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Introduction

Preface by the General Chair

*SEM, the Joint Conference on Lexical and Computational Semantics is the major venue for research
on all aspects of semantics since 2012. This 2018 edition is therefore the seventh in a series that we
envisage to be a lot longer in the future.

As in previous years, *SEM 2018 has attracted a substantial number of submissions, and offers a
high quality programme covering a wide spectrum of semantic areas. The overall goal of the *SEM
series, which is bringing together different communities that treat the computational modeling of
semantics from different angles, is beautifully met in this year’s edition, which includes distributional
and formal/linguistic semantics approaches, spanning from lexical to discourse issues, with an eye to
applications.

We hope that the diversity and richness of the programme will provide not only an interesting event
for a broad audience of NLP researchers, but also serve to stimulate new ideas and synergies that can
significantly impact the field.

As always, *SEM would not have been possible without the active involvement of our community. Aside
from our dedicated programme committee, to whom we give an extended acknowledgement further in
this introduction, we are very thankful to Johannes Bjerva (Publicity Chair) and Emmanuele Chersoni
(Publication Chair) for their efficiency and hard work in making the conference a visible and shared
event, from website to proceedings. We are grateful to ACL SIGLEX and SIGSEM for endorsing and
staying behind this event, and to Google, who thanks to its sponsorship to *SEM 2018, made it possible
to assign a few student grants, as a partial reimbursement of the *SEM participation costs.

As General Chair, I am particularly grateful to the Programme Chairs, Jonathan Berant and Alessandro
Lenci, to whom we all owe the excellence and variety of the programme, and to whom I personally owe
a very rewarding experience in sharing responsibility for this important event. I hope you will enjoy
*SEM 2018 in all its diversity, and you will find it as stimulating and enriching as it strives to be.

Malvina Nissim
General Chair of *SEM 2018
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Preface by the Program Chairs

We are pleased to present this volume containing the papers accepted at the Seventh Joint Conference on
Lexical and Computational Semantics (*SEM 2018, co-located with NAACL in New Orleans, USA, on
June 5-6, 2018). Like for the last edition, *SEM received a high number of submissions, which allowed
us to compile a diverse and high-quality program. The number of submissions was 82. Out of these, 35
papers were accepted (22 long, 14 short). Thus, the acceptance rate was 35.6% overall, 42.3% for the
long papers and 28.6% for the short submissions. Some of the papers were withdrawn after acceptance,
due to multiple submissions to other conferences (the 2018 schedule was particularly complicated, with
significant intersection of *SEM with ACL, COLING, and other venues). The final number of papers in
the program is 32 (19 long, 13 short).
Submissions were reviewed in 5 different areas: Distributional Semantics, Discourse and Dialogue,
Lexical Semantics, Theoretical and Formal Semantics, and Applied Semantics.
The papers were evaluated by a program committee of 10 area chairs from Europe and North America,
assisted by a panel of 115 reviewers. Each submission was reviewed by three reviewers, who were
furthermore encouraged to discuss any divergence in evaluation. The papers in each area were
subsequently ranked by the area chairs. The final selection was made by the program co-chairs after
an independent check of all reviews and discussion with the area chairs. Reviewers’ recommendations
were also used to shortlist a set of papers nominated for the Best Paper Award.
The final *SEM 2018 program consists of 18 oral presentations and 14 posters, as well as two keynote
talks by Ellie Pavlick (Brown University & Google Research, joint keynote with SemEval 2018) and
Christopher Potts (Stanford University).
We are deeply thankful to all area chairs and reviewers for their help in the selection of the program, for
their readiness in engaging in thoughtful discussions about individual papers, and for providing valuable
feedback to the authors. We are also grateful to Johannes Bjerva for his precious help in publicizing
the conference, and to Emmanuele Chersoni for his dedication and thoroughness in turning the program
into the proceedings you now have under your eyes. Last but not least, we are indebted to our General
Chair, Malvina Nissim, for her continuous guidance and support throughout the process of organizing
this installment of *SEM.

We hope you enjoy the conference!
Jonathan Berant and Alessandro Lenci
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Invited Talk: Why Should we Care about Linguistics?
Ellie Pavlick

(Joint Invited Speaker with SemEval 2018)

Brown University & Google Research

In just the past few months, a flurry of adversarial studies have pushed back on the apparent
progress of neural networks, with multiple analyses suggesting that deep models of text fail to
capture even basic properties of language, such as negation, word order, and compositionality.
Alongside this wave of negative results, our field has stated ambitions to move beyond task-specific
models and toward "general purpose" word, sentence, and even document embeddings. This is a
tall order for the field of NLP, and, I argue, marks a significant shift in the way we approach our
research. I will discuss what we can learn from the field of linguistics about the challenges of
codifying all of language in a "general purpose" way. Then, more importantly, I will discuss what
we cannot learn from linguistics. I will argue that the state-of-the-art of NLP research is operating
close to the limits of what we know about natural language semantics, both within our field and
outside it. I will conclude with thoughts on why this opens opportunities for NLP to advance both
technology and basic science as it relates to language, and the implications for the way we should
conduct empirical research.
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Invited Talk: Linguists for Deep Learning; or How I Learned to Stop
Worrying and Love Neural Networks

Christopher Potts
Stanford University, USA

The rise of deep learning (DL) might seem initially to mark a low point for linguists hoping to
learn from, and contribute to, the field of statistical NLP. In building DL systems, the decisive
factors tend to be data, computational resources, and optimization techniques, with domain ex-
pertise in a supporting role. Nonetheless, at least for semantics and pragmatics, I argue that DL
models are potentially the best computational implementations of linguists’ ideas and theories that
we’ve ever seen. At the lexical level, symbolic representations are inevitably incomplete, whereas
learned distributed representations have the potential to capture the dense interconnections that
exist between words, and DL methods allow us to infuse these representations with information
from contexts of use and from structured lexical resources. For semantic composition, previous
approaches tended to represent phrases and sentences in partial, idiosyncratic ways; DL models
support comprehensive representations and might yield insights into flexible modes of semantic
composition that would be unexpected from the point of view of traditional logical theories. And
when it comes to pragmatics, DL is arguably what the field has been looking for all along: a flex-
ible set of tools for representing language and context together, and for capturing the nuanced,
fallible ways in which langage users reason about each other’s intentions. Thus, while linguists
might find it dispiriting that the day-to-day work of DL involves mainly fund-raising to support
hyperparameter tuning on expensive machines, I argue that it is worth the tedium for the insights
into language that this can (unexpectedly) deliver.
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Abstract

We present an approach to event coreference
resolution by developing a general framework
for clustering that uses supervised representa-
tion learning. We propose a neural network
architecture with novel Clustering-Oriented
Regularization (CORE) terms in the objective
function. These terms encourage the model to
create embeddings of event mentions that are
amenable to clustering. We then use agglom-
erative clustering on these embeddings to build
event coreference chains. For both within-
and cross-document coreference on the ECB+
corpus, our model obtains better results than
models that require significantly more pre-
annotated information. This work provides in-
sight and motivating results for a new general
approach to solving coreference and clustering
problems with representation learning.

