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Abstract

We present several techniques to tackle the
mismatch in class distributions between train-
ing and test data in the Contextual Emotion
Detection task of SemEval 2019, by extending
the existing methods for class imbalance prob-
lem. Reducing the distance between the dis-
tribution of prediction and ground truth, they
consistently show positive effects on the per-
formance. Also we propose a novel neural
architecture which utilizes representation of
overall context as well as of each utterance.
The combination of the methods and the mod-
els achieved micro F1 score of about 0.766 on
the final evaluation.

1 Introduction

A new task whose goal is to predict the emo-
tion of the last speaker given a sequence of text
messages has been designed, and coined Contex-
tual Emotion Detection (EmoContext; Chatterjee
et al., 2019).

Though predicting the emotion of a single utter-
ance or sentence, i.e. emotion detection, is a well-
discussed subject in natural language understand-
ing literature, EmoContext has several novel chal-
lenges. Firstly, the class distribution of training
data is significantly different from that of the test
data. Consequently, a model trained on the train-
ing data might not perform well on the test data.
There have been efforts made to address the prob-
lem of learning from training data sets that have
imbalanced class distribution, i.e. the class imbal-
ance problem (Chawla et al., 2004; Buda et al.,
2018). However, they are not applicable to our
case, since the imbalance appears only in the test
data while the training data can be viewed to be
balanced.

We extend the existing methods of addressing
the class imbalance problem to be applicable for
more general cases where the distributions of the

collected training data differ from those of the real
population or the data at test time, under the as-
sumption that the validation set is organized care-
fully to reflect the practical distribution. From ex-
periments and analyses, we show that the proposed
methods reduce the difference between two distri-
butions and as a result improve the performance of
the model.

The additional challenge we have to consider
arises from the fact that utterances having identical
surface form may have different meanings due to
sarcasm, irony, or etc.. Thus a model should track
the emotional transitions within a dialogue. To
grasp the context of utterances, we propose a semi-
hierarchical encoder structure. Lastly, the texts
contain lots of non-standard words, e.g. emoticons
and emojis. This makes it difficult to exploit typ-
ical pre-trained embeddings such as GloVe (Pen-
nington et al., 2014). Therefore, we adopt pre-
trained embeddings which are specialized for han-
dling non-standard words. We show that the pro-
posed model largely outperforms the baseline of
task organizers by experiments.

2 Related Work

2.1 Contextual Emotion Detection

EmoContext is a emotion classification data set
composed of 3-turn textual conversations. The
goal of the data set is to classify the emotion in
the last utterance of each example given the con-
text. The label set consists of 4 classes: ‘happy’,
‘sad’, ‘angry’ and ‘others’. In the training data set,
there are about 50% of ‘others’ class examples and
50% of emotional (happy, sad, angry) examples,
which can be viewed as well-balanced. On the
other hand, only 15% of examples in the test and
the validation data set are labeled as emotional, re-
flecting the real-life frequency. For more details,
refer to Chatterjee et al. (2019).
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2.2 Class Imbalance Problem
When some classes have the significantly higher
number of examples than other classes in a train-
ing set, the data is said to have an imbalanced
class distribution (Buda et al., 2018). This makes
it difficult to learn from the data set using ma-
chine learning approaches (Batista et al., 2004;
Mazurowski et al., 2008), since the learned mod-
els can be biased to majority classes easily, which
results in poor performance (Wang et al., 2016).
We give a brief explanation of methods to solve
this problem.
Sampling: This type of methods deals with the
problem by manipulating the data itself to make
the resulting data distribution balanced. The sim-
plest versions are random oversampling and ran-
dom undersampling. The former randomly dupli-
cates examples from the minority classes and the
latter randomly removes instances from the major-
ity classes (Mollineda et al., 2007).
Thresholding: This method moves the decision
threshold after training phase, changing the out-
put class probabilities. Typically, this can be done
by simply dividing the output probability for each
class by its estimated prior probability (Richard
and Lippmann, 1991; Buda et al., 2018).
Cost-Sensitive Learning: This assigns different
misclassification cost for each class and applies
the cost in various ways, e.g. output of the net-
work, learning rate or loss function. For multi-
class classification tasks, the simplest form of
the cost-sensitive learning is to introduce weights
to the cross entropy loss (Han, 2017; Lin et al.,
2018):

L = − 1

N

N∑
i=1

K∑
c=1

wcyci ln p(c|xi), (1)

where N and K denote the total number of exam-
ples and classes respectively, p(c|xi) the predicted
probability of i-th example xi belonging to class
c, yci the ground truth label which is 0 or 1, and wc

a class dependent weighting factor. Recent work
suggests to use the inverse ratio of each class, i.e.
wc = N

Nc
, where Nc is the number of examples be-

longing to class c (Wu et al., 2018; Aurelio et al.,
2019).
Ensemble: The term ensemble usually refers to
a collection of classifiers that are minor variants
of the same classifier to boost the performance.
This is also successfully applied to the class im-
balance problem (Sun et al., 2007; Seiffert et al.,

2010), by replacing the resampling procedure in
the bagging algorithm with oversampling or un-
dersampling (Galar et al., 2012).

