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Abstract

Mining electronic health records for patients
who satisfy a set of predefined criteria is
known in medical informatics as phenotyping.
Phenotyping has numerous applications such
as outcome prediction, clinical trial recruit-
ment, and retrospective studies. Supervised
machine learning for phenotyping typically re-
lies on sparse patient representations such as
bag-of-words. We consider an alternative that
involves learning patient representations. We
develop a neural network model for learn-
ing patient representations and show that the
learned representations are general enough to
obtain state-of-the-art performance on a stan-
dard comorbidity detection task.

1 Introduction

Mining electronic health records for patients who
satisfy a set of predefined criteria is known in
medical informatics as phenotyping. Phenotyping
has numerous applications such as outcome pre-
diction, clinical trial recruitment, and retrospec-
tive studies. Supervised machine learning is cur-
rently the predominant approach to automatic phe-
notyping and it typically relies on sparse patient
representations such as bag-of-words and bag-of-
concepts (Shivade et al., 2013). We consider an
alternative that involves learning patient represen-
tations. Our goal is to develop a conceptually sim-
ple method for learning lower dimensional dense
patient representations that succinctly capture the
information about a patient and are suitable for
downstream machine learning tasks. Our method
uses cheap supervision in the form of billing codes
and thus has representational power of a large
dataset. The learned representations can be used
to train phenotyping classifiers with much smaller
datasets.

Recent trends in machine learning have used
neural networks for representation learning, and

these ideas have propagated into the clinical in-
formatics literature, using information from elec-
tronic health records to learn dense patient repre-
sentations (Choi et al., 2016, 2017; Lipton et al.,
2016; Miotto et al., 2016; Nguyen et al., 2017;
Pham et al., 2016). Most of this work to date has
used only codified variables, including ICD (Inter-
national Classification of Diseases) codes, proce-
dure codes, and medication orders, often reduced
to smaller subsets. Recurrent neural networks
are commonly used to represent temporality (Choi
et al., 2016, 2017; Lipton et al., 2016; Pham et al.,
2016), and many methods map from code vocab-
ularies to dense embedding input spaces (Choi
et al., 2016, 2017; Nguyen et al., 2017; Pham et al.,
2016).

One of the few patient representation learning
systems to incorporate electronic medical record
(EMR) text is DeepPatient (Miotto et al., 2016).
This system takes as input a variety of features,
including coded diagnoses as the above systems,
but also uses topic modeling on the text to get
topic features, and applies a tool that maps text
spans to clinical concepts in standard vocabularies
(SNOMED and RxNorm). To learn the represen-
tations they use a model consisting of stacked de-
noising autoencoders. In an autoencoder network,
the goal of training is to reconstruct the input using
hidden layers that compress the size of the input.
The output layer and the input layer therefore have
the same size, and the loss function calculates re-
construction error. The hidden layers thus form
the patient representation. This method is used to
predict novel ICD codes (from a reduced set with
78 elements) occurring in the next 30, 60, 90, and
180 days.

Our work extends these methods by building a
neural network system for learning patient rep-
resentations using text variables only. We train
this model to predict billing codes, but solely as
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a means to learning representations. We show that
the representations learned for this task are general
enough to obtain state-of-the-art performance on
a standard comorbidity detection task. Our work
can also be viewed as an instance of transfer learn-
ing (Pan and Yang, 2010): we store the knowledge
gained from a source task (billing code prediction)
and apply it to a different but related target task.

2 Methods

2.1 Patient Representation Learning

The objective of patient representation learning is
to map raw text of patient notes to a dense vector
that can be subsequently used for various patient-
level predictive analytics tasks such as pheno-
typing, outcome prediction, and cluster analysis.
The process of learning patient representations in-
volves two phases: (1) supervised training of a
neural network model on a source task that has
abundant labeled data linking patients with some
outcomes; (2) patient vector derivation for a target
task performed by presenting new patient data to
the network and harvesting the resulting represen-
tations from one of the hidden layers.

In this work, we utilize billing codes as a source
of supervision for learning patient vectors in phase
1. Billing codes, such as ICD9 diagnostic codes,
ICD9 procedure codes, and CPT codes are derived
manually by medical coders from patient records
for the purpose of billing. Billing codes are typi-
cally available in abundance in a healthcare insti-
tution and present a cheap source of supervision.
Our hypothesis is that a patient vector useful for
predicting billing codes will capture key charac-
teristics of a patient, making this vector suitable
for patient-level analysis.

For learning dense patient vectors, we propose
a neural network model that takes as input a set
of UMLS concept unique identifiers (CUIs) de-
rived from the text of the notes of a patient and
jointly predicts all billing codes associated with
the patient. CUIs are extracted from notes by map-
ping spans of clinically-relevant text (e.g. short-
ness of breath, appendectomy, MRI) to entries
in the UMLS Metathesaurus. CUIs can be eas-
ily extracted by existing tools such as Apache
cTAKES (http://ctakes.apache.org). Our neural
network model (Figure 1) is inspired by Deep Av-
eraging Network (DAN) (Iyyer et al., 2015), Fast-
Text (Joulin et al., 2016), and continuous bag-of-
words (CBOW) (Mikolov et al., 2013a,b) models.
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Figure 1: Neural network model for learning patient
representations from text.