1 Introduction

Event coreference resolution is the task of deter-
mining which event mentions expressed in lan-
guage refer to the same real-world event in-
stances. The ability to resolve event coreference
has improved the quality of downstream tasks
such as automatic text summarization (Vander-
wende et al., 2004), questioning-answering (Be-
rant et al., 2014), headline generation (Sun et al.,
2015), and text-mining in the medical domain
(Ferracane et al., 2016).

Event mentions are comprised of an action
component (or, head) and surrounding arguments.
Consider the following passages, drawn from two
different documents; the heads of the event men-
tions are in boldface and the subscripts indicate
mention IDs:

(1) The president’s speechm1 shockedm2 the au-
dience. He announcedm3 several new con-
troversial policies.

(2) The policies proposedm4 by the president
will not surprisem5 those who followedm6

his campaignm7.

In this example, m1, m3, and m4 form a chain
of coreferent event mentions (underlined), because
they refer to the same real-world event in which
the president gave a speech. The other four are
singletons, meaning that they all refer to separate
events and do not corefer with any other mention.

This work investigates how to learn useful rep-
resentations of event mentions. Event mentions
are complex objects, and both the event mention
heads and the surrounding arguments are impor-
tant for the event coreference resolution task. In
our example above, the head words of mentions
m2, shocked, and m5, surprise, are lexically sim-
ilar, but the event mentions do not corefer. This
task therefore necessitates a model that can cap-
ture the distributional relationships between event
mentions and their surrounding contexts.

We hypothesize that prior knowledge about the
task itself can be usefully encoded into the rep-
resentation learning objective. For our task, this
prior means that the embeddings of corefential
event mentions should have similar embeddings to
each other (a “natural clustering”, using the termi-
nology of Bengio et al. (2013)). With this prior,
our model creates embeddings of event mentions
that are directly conducive for the clustering task
of building event coreference chains. This is con-
trary to the indirect methods of previous work that
rely on pairwise decision making followed by a
separate model that aggregates the sometimes in-
consistent decisions into clusters (Section 2).

We demonstrate these points by proposing a
method that learns to embed event mentions into
a space that is tuned specifically for clustering.
The representation learner is trained to predict
which event cluster the event mention belongs to,
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using an hourglass-shaped neural network. We
propose a mechanism to modulate this training
by introducing Clustering-Oriented Regulariza-
tion (CORE) terms into the objective function of
the learner; these terms impel the model to pro-
duce similar embeddings for coreferential event
mentions, and dissimilar embeddings otherwise.

Our model obtains strong results on within-
and cross-document event coreference resolution,
matching or outperforming the system of Cybul-
ska and Vossen (2015) on the ECB+ corpus on all
six evaluation measures. We achieve these gains
despite the fact that our model requires signifi-
cantly less pre-annotated or pre-detected informa-
tion in terms of the internal event structure. Our
model’s improvements upon the baselines show
that our supervised representation learning frame-
work creates new embeddings that capture the ab-
stract distributional relations between samples and
their clusters, suggesting that our framework can
be generalized to other clustering tasks1.

2 Related Work

The recent work on event coreference can be cat-
egorized according to the assumed level of event
representation. In the predicate-argument align-
ment paradigm (Roth and Frank, 2012; Wolfe
et al., 2013), links are simply drawn between pred-
icates in different documents. This work only con-
siders cross-document event coreference (Wolfe
et al., 2013, 2015), and no within-document coref-
erence. At the other extreme, the ACE and ERE
datasets annotate rich internal event structure, with
specific taxonomies that describe the annotated
events and their types (Linguistic Data Consor-
tium, 2005, 2016). In these datasets, only within-
document coreference is annotated.

The creators of the ECB (Bejan and Harabagiu,
2008) and ECB+ (Cybulska and Vossen, 2014),
annotate events according to a level of abstraction
between that of the predicate-argument approach
and the ACE approach, being most similar to the
TimeML paradigm (Pustejovsky et al., 2003). In
these datasets, both within-document and cross-
document coreference relations are annotated. We
use the ECB+ corpus in our experiments because
it solves the lack of lexical diversity found within
the ECB by adding 502 new annotated documents,
providing a total of 982 documents.

1All code used in this paper can be found here:
https://github.com/kiankd/events

Previous work on model design for event coref-
erence has focused on clustering over a linguis-
tically rich set of features. Most models require a
pairwise-prediction based supervised learning step
which predicts whether or not a pair of event men-
tions is coreferential (Bagga and Baldwin, 1999;
Chen et al., 2009; Cybulska and Vossen, 2015).
Other work focuses on the clustering step itself,
aggregating local pairwise decisions into clusters,
for example by graph partitioning (Chen and Ji,
2009). There has also been work using non-
parametric Bayesian clustering techniques (Bejan
and Harabagiu, 2014; Yang et al., 2015), as well
as other probabilistic models (Lu and Ng, 2017).
Some recent work uses intuitions combining rep-
resentation learning with clustering, but does not
augment the loss function for the purpose of
building clusterable representations (Krause et al.,
2016; Choubey and Huang, 2017).

3 Event Coreference Resolution Model

We formulate the task of event coreference resolu-
tion as creating clusters of event mentions which
refer to the same event. For the purposes of this
work, we define an event mention to be a set of to-
kens that correspond to the action of some event.
Consider the sentence below (borrowed from Cy-
bulska and Vossen (2014)):

(3) On Monday Lindsay Lohan checked into re-
hab in Malibu, California after a car crash.

Our model would take, as input, feature vectors
(see Section 4) extracted from the two event men-
tions (in bold) independently. In this paper, we use
the gold-standard event mentions provided by the
dataset, and leave mention detection to other work.

3.1 Model Overview

Our approach to resolving event coreference con-
sists of the following steps:

1. Train a supervised neural network model which
learns event mention embeddings by predicting
the event cluster in the training set to which the
mention belongs (Figure 1).

2. At test time, use the previously trained model’s
embedding layer to derive representations of
unseen event mentions. Then, perform agglom-
erative clustering with these embeddings to cre-
ate event coreference chains (Figure 2).
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Figure 1: Our supervised representation learning model
during the training step. Dashed arrows indicate contri-
butions to the loss function.

Figure 2: Our trained model at inference time, used for
validation tuning and final testing. Note that H3 and Y
are not used in this step.

3.2 Supervised Representation Learning

We propose a representation learning framework
based on training a multi-layer artificial neural net-
work, with one layer He chosen to be the embed-
ding layer. In the training set, there are a certain
number of event mentions, each of which belongs
to some gold standard cluster, makingC total non-
singleton clusters in the training set. The network
is trained as if it were encountering a C+1-class
classification problem, where the class of an event
mention corresponds to a single output node, and
all singleton mentions belong to class C+12.

