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Abstract

This paper describes the CLaC Lab system at
SemEval 2019, Task 3 (EmoContext), which
focused on the contextual detection of emo-
tions in a dataset of 3-round dialogues. For our
final system, we used a neural network with
pretrained ELMo word embeddings and POS
tags as input, GRUs as hidden units, an atten-
tion mechanism to capture representations of
the dialogues, and an SVM classifier which
used the learned network representations to
perform the task of multi-class classification.
This system yielded a micro-averaged F1 score
of 0.7072 for the three emotion classes, im-
proving the baseline by approximately 12%.

1 Introduction

Automatic emotion detection has been the focus
of much research in a variety of fields, includ-
ing emotion detection based on images (Rao et al.,
2019), speech signals (Davletcharova et al., 2015),
electroencephalography (EEG) signals (Acker-
mann et al., 2016), and texts (Tafreshi and Diab,
2018).

With the advent of social media, emotion de-
tection from text has been used to track bloggers’
mental health and has been explored using differ-
ent techniques, such as lexicon-based approaches
and machine learning (Canales and Martı́nez-
Barco, 2014). Lexicon-based approaches include
keyword-based and ontological approaches. In a
keyword-based approach (e.g. Ma et al., 2005),
a specific set of opinion terms and their Word-
Net synonyms and antonyms are used to determine
the emotion class of the text. On the other hand,
ontology-based approaches (e.g. Sykora et al.,
2013) try to detect emotions by taking into ac-
count the knowledge of concepts, the intercon-
nection between them, and their final emotional
impact. To achieve better generalization, the re-
sources used in lexicon-based approaches can be

employed as input features to supervised or unsu-
pervised machine learning models.

The drawback with supervised machine learn-
ing approaches lies in the need for a large corpus
of labelled data. Abdul-Mageed and Ungar (2017)
collected a labelled twitter dataset of 1/4 billion
tweets, spanning over 8 primary emotions, using
distant supervision, i.e. collecting tweets with
emotion hashtags that can be used as labels. Then
using a gated recurrent neural network for classi-
fication, they achieved an accuracy of 95.68%, su-
perior to the best previously published results by
Volkova and Bachrach (2016).

Although much research has focused on the de-
tection of emotions in tweets and blog posts (e.g.
Mohammad, 2012; Desmet and Hoste, 2013; Liew
and Turtle, 2016), emotion detection in dialogues,
as well as in single utterances has received very
little attention. This topic can have significant im-
pact for the development of social chatbots, with
the aim of creating an emotional connection be-
tween a user and a chatbot (Banchs, 2017). Task
3 of SemEval 2019 (EmoContext) has focussed
on contextual emotion detection over 4 classes:
happy, sad, angry, and others (Chatterjee et al.,
2019b). We participated in this shared task un-
der the name CLaC Lab and used a combination
of artificial neural networks (with recurrent units
and attention mechanism) and Support Vector Ma-
chines (SVM) to address this multi-class classifi-
cation task.

The rest of the paper is organized as follows:
Section 2 describes the overall methodology. Sec-
tion 3 presents a detailed explanation of the differ-
ent components of the system. Section 4 presents
the results of the system. Section 5 discusses some
interesting findings from our participation to this
task. Finally, Section 6 is dedicated to the conclu-
sion of this work.
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2 Methodology

This section presents the overall methodology
used to perform the task of contextual emotion de-
tection. An overview of the system architecture is
presented; while more detailed explanation can be
found in Section 3.

2.1 Neural Architecture

The core of our system is a neural network that is
trained to learn the feature representations neces-
sary to train our final classifier. Figure 1 shows the
overall architecture of the neural network that we
used.

The Input As shown in Figure 1, each input
sample consists of three consecutive utterances of
a dialogue between two interlocutors. We consider
each utterance as a sequence of tokens (words). As
a result, each utterance is represented as a vector,
such as [xi,1, xi,2, . . . , xi,t, . . . , xi,n], where xi,t is
the vector representation of the t-th word in the
i-th utterance, and n is the length of the i-th utter-
nace.

The Recurrent Component The input layer is
followed by a bidirectional hidden recurrent com-
ponent. Each utterance is fed to a separate hidden
component, who is responsible to process that spe-
cific utterance in a forward and backward pass.