3 Methods for Mismatch Problem

3.1 Sampling

In our case, it is not possible to make the distinc-
tion between majority and minority classes; even
if the ‘others’ class is the most prevalent in the
training data, the ratio is less than that of the test
data. To address this issue, the random minority
oversampling technique should be modified, since
it assumes that the class imbalance appears only
in the training data set. Accordingly, we apply
random oversampling or random undersampling
to make the distribution of the training data sim-
ilar to that of the validation data.

3.2 Thresholding

The basic thresholding method mentioned in §2.2
is not sufficient for our case, since we should ad-
ditionally bias the model output distribution to
match the test time distribution, not only correct-
ing the imbalance in the training data. When pr is
a probability of training time and ps is that of vali-
dation time, we multiply the predicted probability
by the estimated class ratio from validation set as
below:

yc(x) = p(c|x) ≈ ps(c)

pr(c)
· pr(c|x)

=
ps(c)

pr(c)
· pr(c) · pr(x|c)

pr(x)

=
ps(c) · pr(x|c)

pr(x)
,

(2)

where p(c) = Nc
N .

3.3 Cost-Sensitive Learning

The weighted cross entropy loss, described in Eq.
(1), can be used for our case, as long as the weights
are carefully chosen. Although the reciprocal of
class ratio is helpful for learning balanced predic-
tion (Wu et al., 2018), the target distribution be-
tween classes is not uniform for our task. Also,
the misclassification cost of ‘others’ class should
be larger than those of emotional classes, because
the model tends to predict it less than the actual.
Therefore, it is reasonable to modify wc by mul-
tiplying the estimated ratio of each class for test
time, i.e. wc = Nr

Nr
c
· N

s
c

Ns , where N r and N s denote



314

Figure 1: Overall Architecture

the number of instances in training and validation
data set respectively. This corresponds to the term
introduced in Eq. (2), as Nr

Nr
c
· N

s
c

Ns = ps(c)
pr(c)

. The dif-
ference between them is that thresholding utilizes
the term in inference phase after training is fin-
ished, while weighted cross entropy loss includes
it from the training time.

3.4 Ensemble
We combined bagging-based ensemble with sam-
pling techniques represented in §3.1. In addition,
we compared ensembles of randomly initialized
classifiers using other methods (i.e. thresholding
and cost-sensitive learning).

4 Model and Training Details1

4.1 Overall Architecture
We propose a semi-hierarchical structure to cap-
ture the context as well as the meaning of each
single utterance. Fig. 1 depicts the overall archi-
tecture. Each single utterance representation um
is encoded by Utterance Encoder described in Fig.
2. In addition, we introduce another bi-directional
LSTM (BiLSTM) encoder for higher level repre-
sentation which receives the outputs of utterance
encoder as its inputs. The representation of all
context is generated by the concatenation of u1,
u2, u3, u1 − u2 + u3 and the output of this en-
coder. Then it is fed to the two 300-dimensional
(300D) hidden layers with ReLU activation with
shortcut connections and a softmax output layer.

4.2 Utterance Encoder
The proposed utterance encoder has two types
of shortcut-stacked bi-directional long short-term

1The implementation of our model is available at https:
//github.com/baaesh/semeval19 task3

Figure 2: Utterance Encoder

memory (BiLSTM) encoder (Nie and Bansal,
2017) to fully exploit four types of lexicon level
representations. The first encoder utilizes pre-
trained word2vec (Mikolov et al., 2013) em-
beddings concatenated with trainable embeddings
from a character level convolutional neural net-
work (CNN). We also added emoji2vec (Eisner
et al., 2016) embeddings to word2vec to map
emoji symbols to the same space. The other
encoder receives concatenated representations of
pre-trained datastories (Baziotis et al., 2017) em-
beddings and contextualized represenations from
ELMo (Peters et al., 2018).