When using this model to cluster a new set of
mentions, the final layer’s output will not be di-
rectly informative since the output node structure
corresponds to the clusters within the training set.
However, we hypothesize that the trained model
will have learned to capture the abstract distribu-
tional relationships between event mentions and
clusters in the intermediate layer He. We thus use
the activations in He as the embedding of an event
mention for the clustering step (see Figure 2). A
similar hourglass-like neural architecture design
has been successful in automatic speech recogni-

2If each singleton mention (i.e., a mention that does not
corefer with anything else) had its own class then the model
would be confronted with a classification problem with thou-
sands of classes, many of which would only have one sample;
this is much too ill-posed, so we merge all singletons together
during the training step.

tion (Grézl et al., 2007; Gehring et al., 2013), but
has not to our knowledge been used to pre-train
embeddings for clustering.

3.3 Categorical-Cross-Entropy (CCE)
Using CCE as the loss function trains the model
to correctly predict a training set mention’s corre-
sponding cluster. With model prediction yic as the
probability that sample i belongs to class c, and in-
dicator variable tic = 1 if sample i belongs to class
c (else tic = 0), we have the mean categorical-
cross entropy loss over a randomly sampled train-
ing input batch X:

(1)LCCE = − 1

|X|

|X|∑

i=1

C+1∑

c=1

tic log(yic)

3.4 Clustering-Oriented Regularization
(CORE)

With CCE, the model may overfit towards accurate
prediction performance for those particular clus-
ters found in the training set without learning an
embedding that captures the nature of events in
general. This therefore motivates introducing reg-
ularization terms based on the intuition that em-
beddings of mentions belonging to the same clus-
ter should be similar, and that embeddings of men-
tions belonging to different clusters should be dis-
similar. Accordingly, we define dissimilarity be-
tween two vector embeddings (~e1, ~e2) according
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to the cosine-distance function d:

d(~e1, ~e2) =
1

2

(
1− ~e1 · ~e2
||~e1||||~e2||

)
(2)

Given input batch X, we create two sets S and
D, where S is the set of all pairs (a, b) of men-
tions in X that belong to the same cluster, andD is
the set of all pairs (c, d) in X that belong to differ-
ent clusters. Note that all vector embeddings ~ei =
He(i); i.e., they are obtained by feeding the event
mention i’s features through to embedding layer
He. We now define the following Attractive and
Repulsive CORE terms.

3.4.1 Attractive Regularization
The first desirable property for the embeddings
is that mentions that belong to the same cluster
should have low cosine distance between each oth-
ers’ embeddings, since the agglomerative cluster-
ing algorithm uses cosine distance to make coref-
erence decisions.

Formally, for all pairs of mentions a and b that
belong to the same cluster, we would like to min-
imize the distance between their embeddings ~ea
and ~eb. We call this “attractive” regularization
because we want to attract embeddings closer to
each other by minimizing their distance d(~ea, ~eb)
so that they will be as similar as possible.

(3)Lattract =
1

|S|
∑

(a,b)∈S
d(~ea, ~eb)

3.4.2 Repulsive Regularization
The second desirable property is that the embed-
dings corresponding to mentions that belong to
different clusters should have high cosine distance
between each other. Thus, for all pairs of mentions
c and d that belong to different clusters, the goal is
to maximize their distance d(~ec, ~ed). This is “re-
pulsive” because we train the model to push away
the embeddings from each other to be as distant as
possible.

(4)Lrepulse = 1− 1

|D|
∑

(c,d)∈D
d(~ec, ~ed)

3.5 Loss Function
Equation 5 below shows the final loss function3.
The attractive and repulsive terms are weighted by

3Note that, while we present Equations 3 and 4 as sum-
mations over pairs from the input batch, the computation is
actually reasonable when written in terms of matrix multipli-
cations. The most expensive operation multiplying the em-
bedded batch of input samples times its transpose.

hyperparameter constants λ1 and λ2 respectively:

(5)L = LCCE + λ1Lattract + λ2Lrepulse

By adding these regularization terms to the loss
function, we hypothesize that the new embeddings
of test set mentions (obtained by feeding-forward
their features into the trained model) will exem-
plify the desired properties represented by the loss
function, thus assisting the agglomerative cluster-
ing task in producing correct coreference-chains.

3.6 Agglomerative Clustering

Agglomerative clustering is a non-parametric
“bottom-up” approach to hierarchical clustering,
in which each sample starts as its own cluster,
and at each step, the two most similar clusters
are merged, where similarity between two clus-
ters is measured according to some similarity met-
ric. After each merge, clustering similarities are
recomputed according to a preset criterion (e.g.,
single- or complete-linkage). In our models, clus-
tering proceeds until a pre-determined similarity
threshold, τ , is reached. We tuned τ on the vali-
dation set, doing grid search for τ ∈ [0, 1] to max-
imize B3 accuracy4. Preliminary experimentation
led us to use cosine-similarity (see cosine distance
in Equation 2) to measure vector similarity, and
single-linkage for clustering decisions.

We experimented with two initialization
schemes for agglomerative clustering. In the first
scheme, each event mention is initialized as its
own cluster, as is standard. In the second, we
initialized clusters using the lemma-δ baseline
defined by Upadhyay et al. (2016). This baseline
merges all event mentions with the same head
lemma that are in documents with document-level
similarity that is higher than a threshold δ. Upad-
hyay et al. showed that it is a strong indicator of
event coreference, so we experimented with ini-
tializing our clustering algorithm in this way. We
call this model variant CORE+CCE+LEMMA,
and describe the parameter tuning procedures in
more detail in Section 5.

4 Feature Extraction

We extract features that do not require the pre-
processing step of event-template construction to
represent the context (unlike Cybulska and Vossen

4We optimize with B3 F1-score because the other mea-
sures are either too expensive to compute (CEAF-M, CEAF-
E, BLANC), or are less discriminative (MUC).
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1.action checked into, crash
2.time On Monday
3.location rehab in Malibu, California
4.participant Lindsay Lohan (human)

car (non-human)

Table 1: An event template of the sentence in Ex-
ample 3, borrowed from Cybulska and Vossen (2014;
2015). Our model only requires as input the action, not
the time, location, nor participant arguments.

(2015), see Table 1); instead, we represent the sur-
rounding context by using the tokens in the gen-
eral vicinity of the event’s action. We thus only
require the event’s action – which is what we de-
fine as an event mention – to be previously de-
tected, not all of its arguments. We motivate this
by arguing that it would be preferable to build high
quality coreference chains without event template
features since since extracting event templates can
be a difficult process, with the possibility of errors
cascading into the event coreference step.

4.1 Contextual

Inspired by the approach of Clark and Manning
(2016) in the entity coreference task, we extract,
for the token sets below, (i) the token’s word2vec
word embedding (Mikolov et al., 2013) (or aver-
age if there are multiple); and, (ii) the one-hot
count vector of the token’s lemma5 (or sum if there
are multiple), for each event mention, em:
• the first token of em;
• the last token of em;
• all tokens in the em;
• each of the two tokens preceding em;
• each of the two tokens following em;
• all of the five tokens preceding em;
• all of the five tokens following em;
• all of the tokens in em’s sentence.