For the forward pass, the content value of the
hidden component at a specific time-step, ht, re-
lies on both the value of the current input, xt, and
the content value of the hidden component itself
at the previous time-step, ht−1 (Equation 1). The
content value produced at this stage is then passed
through another mapping function, fy, which gen-
erates the output value of the hidden component at
the current time-step, yt (Equation 2).

ht = fh(xt, ht−1) (1)

yt = fy(ht) (2)

The backward pass differs from the forward
pass, in that in Equation 1, ht−1 is replaced by
ht+1, meaning that the content value of the hid-
den component relies on the content value at its
next time-step instead of the previous one. The
output calculation is identical to the forward pass
(see Equation 2).

Attention Mechanism Vaswani et al. (2017)
describes an attention mechanism as the weighted
sum of several values (i.e. vectors), where the
weight assigned to each value can be computed
using a compatibility function. Using this descrip-
tion, the overall function of the attention mecha-
nism for our task can be defined using Equation 3,
where ω(yt′) refers to the weight assigned to the
output of the hidden layer at time-step t′, and N
is the number of time-steps (i.e. the length of the
utterance).

attn =
N∑

t′=1

yt′ω(yt′) (3)

Although originally developed for the task of
machine translation (Bahdanau et al., 2014), atten-
tion mechanisms have been shown to significantly
improve text classification tasks (e.g. Yang et al.,
2016; Zhou et al., 2016; Wang et al., 2016; Cian-
flone et al., 2018). Following these works, we used
attention in our system (see Figure 1).

Classification Once the neural network has cre-
ated a representation of the input, a final feed-
forward classification network, which takes as in-
put the concatenated vectors from the attention
units of the three utterances, performs the classi-
fication task.

2.2 Support Vector Classifier

The neural network was not used to do the final
classification, but was used only as a feature ex-
tractor. This is illustrated in Figure 1 by the dot-
ted connections between the attention units and the
classifier. The extracted features were fed to an
SVM (Cortes and Vapnik, 1995), which acted as
the classifier.

Our main drive for using an SVM was due
to explicit handling of margin size versus mis-
classification rate (i.e. variance versus bias). This,
alongside the deterministic nature of an SVM and
its faster training process (in comparison to a neu-
ral network), enabled us to play with its several
configurations in order to find the optimal one for
our task.

3 System Overview

In this section, we provide detailed information on
the final system’s architecture.
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Figure 1: The overall framework of the neural network model.

3.1 The Neural Network

We developed the neural network using PyTorch
(Paszke et al., 2017). Detailed explanations of the
neural network’s architecture are provided below.

Input Features Each word in each utterance is
sent to the neural network by using their word em-
beddings, concatenated to their one-hot part-of-
speech (POS) tag.

For word embeddings, we used a pretrained
ELMo word embedder (Peters et al., 2018), which
extracts the embeddings of each token in a textual
context from their constituent characters. The suit-
ability of ELMo for the current task lies in its abil-
ity to take into consideration the context of the to-
kens when generating the word embeddings, and
also the handling of out-of-vocabulary words. We
used pretrained ELMo embeddings of size 1024.

We followed the Penn Treebank tagset standard
(Marcus et al., 1993) for assigning POS tags to
each token. For this, we used spaCy1 for tokeniza-
tion and POS tagging of the data.

Recurrent Unit The system uses the bidirec-
tional Gated Recurrent Unit (GRU) architecture,
proposed by Cho et al. (2014), and stacks two
layers of 25 bidirectional GRUs for the recurrent
component of each utterance.

Attention Layer Equations 4, 5 and 6 show the
mechanisms used in the attention layer. Using
Equation 4, the weight matrix w is applied to the
output of the GRU component at each time-step,
yt, which maps each output vector of the recurrent
unit (with the size of 2 × 25 in our case) to a sin-
gle value, νt. Then, using Equation 5, the weights,
ω, are calculated. These will be used to calculate
the output of the attention layer in Equation 6 (N

1https://spacy.io/

represents the number of time-steps for each utter-
ance, i.e. the length of the utterance).

