovable. This property turns out to be 
critical for the application of domain 
specific knowledge for reducing search. 
(See (iii) below.) I know of no resolution 
logic with this property. Thirdly, the 
search for a proof proceeds by decomposing a 
problem into simpler problems as in rules 
(c), (d) and (e). Finally, there is an 
explicit representation of local contexts 
which prevents irrelevant formulae in 
adjacent contexts from polluting the local 
search. By way of contrast, resolution 
systems operate in a single global context. 

(iii) Central to the natural deduction 
approach is it emphasis on the 
representation and appropriate use by the 
logic of domain specific knowledge. 
Examples of such knowledge are models, 
counterexamples, special cases etc. The 
fact that, as noted in (ii), each subgoal W 
must be provable provides the logic with a 
handle on how to use such knowledge. For if 
W or some special case of W is false in a 
model, or if there is a known counterexample 
to W, then there is no point in trying to 
prove it. If W is true in some model, or if 
it is possible to derive consequences of W 
which are known to be true, then there is 
additional evidence to warrant trying to 
prove it. 

In some approaches [9] formulae in the 
knowledge base may have associated with them 
domain specific knowledge indicating how 
best to use that formula in the search for a 
proof. For example, in view of the enormous 
number of possible animals, there would be 
associated with CAT(y)~ANIMAL(y) the 
advice: If you are trying to prove that 
something is an animal and you don't 
currently know it to be a cat, don't try to 
prove it is a cat. The representation of 
this kind of knowledge clearly derives from 
the exhortations of the proceduralist [6]. 

(iv) Natural deduction systems are 
incomplete. This seems to be a necessary 
consequence of their emphasis on generating 
subgoals each of which must be provable. 
There are serious questions as to whether 
this is a satisfactory state of affairs. A 
facile argument has it that humans are 
necessarily incomplete (because of natural 
time and space bounds) so there is no need 
for computational logic to concern itself 
with this issue. However, for a logic to 
qualify as a performance model, it must be 
incomplete in precisely the ways that we 
are. The fact is that we overcome some of 
the limitations to time and space bounds by 
appealing to a variety of "non-logical" 
processes. Typical of these processes is 
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the inspired guess which one encounters in 
mathematics whenever an induction hypothesis 
is proposed, or some obscure expressin is 
somehow pulled out of a hat to make a proof 
go through. One thing is certain. Neither 
the induction hypothesis, nor the expression 
was discovered by any process of pattern 
directed (via unification) search using the 
rules of inference of a logic, despite the 
fact that completeness guarantees the 
ultimate success of such a search. The 
difficulty with formulating an appropriate 
notion of completeness for a performance 
model is precisely in characterizing these 
non-logical processes and how they function 
in "completing" the underlying logically 
incomplete rules of inference. One of the 
virtues of natural deduction systems is that 
this distinction between logical and 
non-logical processes is made, and that it 
is possible in some fairly general 
situations for the logic to recognize when 
to invoke appropriate external routines [9]. 

3. The Two Cultures - Future Prospects 

It is safe to say that there has been 
little communication between researchers in 
computational linguistics and formal 
inference. The Justification seems to be 
that the former are concerned with 
performing shallow inference on large 
knowledge bases, whereas the latter focus on 
deep inference over relatively small 
domains. I believe this distinction is a 
superficial one, and that each discipline 
has much to gain from the problems and 
proposed solutions of the other. As an 
example of how a logical paradigm can be 
relevant to current ideas in computational 
linguistics, consider the relationship 
between semantic nets and logical 
representations. 

Almost all of the question-answering 
systems that I know of use semantic nets for 
their inferencing component despite the fact 
that 

(a) their semantics is by no means 
clear [18] 

(b) there are serious difficulties in 
representing and processing quantifiers and 
their scopes 

(c) no methods have been proposed for 
computing on a net which yield inferencing 
capabilities even remotely approximating 
those of a natural deduction system - 
capabilities which we know humans possess. 

These are all non-problems for an 
appropriate logical system. Nevertheless, 
there are definite virtues to semantic nets 
as knowledge representations, especially 
their use in forming associations among 
concepts and their explicit representaion of 
superset links. It seems to me that there 
would be definite advantages to interfacing 
a natural deductive system with a semantic 
net, each component doing what it does best. 
In its simplest realization, imagine a net 
all of whose nodes denote nominal concepts 
and all of whose links denote "subset" or 
"superset". Within the logic, each variable 
and function symbol occurring in a formula 
is assigned a type which is the domain over 



which the varible is meant to range or the 
range of the function Symbol. Each such 
type has a corresponding node in the net. 
For example, (2) would be represented as 

HAS-AS-PART(x{ANIMAL},nose{NOSE}(x{ANIMAL} 
)) (6) 

The general fact that cats are animals 
has no representation in the logical 
component, but is represented in the net by 
appropriately linked CAT and ANIMAL nodes. 
Now the question "Does Fritz have a nose?" 
translates to an attempt to prove 
HAS-AS-PART(fritz{CAT}, y{NOSE}). If we 
could unify this with (6) the question would 
be answered. However, a term (in this case 
x) cannot unify with another term (fritz) 
unless their types are compatible. To 
determine compatibilitythe unifier calls on 
the semantic net processor to check whether 
a path of superset links connects node CAT 
to node ANIMAL. In this case there is such 
a path, so the unificaton succeeds. 