4.2 Document

It is necessary to include features that character-
ize the mention’s document, hoping that the model
learns a latent understanding of relations between
documents. We extract features from the event
mention’s document by building lemma-based TF-
IDF vector representations of the document. We
use log normalization of the raw term frequency

5This is a 500-dimensional vector where the first 499 en-
tries correspond to the 499 most frequently occurring lemmas
in the training set, and the 500th entry indicates if the lemma
is not in that set of most frequently occurring lemmas.

of token lemma t in document d, ft,d, where
TFt = 1 + log(ft,d). For the IDF term we use
smoothed inverse document frequency, with N as
the number of documents and nt as the number
of documents that contain the lemma, we have
IDFt = log(1+ N

nt
). By performing a component-

wise multiplication of the IDF vector with each
row in term-frequency matrix TF, we create TF-
IDF vectors of each document in the training and
test sets (with length corresponding to the number
of unique lemmas in the training set). We com-
press these vectors to 100 dimensions with prin-
cipal component analysis fitted onto the train set
document vectors, which is used to transform the
validation and test set document vectors.

4.3 Comparative

We include comparative features to relate a men-
tion to the other mentions in its document and to
the mentions in the set of documents the model
would be requested to extract event coreference
chains from. This is motivated by the fact that
coreference decisions must be informed by the re-
lationship mentions have with each other. Firstly,
we encode the position of the mention in its doc-
ument with specific binary features indicating if
it is first or last; for example, if there were five
mentions and it were the third, this feature would
correspond to the vector [0, 35 , 0].

Next, we define two sets of mentions we would
like to compare with: the first contains all men-
tions in the same document as the current mention
em, and the second contains all mentions in the
data we are asked to cluster. For each of these sets,
we compute: the average word overlap and aver-
age lemma overlap (measured by harmonic simi-
larity) between em and each of the other mentions
in the set. We thus add two feature vector entries
for each of the sets: the average word overlap be-
tween em and the other mentions in the set, and
the average lemma overlap between em and the
other mentions in the set.

5 Experimental Design

We run our experiments on the ECB+ corpus, the
largest corpus that contains both within- and cross-
document event coreference annotations. We fol-
lowed the train/test split of Cybulska and Vossen
(2015), using topics 1-35 as the train set and 36-
45 as the test set. During training, we split off a
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validation set6 for hyperparameter tuning.
Following Cybulska and Vossen, we used the

portion of the corpus that has been manually re-
viewed and checked for correctness. Some pre-
vious work (Yang et al., 2015; Upadhyay et al.,
2016; Choubey and Huang, 2017) do not appear
to have followed this guideline from the corpus
creators, as they report different corpus statis-
tics compared to those reported by Cybulska and
Vossen. As a result, those papers may report re-
sults on a data set with known annotation errors.

5.1 Evaluation Measures

Since there is no consensus in the coreference res-
olution literature on the best evaluation measure,
we present results obtained according to six differ-
ent measures, as is common in previous work. We
use the scorer presented by Pradhan et al. (2014).
In this task, the term “coreference chain” is syn-
onymous with “cluster”.

MUC (Vilain et al., 1995). Link-level mea-
sure which counts the minimum number of link
changes required to obtain the correct clustering
from the predictions; it does not account for cor-
rectly predicted singletons.

B3 (Bagga and Baldwin, 1998). Mention-level
measure which computes precision and recall for
each individual mention, overcoming the singleton
problem of MUC, but can problematically count
the same coreference chain multiple times.

CEAF-M (Luo, 2005). Mention-level measure
which reflects the percentage of mentions that are
in the correct coreference chains. Note that preci-
sion and recall are the same in this measure since
we use pre-annotated mentions.

CEAF-E (Luo, 2005). Entity-level measure com-
puted by aligning predicted with the gold chains,
not allowing one chain to have more than one
alignment, overcoming the problem of B3.

BLANC (Luo et al., 2014). Computes two F-
scores in terms of the pairwise quality of corefer-
ence decisions and non-coreference decisions, and
averages these scores together for the final results.

CoNLL. The mean of MUC, B3, and CEAF-E.

5.2 Models

We compare our representation-learning model
variants to three baselines: a deterministic lemma-

6Topics 2, 5, 12, 18, 21, 23, 34, 35 (randomly chosen).

based baseline, a lemma-δ baseline, and an unsu-
pervised baseline which clusters the originally ex-
tracted features. We also compare with the results
of Cybulska and Vossen (2015).

5.2.1 Baselines
LEMMA. This algorithm clusters event mentions
which share the same head word lemma into the
same coreference chains across all documents.

LEMMA-δ. Proposed by Upadhyay et al. (2016),
this method provides a difficult baseline to beat.
A δ-similarity threshold is introduced, and we
merge two mentions with the same head-lemma if
and only if the cosine-similarity between the TF-
IDF vectors of their corresponding documents is
greater than δ. This δ parameter is tuned to maxi-
mize B3 performance on the validation set, which
we found occurs when δ = 0.67.

UNSUPERVISED. This is the result obtained
by agglomerative clustering over the original un-
weighted features. Again, we optimize the τ sim-
ilarity threshold over the validation set.

5.2.2 Sentence Templates (CV2015)
Cybulska and Vossen (2015) propose a model that
uses sentence-level event templates (see Table 1),
requiring more annotated information than our
models. See (Vossen and Cybulska, 2017) for fur-
ther elaboration of this model. To our knowledge,
this is the best previous model on ECB+ using the
same data and evaluation criteria as our work.

5.2.3 Representation Learning.
We test four different model variants:

• CCE: uses only categorical-cross-entropy in the
loss function (Equation 1);

• CORE: uses only clustering-oriented regular-
ization; i.e., the attract and repulse terms (Equa-
tions 3 and 4);

• CORE+CCE: includes categorical-cross-
entropy and the attract and repulse terms
(Equation 5);

• CORE+CCE+LEMMA: initializes the agglom-
erative clustering with clusters computed by
lemma-δ (with a differently tuned value of δ
than the baseline) and continues the clustering
process using the similarities between the em-
beddings created by CORE+CCE.
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Model λ1 λ2 B3 τ

Baselines
UNSUPERVISED - - 0.590 0.657
LEMMA - - 0.597 -
LEMMA-δ - - 0.612 -
Model Variants
CORE+CCE+L 2.0 0.0 0.678 0.843

CORE+CCE 2.0 2.0 0.663 0.776
2.0 1.0 0.666 0.773
2.0 0.1 0.665 0.843
2.0 0.0 0.669 0.843
0.0 2.0 0.662 0.710

CORE 2.0 2.0 0.631 0.701
1.0 1.0 0.625 0.689

CCE - - 0.644 0.853

Table 2: Model comparison based on validation
set B3 accuracy with optimized τ cluster-similarity
threshold. For CORE+CCE+LEMMA (indicated as
CORE+CCE+L) we tuned to δ = 0.89; for LEMMA-δ
we tuned to δ = 0.67.