νt = yt × w (4)

ω = Softmax([ν1, ν2, ν3, . . . , νN ]) (5)

attn =
N∑

t′=1

ωt′yt′ (6)

The Classifier The outputs of the attention lay-
ers from the three utterances are concatenated, and
fed to a fully-connected feed-forward layer, which
uses a softmax activation function at the end. The
output of the classifier includes a vector of 4 reals,
which represent the estimated probability for each
of the 4 classes (happy, sad, angry, and others).

Optimization Technique Cross-entropy is used
as the loss function and weights are applied to
each class proportional to the inverse of number
of their samples, in order to handle the unbalanced
distribution of the four different classes over the
data. The Adam optimizer (Kingma and Ba, 2014)
was used and the learning rate was set to 10−4.
For computational reasons, minibatches of size 32
were used for training the neural network model,
and different sequence sizes was handled by zero-
padding.

Experiments showed that, when trained on the
training dataset only, the neural network reaches
its maximum performance on the development
dataset (in our case, the micro-averaged F1 score
for the three emotion classes) in approximately 7
epochs.

https://spacy.io/
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3.2 The SVM
The scikit-learn library (Pedregosa et al., 2011)
was used for the SVM, which utilized a polyno-
mial kernel with degree of 4. The γ parameter was
set to the inverse of the number of features, which
was 1/150 in our case (since the model uses 50
features from each utterance’s attention layer, and
there were 3 utterances for each sample), and set
the penalty parameter C equal to 2.5. To train the
SVM, we used the samples from both the training
and the development datasets.

4 Results

We tested the system using two different config-
urations: 1) Using the neural network for feature
extraction and classification (NN); and 2) Using
the neural network for feature extraction and the
SVM for classification (NN+SVM). We compared
the two systems with the baseline system provided
by the EmoContext organizers (Chatterjee et al.,
2019a), which uses a neural network with LSTM
units (Hochreiter and Schmidhuber, 1997) in the
hidden layer and GloVe embeddings (Pennington
et al., 2014). Table 1 shows the results from our
two models in comparison to the baseline config-
uration.

System angry happy sad Micro
NN+SVM 0.7130 0.6667 0.7443 0.7072
NN 0.6206 0.6374 0.6800 0.6430
Baseline N/A N/A N/A 0.5868

Table 1: F1 scores on the shared task test dataset for
each emotion class and the micro-average. The final
system (NN+SVM) is highlighted in bold.

The results in Table 1 show that, both our
system configurations outperformed the baseline
system, while the NN+SVM is significantly bet-
ter than the others. We hypothesize that, given
the same set of features, an SVM constitutes
a stronger classifier due to its deterministic and
more robust nature, and also due to its explicit de-
sign to optimize the margin size between different
classes.

5 Discussion

Several interesting findings are worthy of discus-
sion:

• The use of LSTMs in the neural network de-
sign instead of GRU yielded lower results

with the development dataset. We believe
that this is because the LSTM model was
more prone to overfitting due to a higher
number of parameters. Also, since most of
the utterances were quite short (5.19 tokens
on average), a GRU was enough to capture
the necessary information.

• The use of POS tags alongside word embed-
dings did not help in improving the system
performance, but it was helpful in stabiliz-
ing the output of the system (i.e. less per-
formance fluctuations during training).

• For the SVM, an increase in the parameter
C from its default value of 1 to 2.5 achieved
slightly better results. We believe that this is
due to the neural based features being quite
representative of the final classes, and as a
result, more penalty had to be assigned to er-
rors during training as opposed to trying to
achieve larger decision margins.

6 Conclusion

This paper presented the system that we devel-
oped for our participation to SemEval 2019, Task 3
(EmoContext). The task focused on detecting four
classes of emotions, happy, sad, angry, and others
in a dataset consisting of small dialogues between
two people.

For this task, we developed a system that
used pretrained ELMo word embeddings along-
side POS tags as input features to a bidirectional
GRU, followed by an attention layer and out-
putting a representation of a sample dialogue. This
representation was, in turn, used as input to a fi-
nal SVM classifier. Using this method, we could
significantly outperform the baseline system, and
achieved a micro-averaged F1 of 0.7072 for the
three emotion classes on the test dataset.
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