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Abstract
Noise is inherent in real world datasets and
modeling noise is critical during training as
it is effective in regularization. Recently,
novel semi-supervised deep learning tech-
niques have demonstrated tremendous poten-
tial when learning with very limited labeled
training data in image processing tasks. A
critical aspect of these semi-supervised learn-
ing techniques is augmenting the input or the
network with noise to be able to learn ro-
bust models. While modeling noise is rela-
tively straightforward in continuous domains
such as image classification, it is not immedi-
ately apparent how noise can be modeled in
discrete domains such as language. Our work
aims to address this gap by exploring different
noise strategies for the semi-supervised named
entity classification task, including statistical
methods such as adding Gaussian noise to
input embeddings, and linguistically-inspired
ones such as dropping words and replacing
words with their synonyms. We compare
their performance on two benchmark datasets
(OntoNotes and CoNLL) for named entity
classification. Our results indicate that noise
strategies that are linguistically informed per-
form at least as well as statistical approaches,
while being simpler and requiring minimal
tuning.

1 Introduction

Modeling noise is a fundamental aspect of ma-
chine learning systems. The real world where
these systems are deployed are certainly exposed
to noisy data. Furthermore, noise is used as an
effective regularizer during the training of neural
networks (e.g., dropout (Srivastava et al., 2014)).
Correct prediction in the presence of noisy in-
put demonstrates robustness of learning systems.
A simple analogy to illustrate this is, during im-
age classification, the addition of limited random
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Gaussian noise to an image can be barely per-
ceived by our visual system and does not dras-
tically change the label a human assigns to an
image (Raj, 2018). With the emphasis on com-
pliance and recent advances in adversarial tech-
niques, modeling noise has assumed renewed im-
portance (Goodfellow et al., 2014).

Noise is an important factor in recent state-of-
the-art semi-supervised learning systems for im-
age classification (Tarvainen and Valpola, 2017;
Rasmus et al., 2015; Miyato et al., 2018). In
image processing modeling random noise is rel-
atively straightforward as it is a continuous do-
main. For instance, adding a small amount ran-
dom Gaussian jitter can be considered as noisy in-
put. So are other image transformations such as
translation, rotation, removing color and so on.
However, a discrete domain such as language is
not easily amenable to noise augmentation. While
one can certainly add random Gaussian noise to
embeddings of words (continuous vector represen-
tation such as word2vec rather than one-hot en-
coding), the intuition behind such perturbation is
not apparent. Algorithms which require explicit
modeling of noise require careful thinking in the
language domain and is challenging (Clark et al.,
2018; Nagesh and Surdeanu, 2018a).

To the best of our knowledge, previous work in
the area of modeling noise in natural language pro-
cessing (NLP) applications has been limited. Clark
et al. (2018) acknowledge the difficulty of model-
ing noise for language and incorporate a simple
word dropout in their experiments. So does the
work by Nagesh and Surdeanu (2018a). Nagesh
and Surdeanu (2018b) add a standard Gaussian
perturbation with a fixed variance to the pre-
trained word vectors to simulate noise. Belinkov
and Bisk (2017) is perhaps one of the most com-
prehensive works that explore various noise strate-
gies with a different end goal in mind. Their work
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Figure 1: Mean Teacher framework for the named entity classification task (left). Ewi are words in the entity
mention, Wi are words in the context with entity mention replaced by <E> token. cost = (classification cost)
+ λ(consistency cost). Unlabeled examples have only consistency cost. Backprop only through student model,
teacher model parameters are averaged. The architecture of the student or teacher model (right). Noise can be
added to parts in boldface. predictions = softmax(output layer)

explores the degree of robustness of various neural
network approaches to different types of noise on
a machine translation task.

In this paper, we discuss several noise strategies
for the semi-supervised named entity classification
task. Some of these, such as word-dropout and
synonym-replace, are linguistic and are discrete in
nature while others such as Gaussian perturbation
to word embeddings are statistical. We show that
linguistic noise, while being simple, perform as
well as statistical noise. A combination of linguis-
tic and network dropout provides the best perfor-
mance.