The results from the two stacked BiLSTM
encoder are concatenated. We use the multi-
dimensional source2token self-attention of Shen
et al. (2018) and max pooling to integrate con-
textualized word level representations to a single
utterance representation, as in Im and Cho (2017).

4.3 Training Details

We use 300D Google News word2vec2 embed-
dings and 300D pre-trained emoji2vec.3 Datasto-
ries vectors4 which were pre-trained on a big col-
lection of Twitter messages using GloVe are also
300D. The dimension of character embeddings is
fixed to 15, and it is fed to a CNN where the filter
sizes are 1, 3, and 5 and the number of feature map
for each is 100, thus a 300D vector is generated
for each word as a result. To guarantee the same
size for ELMo embeddings, a 300D position-wise
feed-forward network is applied above them. The
hidden states of all the BiLSTMs for each direc-

2https://code.google.com/archive/p/word2vec/
3https://github.com/uclmr/emoji2vec
4https://github.com/cbaziotis/

datastories-semeval2017-task4

https://github.com/baaesh/semeval19_task3
https://github.com/baaesh/semeval19_task3
https://code.google.com/archive/p/word2vec/
https://github.com/uclmr/emoji2vec
https://github.com/cbaziotis/datastories-semeval2017-task4
https://github.com/cbaziotis/datastories-semeval2017-task4
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Figure 3: Class distributions on test data. Actual is
from the ground truth labels and the others are from the
predicted labels by each model. These are the averages
of 10 results with random initialization.

tion are 150D and the number of layers is 2.
Our model is trained using the Adam optimizer

(Kingma and Ba, 2014) with a learning rate of
0.001 and a batch size 64. We clip the norm of gra-
dients to make it smaller than 3. Dropout (Srivas-
tava et al., 2014) technique is applied to word em-
beddings with p = 0.1. We chose the best model
based on a micro F1 score on the validation set.

5 Experiments

5.1 Effects of mismatch in class distributions

Fig. 3 shows that the class distribution of predic-
tions from the baseline model without any meth-
ods applied is substantially different from that of
the actual test data. On the other hand, when the
proposed methods are applied, the gap becomes
much smaller. From this result, we conjecture that
the difference in output distributions could be a
reason for poor performance of the baseline com-
pared to the proposed methods, as presented in Ta-
ble 1.

5.2 Single model methods

Table 1 shows the accuracy and micro F1 scores of
variants of our methods and baselines on the test
set. We report the mean and standard deviation of
10 experimental runs (with the same hyperparam-
eters) for each methods. And all the models were
chosen based on their performance on the valida-
tion set.

The reported results show that proposed meth-
ods except undersampling are effective for en-
hancing both accuracy and F1 score. This means
that alleviating the difference of class distribution
is the key factor for the higher performance. In
the case of undersampling, since the total size of

Approach Acc (±) F1 (±)

Baseline (organizers) - - .587 -
Baseline (ours) .914 .005 .726 .008
Oversampling .922 .004 .733 .012
Undersampling .919 .006 .719 .013
Thresholding .924 .002 .738 .010
Cost-Sensitive .924 .004 .739 .010

Table 1: Comparison of single model approaches on
the test set.

Approach Acc F1
Baseline (ours) .921 .743
Oversampling .930 .758
Undersampling .930 .753
Thresholding .930 .752
Cost-Sensitive .931 .757
Mixed (submitted) .933 .766

Table 2: Comparison of ensemble approaches on the
test set. 10 models were used for each ensemble result.

training data decreases, the model seems to fail to
capture the general semantics. The result is con-
sistent with Buda et al. (2018), where the under-
sampling solely does not bring a performance gain
for deep learning models. On the other hand, in
our experiments, thresholding and cost-sensitive
learning were the most effective approaches when
a single model is used.

5.3 Ensemble methods

Table 2 reports the comparison of ensemble mod-
els. The results show that our methods consis-
tently outperform the baseline. We can see that en-
semble with bagging has a great effect on refining
class distribution, and in this time, undersampling
also showed a good performance. Overall, for en-
semble methods, oversampling and cost-sensitive
learning performed best. The version we submit-
ted to the leaderboard was the ensemble of differ-
ent methods selected by their performance on vali-
dation set, and achieved the official result of 0.766.

6 Conclusion

In this paper, we proposed several methods for
alleviating the problems caused by difference in
class distributions between training data and test
data. We demonstrated that these methods have
positive effects on the result performance. We also
presented a novel semi-hierarchical neural archi-
tecture that effectively exploits the context and the
utterance representation. For future work, we plan
to conduct more systematic experiments on other
data sets to generalize our results.
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