5.3 Hyper-parameter Tuning
For the representation learning models, we per-
formed a non-exhaustive hyper-parameter search
optimized for validation set performance. We
keep the following parameters constant across the
model variants:

• 1000 neurons in H1 and H3; 250 neurons in He,
the embedding layer (see Figure 1);

• Softmax output layer with C + 1 units;

• ReLU activation functions for all neurons;

• Adam gradient descent (Kingma and Ba, 2014);

• 25% dropout between each layer;

• Learning rate of 0.00085 (times 10−1 for
CORE);

• Randomly sampled batches of 272 mentions,
where a batch is forced to contain pairs of coref-
erential and non-coreferential mentions.

Models are trained for 100 epochs. At each
epoch, we optimize τ (our agglomerative clus-
tering similarity threshold) using a two-pass ap-
proach: we first test 20 different settings of τ ,
then τ is further optimized around the best value
from the first pass. For CORE+CCE+LEMMA,
we tune the δ parameter of the lemma-δ clustering

approach to the validation set by testing 100 dif-
ferent values of δ; these different δ values initial-
ize the clusters, and we then continue clustering
by testing validation results obtained when using
the similarities between the embeddings created
by CORE+CCE for different values of τ .

Some of the results of hyperparameter tuning
on the validation set are shown in Table 2. Inter-
estingly, we observe that CORE+CCE performs
slightly better with λ2 = 0; i.e., without repulsive
regularization. This suggests that enforcing rep-
resentation similarity is more important than en-
forcing division, although we cannot conclusively
state that repulsive regularization would not be
useful for other tasks. Nonetheless, for test set
results we use the optimal hyperparameter config-
urations found during this validation-tuning step;
e.g., for CORE+CCE we set λ1 = 2 and λ2 = 0.

6 Results

Table 3 presents the performance of the models
for combined within- and cross-document event
coreference. Results for these models are obtained
with the hyper-parameter settings that achieved
optimal accuracy during validation-tuning.

Firstly, we observe that CORE+CCE offers
marked improvements upon the UNSUPERVISED

baseline, CORE model, and CCE model. From
these results we conclude: (i) supervised represen-
tation learning provides more informative embed-
dings than the original feature vectors; and, (ii)
that combining Clustering-Oriented Regulariza-
tion with categorical-cross-entropy is better than
just using one or the other, indicating that our in-
troduction of these novel terms into the loss func-
tion is a useful contribution.

We also note that CORE+CCE+LEMMA

(which obtains the best validation set results) beats
the strong LEMMA-δ baseline. Our model of-
fers marked improvements or roughly equivalent
scores in each evaluation measure except BLANC,
where the baseline offers a 3 point F-score im-
provement. This is due to the very high precision
of the baseline, whereas CORE+CCE+LEMMA

seems to trade precision for recall.
We finally observe that CORE+CCE+LEMMA

improves upon the results of Cybulska and Vossen
(2015). We obtain improvements of 14 points in
MUC, 3 points in entity-based CEAF, 5 points in
CoNLL, and 1 point in BLANC, with equivalent
results in B3 and mention-based CEAF. These re-
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MUC B3 CM CE BLANC CONLL
Model R P F R P F F R P F R P F F
Baselines
LEMMA 66 58 62 66 58 62 51 87 39 54 64 61 63 61
LEMMA-δ 55 68 61 61 80 69 59 73 60 66 62 80 67 66
UNSUPERVISED 39 63 48 55 81 66 51 72 49 58 57 58 58 57
Previous Work
CV2015 43 77 55 58 86 69 58 - - 66 60 69 63 64
Model Variants
CCE 66 63 65 69 60 64 50 59 63 61 69 56 59 63
CORE 58 58 58 66 58 62 44 53 53 53 66 54 56 57
CORE+CCE 62 70 66 67 69 68 56 73 64 68 68 59 62 67
CORE+CCE+LEMMA 67 71 69 71 67 69 58 71 67 69 72 60 64 69

Table 3: Combined within- and cross-document test set results on ECB+. Measures CM and CE stand for mention-
based CEAF and entity-based CEAF, respectively.

MUC B3 CM CE BLANC CONLL
Model R P F R P F F R P F R P F F
Baselines
LEMMA-δ 41 77 53 86 97 92 85 92 82 87 65 86 71 77
UNSUPERVISED 32 36 34 85 86 85 74 80 78 79 65 55 57 66
Model Variants
CCE 44 49 46 87 89 88 79 82 80 81 67 67 67 72
CORE 55 32 40 89 70 78 65 64 79 71 75 54 56 63
CORE+CCE 43 68 53 87 95 91 84 90 82 86 67 76 70 76
CORE+CCE+LEMMA 57 69 63 90 94 92 86 90 86 88 73 78 75 81

Table 4: Within-document test set results on ECB+. Note that LEMMA is equivalent to LEMMA-δ in the within-
document setting. Cybulska and Vossen (2015) did not report the performance of their model in this setting.

sults suggest that high quality coreference chains
can be built without necessitating event templates.

In Table 4, we see the performance of our
models on within-document coreference resolu-
tion in isolation. These results are obtained
by cutting all links drawn across documents
for the gold standard chains and the predicted
chains. We observe that, across all models,
scores on the mention- and entity-based measures
are substantially higher than the link-based mea-
sures (e.g., MUC and BLANC). The usefulness
of CORE+CCE+LEMMA (which initializes the
clustering with the lemma-δ predictions and then
continues to cluster with CORE+CCE) is exem-
plified by the improvements or matches in ev-
ery measure when compared to both LEMMA-δ
and CORE+CCE. The most vivid improvement
here is observed with the 10 point improvement in
MUC over both models as well as the 4 and 5 point
improvements in BLANC respectively, where the
higher recall entails that CORE+CCE+LEMMA

confidently predicts coreference links that would
otherwise have been false negatives.

7 Conclusions and Future Work

We have presented a novel approach to event
coreference resolution by combining supervised
representation learning with non-parametric clus-
tering. We train an hourglass-shaped neural net-
work to learn how to represent event mentions in
a useful way for an agglomerative clustering al-
gorithm. By adding the novel Clustering-Oriented
Regularization (CORE) terms into the loss func-
tion, the model learns to construct embeddings
that are easily clusterable; i.e., the prior that em-
beddings of samples belonging to the same cluster
should be similar, and those of samples belonging
to different clusters should be dissimilar.

Our results suggest that clustering embeddings
created with representation learning is much bet-
ter than clustering of the original feature vectors,
when using the same agglomerative clustering al-
gorithm. We show that including CORE in the loss
function improves performance more than when
only using categorical-cross-entropy to train the
representation learner model. Our top-performing
model obtains results that improve upon previous
work despite the fact that our model requires less
annotated information in order to perform the task.