2 Semi-supervised Deep Learning

Semi-supervised learning (SSL) is one of the cor-
nerstones in machine learning (ML) (Zhu, 2005).
This is especially true in the case of natural
language processing (NLP), as obtaining labeled
training data is a costly and tedious process for
most of the data-hungry deep learning models.

There has been a flurry of recent work in SSL in
the image processing community (Tarvainen and
Valpola, 2017; Rasmus et al., 2015). Some of
these recent works have achieved impressive per-
formance on hard perceptive tasks. However, re-
purposing these works to NLP is not a straight
forward exercise. As stated earlier, many of
these approaches require noise (along with an op-
tional input augmentation step such as rotation) to
change the percept slightly, to achieve robust per-
formance. However, augmenting data with noise
for NLP tasks is not very clear, as the input domain

consists of discrete tokens rather than continuous
inputs such as images.

In our previous work (Nagesh and Sur-
deanu, 2018a), we evaluated three different
semi-supervised learning paradigms, namely,
bootstrapping-based approaches (Gupta and Man-
ning, 2015), ladder networks (Rasmus et al., 2015)
and mean-teacher (Tarvainen and Valpola, 2017)
for the semi-supervised named entity classification
(NEC) task. The mean-teacher (MT) approach
produced the best performance. However, our
exploration of noise was limited in the previous
study and hence is the focus of the current paper.

The MT framework belongs to the general class
of teacher-student networks that learns in the
semi-supervised setting i.e., limited supervision
and a large amount of unlabeled data and is il-
lustrated in the left part of Figure 1. It consists
of two models, termed student and teacher which
are structurally identical but differ in the way their
parameters are updated. While the student is up-
dated using regular back-propagation, the param-
eters of the teacher are a weighted average of the
student parameters across different epochs. Fur-
ther, the cost function is a linear combination of
supervision cost (from the limited number amount
of supervision) and consistency cost (agreement
between the representation from the teacher and
student models measured as the L2 norm differ-
ence between them). The motivation of using con-
sistency in the cost function and averaging the
parameters in the teacher is to reduce confirma-
tion bias in the teacher when its own predictions
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are used as pseudo-labels during the training pro-
cess (akin to averaged perceptron). This provides
a strong proxy for the student to rely on in the
absence of labeled training data (Tarvainen and
Valpola, 2017).

The specific model we employ for semi-
supervised named entity classification (NEC) task
along with a canonical input data point is depicted
in the right part of Figure 1. The input consists
of an entity mention and the sentence it appears
in, as the context. The goal is to predict the label
of the entity. In the semi-supervised setting only a
few labeled data points are provided, the rest of the
data is unlabeled. We initialize the words in the ex-
ample with pre-trained word embeddings and run
a bi-directional LSTM on both the entity mention
and its context. We concatenate the final LSTM
state of both the mention and the context represen-
tations and run a multi-layer perceptron with one
hidden layer to produce the output layer.

A key aspect of the MT framework is the aug-
mentation of the input and/or the network with
noise as shown in the right part of Figure 1. We
explain this in detail in the next section.

3 Exploration of Noise Strategies

A critical component in the algorithm is the addi-
tion of noise to the models. Noise can be added
mainly in three key places to the model presented
in the previous section as depicted in Figure 1
(parts in boldface). We add a similar but distinct
noise to both the teacher and the student mod-
els. 1 Input noise – In the form of linguistically
motivated noise such as word dropout, or replac-
ing words with their synonyms (more details be-
low). 2 Statistical noise – In the form of stan-
dard Gaussian perturbations to pre-trained word
embeddings. 3 Network noise – Dropout in the
intermediate layers of the student and teacher net-
works.

The idea of adding noise is to regularize the
model parameters and help learn robust models in
the scenario of very limited labeled training data
using the teacher and student models via the con-
sistency cost. Consequently, the MT framework
can also be perceived as a consistency regulariza-
tion technique.

The input noise is applied to the context of
an entity mention. The noise was added to a
fixed number of words in a context. We explored
different types of input noise: (1) Word-dropout

- dropping words randomly in the input context
(2) Synonym-replace - replace a randomly chosen
word in the context by its synonym from WordNet
(3) Word-dropout-idf - drop the most informative
word in the context, as determined by the inverse
document frequency (IDF) of context words com-
puted offline. (4) Synonym-replace-idf - replace
the words in the context according to their IDF (as
described above).