Notice how each component benefits from 
the presence of the other. The logic 
benefits by processing fewer, and 
considerably more compact formulae than 
would otherwise be necessary. (Compare (6) 
with (2)). In particular, compactification 
eliminates many logical connectives, which 
has the effect of reducing the number of 
applications of rules of inference in 
deriving a result. This is so because these 
rules are "connective driven". Since search 
is largely a matter of the nondeterministic 
application of rules of inference, the 
search space is reduced. Notice also that 
the unifier is now responsible for some 
inference beyond that of simple pattern 
matching. From a search strategic point of 
view there are sound reasons for encouraging 
this transfer of logical power from the 
rules of inference to the unifier. Thus, 
the unifier should also be responsible for 
dealing generally with transitive and 
reflexive relations by appealing to 
computations on appropriate data structures 
which represent these relations. The 
general point of view here is that as much 
of the inferencing as possible should be 
effected computationally rather than 
logically, leaving the logic to deal with 
"difficult" problems. Given this view, a 
semantic net is just one of a whole class of 
possible data structures which facilitate 
computation as a substitute for certain 
kinds of deduction. Assuming that it is 
possible to isolate "what nets do best" the 
designer of a net is free to tune its 
representation and procedures with respect 
to a few well defined tasks without concern 
for its general inferencing abilities (or 
lack thereof). 

Finally, it must be admitted that there 
are a host of problems deriving from 
linguistic considerations which have not 
even been considered by researchers in 
formal inference. Many of these problems, 
in particular most of the "fuzzy" kinds of 
reasoning described in [2], probably cannot 
be nicely incorporated in any paradigm for 
formal inference. Nevertheless, there 
remain many interesting questions worth 

178 

exploring within a logical framework. 

(i) Other quantifiers. Logic has been 
content to deal with just two quantifiers - 
"there exists" and "for all". Natural 
language invokes a whole spectrum of 
quantifiers - "most of", "many of", "seven 
of", "a few of", etc. There is no 
difficulty in augmenting the syntax of a 
logical formalism with new quantifiers 
corresponding to these. The difficulty is 
in defining their semantics, and in 
specifying appropriate new rules of 
inference. It is possible, for example, to 
define "most-of" in some set theoretic 
formalism which effectively says "more than 
80%", but I find this approach unsatisfying. 
A differenct approach, borrowing on the 
successful treatment of "there exists" in 
logic, might define "most-of" as a Skolem 
function with certain properties peculiar to 
our understanding of the meaning of "most 
of". Thus, one property of the "Skolem 
function" most-of is that it unifies with 
any term of the same type as the argument to 
most-of; the unifier returns the atom 
"probably". Thus, "Most dogs bark" becomes 
something like BARK(most-of(x{DOG})), and 
"Does Fido bark?" translates to 
BARK(fido{DOG}). Unification succeeds and 
we conclude something like 
PROBABLY(BARK(fido{DOG})). Clearly there 
are plenty of problems here not least what 
we mean by "probably", but the example gives 
the flavour of a possible logical approach, 
as well as an indication how certain kinds 
of "fuzzy" reasoning might be modeled in an 
extended logic. 

(ii) Different levels of memory - contexts 
for wanting, needing etc. Consider 
representing "x wants P" in some logical 
formalism, where P is an arbitrary 
proposition. In specifying the properties 
of "WANT" we shall need (among other things) 
some kind of schema of the form 

WANTS(x,P) A Q 
WANTS(x, anything derivable from P and 

Q) (7) 
where Q is an arbitrary proposition. This 
is unlike anything that researchers in 
formal inference have had to deal with. One 
possible approach, deriving from the context 
mechanism in natural deduction systems, is 
to maintain a variety of contexts, one 
containing formulae assumed universally true 
(the knowledge base), and for each 
individual x who wants something a context 
of all the formulae representing what x 
wants. Notice that within a want-context 
there is no commitment to the truth value of 
a formula - x may want a unicorn. The role 
of the schema (7) is assumed by the logic 
which knows which intercontextual inferences 
are legal. 

(iii) Computation vs. deduction. This is a 
general problem involving the trade-off 
between the generality of deduction with its 
attendant inefficiency, and the use of 
highly tuned procedural specialists. My 
particular bias is that one cannot entirely 
do away with deduction, but that the logic 
saould recognize if and when a deduction is 
best done procedurally, call the right 
specialist, and know what to do with the 
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results returned. This point of view is 
reflected in my earlier suggestion that one 
possible role for a semantic net is as a 
specialist for checking compatibility of 
types. Similarly, work in procedural 
semantics (e.g.[17]) can be viewed as 
complementary to deduction, not as an 
antithetical paradigm. 

Ideally, what we want is "search-free" 
inference i.e. an appropriate collection of 
procedural specialists together with some 
supervisory system which knows which 
specialist to call, and when. If the 
specialists are "factored out" there is no 
logic left. The possibility of realizing 
this ideal seems to me remote, if only 
because mathematics is a human activity 
which does require formal inference and 
hence search. Consequently, it is important 
to better understand this trade-off between 
computation and deduction (or the particular 
and the general) and we can hope that in the 
future researchers in formal reasoning will 
clarify some of the issues. In this 
connection it is worth remarking that the 
distinction between computation and 
deduction is by no means clear [4]. 
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