8



Future work involves applying our model to au-
tomatically annotated event mentions and other
event coreference datasets, and extending this
framework toward a full end-to-end system that
does not rely on manual feature engineering at the
input level. Additionally, our model may be use-
ful for other clustering tasks, such as entity coref-
erence and document clustering. Lastly, we seek
to determine how CORE and its imposition of a
clusterable latent space structure may or may not
assist in improving the quality of latent represen-
tations in general.

Acknowledgements

This work was funded with grants from the Natu-
ral Sciences and Engineering Research Council of
Canada (NSERC) and the Fonds de recherche du
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Abstract
Human world knowledge contains informa-
tion about prototypical events and their partic-
ipants and locations. In this paper, we train
the first models using multi-task learning that
can both predict missing event participants and
also perform semantic role classification based
on semantic plausibility. Our best-performing
model is an improvement over the previous
state-of-the-art on thematic fit modelling tasks.
The event embeddings learned by the model
can additionally be used effectively in an event
similarity task, also outperforming the state-
of-the-art.

1 Introduction

Event representations consist, at minimum, of a
predicate, the entities that participate in the event,
and the thematic roles of those participants (Fill-
more, 1968). The cook cut the cake with the knife
expresses an event of cutting in which a cook is the
“agent”, the cake is the “patient”, and the knife is
the “instrument” of the action. Experiments have
shown that event knowledge, in terms of the proto-
typical participants of events and their structured
compositions, plays a crucial role in human sen-
tence processing, especially from the perspective
of thematic fit: the extent to which humans per-
ceive given event participants as “fitting” given
predicate-role combinations (Ferretti et al., 2001;
McRae et al., 2005; Bicknell et al., 2010). There-
fore, computational models of language process-
ing should also consist of event representations
that reflect thematic fit. To evaluate this aspect em-
pirically, a popular approach in previous work has
been to compare model output to human judge-
ments (Sayeed et al., 2016).

The best-performing recent work has been the
model of Tilk et al. (2016), who effectively simu-
late thematic fit via selectional preferences: gener-
ating a probability distribution over the full vocab-

ulary of potential role-fillers. Given event context
as input, including a predicate and a given set of
semantic roles and their role-fillers as well as one
target role, its training objective is to predict the
correct role-filler for the target role. The objective
of predicting upcoming role-fillers is cognitively
plausible: there is ample evidence that humans an-
ticipate upcoming input during sentence process-
ing and learn from prediction error (Kuperberg
and Jaeger, 2016; Friston, 2010) (even if other de-
tails of the implementation like back-propagation
may not have much to do with how errors are prop-
agated in humans).

An analysis of role filler predictions by Tilk et
al.’s model shows that the model does not make
sufficient use of the thematic role input. For in-
stance, the representation of apple eats boy is sim-
ilar to the representation of boy eats apple, even
though the events are very dissimilar from one an-
other. Interestingly, humans have been found to
make similar errors. For instance, humans have
been shown to frequently misinterpret a sentence
with inverse role assignment, when the plausibil-
ity of the sentence with swapped role assignment
is very high, as in The mother gave the candle the
daughter, which is often erroneously interpreted
as the daughter receiving the candle, instead of the
literal syntax which says that the candle receives
the daughter (Gibson et al., 2013).

Tilk et al.’s model design makes it more sus-
ceptible to this type of error than humans. The
model lacks the ability to process in both direc-
tions, i.e., to both comprehend and produce the-
matic role marking (approximated here as the-
matic role assignment). We therefore propose to
add a secondary role prediction task to the model,
training it to both produce and comprehend lan-
guage.

In this paper, we train the first model using
multi-task learning (Caruana, 1998) which can ef-
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fectively predict semantic roles for event partic-
ipants as well as perform role-filler prediction1.
Furthermore, we obtain significant improvements
and better-performing event embeddings by an ad-
justment to the architecture (parametric weighted
average of role-filler embeddings) which helps
to capture role-specific information for partici-
pants during the composition process. The new
event embeddings exhibit state-of-the-art perfor-
mance on a correlation task with human thematic
fit judgements and an event similarity task.

Our model is the first joint model for selec-
tional preferences (SPs) prediction and seman-
tic role classification (SRC) to the best of our
knowledge. Previous works used distributional
similarity-based (Zapirain et al., 2013) or LDA-
based (Wu and Palmer, 2015) SPs for semantic
role labelling to leverage lexical sparsity. How-
ever, when it comes to a situation with domain
shift, single task SP models that rely heavily on
syntax have high generalisation error. We show
that the multi-task architecture is better suited to
generalise in that situation and can be potentially
applied to improve current semantic role labelling
systems which rely on small annotated corpora.

Our approach is a conceptual improvement
on previous models because we address mul-
tiple event-representation tasks in a single
model: thematic fit evaluation, role-filler predic-
tion/generation, semantic role classification, event
participant composition, and structured event sim-
ilarity evaluation.

2 Role-Filler Prediction Model

Tilk et al. (2016) proposed a neural network,
the non-incremental role-filler (NNRF) model, for
role-filler prediction which takes a combination of
words and roles as input to predict the filler of a
target role. For example, the model would take
“waiter/ARG0” and “serve/PRD” and target role
“ARG1” as input and return high probabilities to
words like “breakfast”, “dish”, and “drinks”.

The original NNRF model can be seen in Figure
1 (excluding the part of the architecture shown in
the red box). The input layer is a role-specific em-
bedding tensor T ∈ R|V |×|R|×d that is indexed by
two one-hot encoded vectors wi and ri for input
word wi and input role ri, where V is the set of

1The source code and the supplemental document are
available at https://github.com/tony-hong/
event-embedding-multitask

words and R is the set of semantic roles in our
vocabulary. Tilk et al. applied Tensor Factori-
sation, which reduces the number of parameters
to (|V | + |R| + d) × k. The embedding tensor
is factorised into three matrices2: Ae ∈ R|V |×k,
Be ∈ R|R|×k and Ce ∈ Rk×d. The overall em-
bedding for a pair consisting of a word and its role,
referred to as an event participant embedding, is
represented as:

pl = (wiAe ◦ riBe)Ce (1)

where ”◦” is the Hadamard product.
When several word-role pairs l = (wi, ri) ∈ C,

where C is the event context, are given as input,
the model sums up their event participant embed-
ding vectors to yield an event representation e.
Then it passes through one non-linearity layer with
a parametric rectified linear unit (He et al., 2015):
h = PReLU(e+ be) where be is a bias vector.

The output layer consists of a softmax regres-
sion classifier computed as:

ow = Softmaxw(hWw + bw) (2)

where bw is a bias vector. For each target role
rt, the model learns a target role-specific classifier
with weight matrix of W(rt)

w ∈ Rd×|V |, using rt
and event context C to predict the target word wt.
The weight matrices are stacked into an order-3
tensor and then factorised as:

W(rt)
w = Cw diag(rtBw) Aw (3)

where diag(v) is a diagonal matrix with vector v
on its main diagonal.