For the statistical noise, we perturbed the pre-
trained word embeddings with standard Gaussian
noise with a fixed standard deviation. We varied
the amount of standard deviation and the number
of words to which this type of noise is added. As
we demonstrate in the experiments, this requires
careful tuning. Further, adding Gaussian noise is
a computationally intensive process as we need to
perform this operation in every minibatch during
the training process.

We implemented network noise with dropout
with fixed probability in both the context repre-
sentation and the hidden layer in the multi-layer
perceptron.

Finally, we combined network noise with input
noise. Empirically, we show that this combination
yields the best possible performance for the task
addressed.

4 Experiments

Task and datasets: The task investigated in
this work is named entity classification (NEC),
defined as identifying the correct type of an en-
tity mention in a given context, e.g., classifying
“Bill Clinton” in the sentence “Former President
Bill Clinton expects to attend the inauguration to-
morrow.” as a person name. We define the context
as the complete sentence in which the entity men-
tion appears. We use standard benchmark datasets,
namely, CoNLL-2003 shared task dataset (Tjong
Kim Sang and De Meulder, 2003) and Ontonotes-
2013 (Pradhan et al., 2013). Our setting is semi-
supervised NEC, so we randomly select a very
small percentage of the training dataset (40 dat-
apoints i.e. 0.18% of CoNLL and 440 datapoints
i.e. 0.56% of Ontonotes as labeled data, and ar-
tificially remove the labels of the remaining dat-
apoints to simulate the semi-supervised setting.
Our task is to predict the correct labels of the un-
labeled datapoints. CoNLL had 4 label categories
while Ontonotes has 11. We measure the accuracy
as the percentage of the datapoints which have
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Figure 2: Performance upon combining noise strategies, CoNLL (left) and Ontonotes (right). Best performance:
network dropout + 5W word-dropout - 70.57% (CoNLL), network dropout + 3W synonym-replace - 72.78%
(Ontonotes)

CoNLL Ontonotes
No noise 65.76 (±2.06) 64.20 (±2.27)

Word-dropout
1 W 67.70 (±2.97) 67.46 (±3.53)
2 W 68.15 (±3.15) 68.19 (±3.35)
3 W 68.54 (±3.38) 68.42 (±3.94)

Synonym-replace
1 W 67.56 (±3.04) 67.70 (±3.20)
2 W 67.95 (±3.17) 68.40 (±3.62)
3 W 68.35 (±3.07) 68.46 (±4.06)

Word-droput-idf
1 W 67.59 (±3.03) 67.38 (±3.29)
2 W 68.11 (±3.17) 68.14 (±3.63)
3 W 68.49 (±3.27) 68.30 (±3.77)

Synonym-replace-idf
1 W 67.51 (±3.02) 67.24 (±3.55)
2 W 67.79 (±3.15) 68.23 (±3.42)
3 W 68.26 (±3.05) 67.95 (±3.96)

Gaussian (stdev=4) all W 62.98 (±2.66) 64.89 (±5.12)
Network Dropout 68.40 (±3.11) 71.77 (±2.18)

Table 1: Overall accuracies comparing all noise strate-
gies on CoNLL and Ontonotes datasets. No noise is the
baseline. X W⇒ X words perturbed by noise. Accu-
racy is % of correctly classified datapoints. (±y) ⇒
variance of 5 runs.

been predicted with the correct labels.
Experimental settings: We use the entity bound-
aries for all datapoints during training but only
use labels for a small portion of the data as in-
dicated above. We demonstrate an input to our
model in the bottom-right of Figure 1. To re-
duce computational overhead, we filtered out en-
tity mentions which were greater than length 5
from the Ontonotes dataset (4 respectively for
CoNLL), and contexts which were greater than
length 59 or smaller than length 5 (40 and 3 re-
spectively for CoNLL). Following Nagesh and
Surdeanu (2018a), we intialized the pre-trained
word-embeddings from Levy and Goldberg (2014)
(300d). We ran a 100d bi-directional LSTM on
both the entity and context representations, con-
catenated their outputs and fed them to a 300d
multi-layer perceptron with ReLU activations. For
network dropout we used p = 0.2. This is similar
to dropout regularization used in deep neural net-
works but since the dropout layer drops neurons
randomly in teacher and student, this acts as noise