Model Architecture: The model takes as in-
put a set of CUIs. CUIs are mapped to 300-
dimensional concept embeddings which are aver-
aged and passed on to a 1000-dimensional hidden
layer, creating a vectorial representation of a pa-
tient. The final network layer consists of n sig-
moid units that are used for joint billing code pre-
diction. The output of each sigmoid unit is con-
verted to a binary (1/0) outcome. The number of
units n in the output layer is equal to the num-
ber of unique codes being predicted. The model
is trained using binary cross-entropy loss function
using RMSProp optimizer. Our model is capa-
ble of jointly predicting multiple billing codes for
a patient, placing it into the family of supervised
multi-label classification methods. In our prelimi-
nary work, we experimented with CNN and RNN-
based architectures but their performance was in-
ferior to the model described here both in terms of
accuracy and speed.

Once the model achieves an acceptable level of
performance, we can compute a vector represent-
ing a new patient by freezing the network weights,
pushing CUIs for a new patient through the net-
work, and harvesting the computed values of the
nodes in the hidden layer. The resulting 1000-
dimensional vectors can be used for a variety of
machine learning tasks.

2.2 Datasets

For training patient representations, we utilize the
MIMIC III corpus (Johnson et al., 2016). MIMIC
III contains notes for over 40,000 critical care unit
patients admitted to Beth Israel Deaconess Medi-
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cal Center as well as ICD9 diagnostic, procedure,
and Current Procedural Terminology (CPT) codes.
Since our goal is learning patient-level representa-
tions, we concatenate all available notes for each
patient into a single document. We also combine
all ICD9 and CPT codes for a patient to form the
targets for the prediction task. Finally, we pro-
cess the patient documents with cTAKES to ex-
tract UMLS CUIs. cTAKES is an open-source
system for processing clinical texts which has an
efficient dictionary lookup component for identi-
fying CUIs, making it possible to process a large
number of patient documents.

To decrease training time, we reduce the com-
plexity of the prediction task as follows: (1) we
collapse all ICD9 and CPT codes to their more
general category (e.g. first three digits for ICD9
diagnostic codes), (2) we drop all CUIs that ap-
pear fewer than 100 times, (3) we discard patients
that have over 10,000 CUIs, (4) we discard all
billing codes that have fewer than 1,000 examples.
This preprocessing results in a dataset consisting
of 44,211 patients mapped to multiple codes (174
categories total). We randomly split the patients
into a training set (80%) and a validation set (20%)
for tuning hyperparameters.

For evaluating our patient representations, we
use a publicly available dataset from the Informat-
ics for Integrating Biology to the Bedside (i2b2)
Obesity challenge (Uzuner, 2009). Obesity chal-
lenge data consisted of 1237 discharge summaries
from the Partners HealthCare Research Patient
Data Repository annotated with respect to obesity
and its fifteen most common comorbidities. Each
patient was thus labeled for sixteen different cate-
gories. We focus on the more challenging intuitive
task (Uzuner, 2009; Miller et al., 2016), containing
three label types (present, absent, questionable),
where annotators labeled a diagnosis as present
if its presence could be inferred (i.e., even if not
explicitly mentioned). This task involves compli-
cated decision-making and inference.

Importantly, our patient representations are
evaluated in sixteen different classification tasks
with patient data originating from a healthcare in-
stitution different from the one our representations
were trained on. This setup is challenging yet it
presents a true test of robustness of the learned
representations.

2.3 Experiments
Our first baseline is an SVM classifier trained with
bag-of-CUIs features. Our second baseline in-
volves linear dimensionality reduction performed
by running singular value decomposition (SVD)
on a patient-CUI matrix derived from the MIMIC
corpus, reducing the space by selecting the 1000
largest singular values, and mapping the target in-
stances into the resulting 1000-dimensional space.

Our multi-label billing code classifier is trained
to maximize the macro F1 score for billing code
prediction on the validation set. We train the
model for 75 epochs with a learning rate of 0.001
and batch size of 50. These hyperparameters are
obtained by tuning the model’s macro F1 on the
validation set. Observe that tuning of hyperpa-
rameters occurred independently from the target
task. Also note that since our goal is not to ob-
tain the best possible performance on a held out
set, we are not allocating separate development
and test sets. Once we determine the best values
of these hyperparameters, we combine the train-
ing and validation sets and retrain the model. We
train two version of the model: (1) with randomly
initialized CUI embeddings, (2) with word2vec-
pretrained CUI embeddings. Pre-trained embed-
dings are learned using word2vec (Mikolov et al.,
2013a) by extracting all CUIs from the text of
MIMIC III notes and using the CBOW method
with windows size of 5 and embedding dimension
of 300.