However, we found that the NNRF model in
some cases relies heavily on lexical features but is
not sensitive enough to semantic role assignments
and hence represents phrases like “boy eats apple”
in a similar way as “apple eats boy”. We believe
that a reason for this lies in the fact that the correct
filler can often be predicted even when the role as-
signment is ignored, i.e., with the current objec-
tive, the model can often neglect the thematic role
information. One could easily imagine that even
humans might show similar behaviour if they only
had to guess meanings from words they hear and
are not required to produce correctly marked lan-
guage themselves. We thus propose to add a sec-
ond task to the network in order to approximate
the dual comprehension and production tasks in
human language learning.

2Further explanations are in the supplemental material.
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Figure 1: Architecture of multi-task role-filler model.

3 Multi-Task Model

Our core idea is to add a second task, semantic role
classification, such that the role-filler prediction
model needs to predict the correct semantic role
label for a target role-filler and a given set of input
word-role pairs, i.e., the event context. Multi-task
learning can integrate different objectives into one
model and has previously been shown to help im-
prove model generalisation (e.g., Caruana, 1998).
The auxiliary task can be considered a regularisa-
tion of the objective function of the main task.

A neural model can be extended to multi-task
architecture straightforwardly via sharing the low-
level distributed representations. We design a
multi-task model (NNRF-MT) which shares the
event participant embedding for the event context
and tackles role-filler prediction and semantic role
classification simultaneously.

Figure 1 shows the NNRF-MT model with
an additional role prediction classifier in the last
layer, indicated by the red box. The new target role
classifier mirrors the design of the original target
word classifier. The output vector of the new target
role classifier is computed as:

or = Softmaxr(hWr + br) (4)

where Wr ∈ Rd×|R| is the weight matrix of the
target role classifier, and br is its bias vector. Like
Equation (3), the weight matrix W

(wt)
r for the tar-

get word wt is factorised as:

W(wt)
r = Cr diag(wtAr) Br (5)

where Ar ∈ R|V |×k(r) .

Figure 2: Architecture of role-filler averaging model.

3.1 Parametric Role-Filler Composition
In the NNRF-MT model, the embedding vectors
of each word-role pair are simply summed up to
represent the event. But in many cases, event par-
ticipants contribute to the event differently. This
has the disadvantage that some important partic-
ipants are not correctly composed. Even worse,
there is no normalization between cases where dif-
ferent numbers of role-filler pairs are available as
context.

We thus propose a parametric architecture
where PReLU is applied to each word-role pair
embedding, and the resulting vectors are then
combined by using the mean composition func-
tion. Parameters inside PReLU can now act as
weights for each role-filler embedding. Comput-
ing the mean can be considered as the normalisa-
tion of role-filler representations within the event
boundary, which can prevent the possible over-
/underflow of the weights of the hidden vector.

With this method, the event embedding is com-
puted as:

e =
1

|C|
∑

l∈C
PReLUl(pl) (6)

and then directly fed into the classifier as the hid-
den vector h. Figure 2 shows the resulting model
named Role-Filler Averaging model (RoFA-MT),
which is identical to the NNRF-MT model, except
for the composition of event participant embed-
dings (marked by the red box).

3.2 Residual Learning
An additional way to reduce the challenge of ex-
ploding or vanishing gradients in factorised ten-
sor is to apply residual learning (He et al., 2016).
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Figure 3: Architecture of residual role-filler averaging
model.

The key idea in residual learning is that an identity
mapping over other layers may be combined with
a model that encodes information through several
layers in order to simultaneously capture lower-
level and higher-level information. We therefore
experiment with residual learning in our RoFA-
MT model (henceforth called ResRoFA-MT): the
event participant vector now consists of a “raw”
vector and a weighted vector that has been fed
through a linear hidden layer, see Figure 3.

The original weight of the role-filler embedding
is passed into the non-linear layer as:
hl = PReLUl(rlCe) where rl = wiAe ◦ rjBe

is the residual (i.e., the composition of word em-
bedding and semantic role embedding). Then the
combination of the output hidden vector hl and the
residual vector goes into the event embedding as:

e =
1

|C|
∑

l∈C
(hlWh + rl) (7)

where Wh is the weight matrix. After that, the
event embedding goes directly into the classifier.

3.3 Multi-Task Training

The multi-task model is trained to optimise two
objective functions in parallel. For each clause in
the training data, we extract the predicate and all
participants. We then choose each word-role pair
as the target and the remainder as context C for
one training sample. We use the multi-task model
to predict the target role given the target filler as
an input and to predict the target filler given the
target role. We use a weighted combination of the
probabilities of the target role and target word to

obtain the overall loss function as:

L = L(w)(C, rt) + αL(r)(C,wt)

where α is the hyper-parameter of the weight of
the semantic role classification task and can be
tuned for different training purposes. In this pa-
per, we choose 1.0 as the weight of semantic role
prediction α to balance between two tasks.

4 Experiments

To learn an event representation from language re-
sources with access to generalised event knowl-
edge, we use the Rollenwechsel-English (RW-
eng) corpus3, a large-scale corpus based on BNC
and ukWaC with about 2B tokens, which contains
automatically generated PropBank-style semantic
role labels for the head words of each argument
(Sayeed et al., 2018).

We choose the first 99.2% as training data,
the next 0.4% as validation data and the last
0.4% as test data, which follows Tilk’s setting
to make a fair comparison. From the training
data, we extract a word list of the 50K most fre-
quent head words (nouns, verbs, adjectives and
adverbs) and add one OOV symbol4. For train-
ing the model, we distinguish between seven
role labels: PRD for predicates, ARG0, ARG1,
ARGM-MNR, ARGM-LOC, ARGM-TMP; all other
roles are mapped onto a category OTHER.

NNRF is the current state-of-the-art model for
event representation; we reimplement this model
and use it as the baseline for our evaluation tasks.
For a fair comparison, we train the NNRF model
and our three multi-task models on the newest ver-
sion of RW-eng corpus. Each model is trained for
27 iterations (or less if the model converged ear-
lier)5.

Because we use random parameter initialisa-
tion, to observe its effect to our evaluations, we
train 10 instances of each model and report aver-
age performance (we do not use these 10 models
as an ensemble method such as labelling by ma-
jority voting).

3http://rollen.mmci.uni-saarland.de/
RW-eng

4A detailed description of data preprocessing is in the sup-
plemental.

5The details of hyper-parameter setting are in the supple-
mental.
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Model Accuracy p-value
NNRF-MT 89.1 -
RoFA-MT 94.8 < 0.0001
ResRoFA-MT 94.7 < 0.0001

Table 1: Semantic role classification results for the
three multi-task architectures.

5 Evaluation: Semantic Role
Classification

We begin by testing the new component of the
model in terms of how well the model can predict
semantic role labels.