CoNLL Ontonotes
1 W 69.70 (±2.93) 68.75 (±3.02)
5 W 68.48 (±2.65) 68.22 (±3.45)
10 W 66.55 (±4.20) 67.32 (±3.42)

stdev=0.05 68.51 (±3.13) 68.42 (±4.15)
stdev=1 66.94 (±2.59) 66.79 (±3.67)
stdev=2 65.43 (±2.68) 65.90 (±4.35)
stdev=4 62.98 (±2.66) 64.94 (±5.91)
stdev=8 62.49 (±2.76) 64.02 (±4.92)

stdev=16 62.87 (±3.08) 64.85 (±6.25)

Table 2: Tuning Gaussian noise - #words & stdev

in the MT framework. We tried a few variations
of this model such as augmenting the LSTM with
position embeddings, attention and replacing the
LSTM with an average model, but did not observe
a considerable improvement in performance.
Results: We present our main results in Table 1.
An important note is that the results are the accu-
racy of classification over 21,373 and 78,492 dat-
apoints in CoNLL and Ontonotes respectively, us-
ing only a tiny sliver of the labels in these datasets
as supervision. Increasing the number of labeled
examples as supervision has the expected effect of
improvement in performance. However it is of-
ten difficult to obtain sufficient number of exam-
ples in the real world. The datapoints for supervi-
sion are chosen randomly having equal represen-
tation in all classes. The analysis of amount of
supervision and its effect on accuracy is reported
in Nagesh and Surdeanu (2018a). We report the
average (along with their variance) of 5 random-
ized runs in each noise setting. Our baseline is the
no noise setting, where the input to the student and
teacher models are not augmented by noise.

From Table 1, we observe that adding noise is
necessary for good performance, as we see that the
various noise strategies consistently improve per-
formance over the baseline on both the datasets.
Network noise is a crucial factor for good per-
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formance. Input noise which are linguistically
motivated, such as word-dropout and synonym-
replace perform as well as the statistical noise.
More specifically, word-dropout of 3 words and
synonym-replace of 3 words, are the highest per-
forming non-network noise strategies on CoNLL
and Ontonotes respectively. Synonym-replace is
an interesting strategy as we believe it makes the
input more interpretable. In the sense that, the
word embedding of a synonym word is closer to
the actual word in the vector space. As opposed
to gaussian embedding noise, which is a random
delta noise added to the embedding to perturb it
and we are not sure of its orientation in the high
dimensional space. Adding Gaussian noise to all
words results in performance poorer than or close
to baseline. 1 Furthermore, Gaussian noise re-
quires fine-tuning over the value of stdev and the
number of words on which these should be applied
which makes this computationally expensive ap-
proach (Table 2). The performance on *-*-idf runs
suggest that random word selection is as good or
better. This is ideal, since it is simpler and inde-
pendent of the data distribution. Finally, network
noise in combination with linguistic input noise
provides the best possible performance, as seen in
Figure 2. One possible explanation for this could
be that ensembling two high performance systems
is akin to combining two good signals achieving
better overall results.

5 Conclusion and Future Work

The modeling of noise in discrete domains such
as language has received limited focus so far, in
the language processing community. In this work
we explore several noise strategies for the semi-
supervised named entity classification task using
the mean teacher framework, where noise aug-
mentation is a crucial factor. We show that lin-
guistic noise such as word-dropout and synonym-
replace perform as well as statistical noise, while
being simpler and easier to tune. A combination of
linguistic and network dropout provides the best
performance. As part of future work, we wish to
explore noise augmentation in other language pro-
cessing tasks such as fine-grained entity typing.

1In Table 1, for Gaussian noise, stdev value is chosen ran-
domly as 4. If we have the luxury to tune this parameter then
Table 2 noise, gives the best performance at stdev 0.05.
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