We then create a 1000-dimensional vector rep-
resentation for each patient in the i2b2 obesity
challenge data by giving the sparse (CUI-based)
representation for each patient as input to the ICD
code classifier. Rather than reading the classifier’s
predictions, we harvest the hidden layer outputs,
forming a 1000-dimensional dense vector. We
then train multi-class SVM classifiers for each dis-
ease (using one-vs.-all strategy), building sixteen
SVM classifiers. Following the i2b2 obesity chal-
lenge, the models are evaluated using macro pre-
cision, recall, and F1 scores (Uzuner, 2009).

We make the code available for use by the re-
search community 1.

3 Results

Our billing code classifier achieves the macro F1
score on the source task (billing code prediction)

1https://github.com/dmitriydligach/
starsem2018-patient-representations
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Disease Sparse SVD Learned
P R F1 P R F1 P R F1

Asthma 0.894 0.736 0.787 0.888 0.854 0.870 0.910 0.920 0.915
CAD 0.583 0.588 0.585 0.593 0.602 0.596 0.596 0.596 0.596
CHF 0.558 0.564 0.561 0.571 0.575 0.573 0.558 0.564 0.561
Depression 0.797 0.685 0.715 0.723 0.727 0.725 0.781 0.773 0.777
Diabetes 0.859 0.853 0.856 0.611 0.624 0.617 0.907 0.919 0.913
GERD 0.530 0.466 0.485 0.533 0.482 0.499 0.528 0.539 0.533
Gallstones 0.814 0.640 0.678 0.747 0.721 0.732 0.645 0.663 0.653
Gout 0.975 0.811 0.871 0.955 0.834 0.882 0.928 0.910 0.919
Hypercholesterolemia 0.781 0.784 0.782 0.789 0.793 0.790 0.865 0.868 0.866
Hypertension 0.680 0.650 0.662 0.711 0.763 0.728 0.825 0.879 0.847
Hypertriglyceridemia 0.933 0.679 0.748 0.580 0.610 0.591 0.604 0.650 0.621
OA 0.514 0.448 0.466 0.479 0.442 0.454 0.511 0.508 0.510
OSA 0.596 0.511 0.542 0.626 0.568 0.592 0.611 0.618 0.615
Obesity 0.825 0.791 0.798 0.883 0.844 0.853 0.872 0.873 0.872
PVD 0.594 0.542 0.564 0.599 0.557 0.576 0.568 0.599 0.582
Venous Insufficiency 0.797 0.649 0.694 0.669 0.757 0.700 0.638 0.717 0.665
Average 0.733 0.650 0.675 0.685 0.672 0.674 0.709 0.725 0.715

Table 1: Comorbidity challenge results (intuitive task). SVM trained using sparse representations (bag-of-CUIs)
is compared to SVM trained using SVD-based representations and learned dense patient representations.

of 0.447 when using randomly initialized CUI em-
beddings and macro F1 of 0.473 when using pre-
trained CUI embeddings. This is not directly com-
parable to existing work because it is a unique
setup; but we note that this is likely a difficult task
because of the large output space. However, it is
interesting to note that pre-training CUI embed-
ding has a positive relative impact on performance.

Classifier performance for the target pheno-
typing task is shown in Table 1, which shows
the performance of the baseline SVM classifier
trained using the standard bag-of-CUIs approach
(Sparse), the baseline using 1000-dimensional
vectors obtained via dimensionality reduction
(SVD), and our system using dense patient vec-
tors derived from the source task. Since a sepa-
rate SVM classifier was trained for each disease,
we present classifier performance for each SVM
model.

Both of our baseline approaches showed ap-
proximately the same performance (F1=0.675) as
the best reported i2b2 system (Solt et al., 2009)
(although they used a rule-based approach). Our
dense patient representations outperformed both
baseline approaches by four percentage points on
average (F1=0.715). The difference is statistically
significant (t-test, p=0.03).

Out of the sixteen diseases, our dense represen-

tations performed worse (with one tie) than the
sparse baseline only for three: gallstones, hyper-
triglyceridemia, venous insufficiency. The likely
cause is the scarcity of positive training examples;
two of these diseases have the smallest number of
positive training examples.

4 Discussion and Conclusion

For most diseases and on average our dense pa-
tient representations outperformed sparse patient
representations. Importantly, patient representa-
tions were learned from a task (billing code pre-
diction) that is different from the evaluation task
(comorbidity prediction), presenting evidence that
useful representations can be derived in this trans-
fer learning scenario.

Furthermore, the data from which the represen-
tations were learned (BI medical center) and the
evaluation data (Partners HealthCare) originated
from two different healthcare institutions provid-
ing evidence of robustness of our patient represen-
tations.

Our future work will include exploring the use
of other sources of supervision for learning patient
representations, alternative neural network archi-
tectures, tuning the learned patient representations
to the target task, and evaluating the patient repre-
sentations on other phenotyping tasks.
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