5.1 Role Prediction Given Event Context

We evaluate our models on semantic role predic-
tion accuracy given the predicate and other argu-
ments with their roles on the test dataset of the
RW-eng corpus. Table 1 shows that the RoFA-MT
and ResRoFA-MT models outperform the NNRF-
MT model by a statistically significant margin
(tested with McNemar’s test), showing that the
parametric weighted average composition method
leads to significant improvements.

5.2 Classification for Verb-Head Pairs

Semantic role classification systems make heavy
use of syntactic features but can be further im-
proved by integrating models of selectional pref-
erences (Zapirain et al., 2009). Here we compare
the semantics-based role assignments produced by
our model to predictions made by various selec-
tional preference (SP) models in the first evalua-
tion of Zapirain et al. (2013). E.g., the model is to
predict ARG1 for the pair (eatverb, apple) without
any other feature.

Zapirain et al. (2013) combined a verb-role SP
model built on training data and an additional
distributional similarity model trained on a large
scale corpus for estimating the fit between verbs
and their arguments for different roles. These the-
matic fit estimates are used to select the best role
label for each predicate-argument pair.

We consider only following best variants as
baselines:
Zapirain13Pado07: This variant uses a distri-
butional similarity model constructed on a gen-
eral corpus (BNC) with Padó and Lapata (2007)’s
syntax-based method.
Zapirain13Lin98in−domain: This variant contains
Lin (1998)’s distributional similarity model which

uses syntax-based clustering. The model is pre-
computed on a mixed corpus (including WSJ)
which is in the same domain as the WSJ test set.

We apply our trained role labelling model di-
rectly to the test set, without touching the WSJ
training/validation set. Following the baselines,
for semantic roles which are not represented in our
model, we do not make any prediction (this is re-
flected in lower recall for those cases).

The model is evaluated on the data set from the
CoNLL-2005 shared task (Carreras and Màrquez,
2005), which contains the WSJ corpus as part of
its training/validation/test sets and the Brown cor-
pus as an out-of-domain test set (marked in Table 2
as Brown). We estimate 99% confidence intervals
using the bootstrapping method, with 100 replica-
tions. We also construct a trivial baseline model,
the ZeroR classifier, which predicts the majority
class ARG1 given any input.

Table 2 shows that the baseline model using
Lin’s similarities (Zapirain13Lin98in−domain) works
best on the WSJ test dataset, statistically signif-
icantly outperforming each of the other methods
(p < 0.01). However, this can be explained by the
fact that this model is using semantic similarities
obtained from the same domain as the WSJ test
set. Among the models without using in-domain
semantic similarity, ResRoFA-MT is significantly
better than all others (p < 0.01).

On the Brown data, which is out-of-domain for
all models, the ResRoFA-MT model achieves the
best result and outperforms previous baselines sig-
nificantly (p < 0.01). Without any training on the
WSJ corpus, our best model has a much smaller
gap between test and ood dataset (only about 3 F1

points), which indicates that our multi-task models
generalise better than previous baselines.

5.3 End-to-End Semantic Role Labelling

Future work will need to investigate in more de-
tail whether the multi-task models proposed here
can be used to improve the performance of exist-
ing semantic role labellers. While our model can-
not be directly applied to a standard semantic role
labelling task (because it assigns roles only to head
words), we were able to combine the model with
an existing semantic role labeller and obtained
promising results. Adding embeddings based on
the predicate and target word hCrdiag(wtAr)
from the NNRF-MT model (see Equation (4), (5))
as a feature to the MATE semantic role labeller
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In domain: WSJ test Out-of-domain: Brown
Model P R F1 P R F1 Ftest

1 - Food
1

ZeroR baseline 36.11 36.11 36.11 32.46 32.46 32.46 3.65
Zapirain13Pado07 53.13 50.44 51.75 43.24 35.27 38.85 12.90
Zapirain13Lin98in−domain 59.93 59.38 59.65** 50.79 48.39 49.56 10.09
NNRF-MT 55.80 49.16 52.27 53.43 45.42 49.10 3.17
RoFA-MT 67.93 51.19 58.39 65.71 47.36 55.05 3.34
ResRoFA-MT 68.03 51.27 58.47 66.39 47.85 55.62** 2.85

Table 2: Results of semantic role classification given verb-head pairs. P is precision, R is recall and F1 is F-
measure. F1 values with a mark are significantly higher than all other values in the same column, where (**)
p < 0.01.

(Björkelund et al., 2010; Roth and Woodsend,
2014) leads to a small but statistically significant
improvement of 0.11 points in F1 score on the out-
of-domain dataset used in the CoNLL-2009 se-
mantic role labelling task (Hajič et al., 2009).

6 Evaluation: Thematic Fit Modelling

Next, we evaluate our multi-task models against
human thematic fit ratings in order to assess
whether the inclusion of the multi-task architec-
ture leads to improvements on this task, follow-
ing Padó et al. (2009); Baroni and Lenci (2010);
Greenberg et al. (2015b); Sayeed et al. (2016).

6.1 Datasets
The human judgement data consists of verbs,
a verbal argument with its role, and an av-
erage fit judgement score on a scale from
1 (least common) to 7 (most common), e.g.,
ask, police/AGENT, 6.5. We used:
Pado07: the dataset proposed by Pado (2007) con-
sists of 414 predicate-participant pairs with judge-
ments. The roles are agent and patient.
McRae05: the dataset from McRae et al. (2005)
contains 1444 judgements of verbs with an agent
or patient.
Ferretti01: the dataset proposed by Ferretti et al.
(2001) contains 274 ratings for predicate-location
pairs (F-Loc) and 248 rating for predicate-
instrument pairs (F-Inst).
GDS: the dataset from Greenberg et al. (2015a)
contains 720 ratings for predicates and patients.

6.2 Baseline Models
We compare our models against previous distribu-
tional semantic models used for thematic fit tasks;
many of these are from the Distributional Memory
(DM) framework (Baroni and Lenci, 2010) whose
tensor space is a high-dimensional count space

of verb-noun-relation tuples from a large-scale
mixed corpus smoothed by local mutual informa-
tion. The key idea in applying DM models to the
thematic fit rating task is to construct a “prototype
filler”, and compare candidate fillers against the
prototype using cosine similarity. The baseline
models we compare against include NNRF and:
TypeDM: This is best-performing DM model
from Baroni and Lenci (2010). Relations of
verb-noun pairs are obtained using hand-crafted
rules. The results of this model are from reimple-
mentations in Greenberg et al. (2015a,b).
SDDM-mo: This DM comes from Sayeed
and Demberg (2014) and is constructed with
automatically-extracted semantic information.
GSD15: This is the overall best-performing
model from Greenberg et al. (2015b) using
hierarchical clustering of typical role-fillers to
construct prototype on TypeDM.
SCLB17: This is the best-performing model on
F-Inst from Santus et al. (2017). The number of
fillers used in prototype construction is 30 and
the number of top features is 2000. We report
the highest results among the different types of
dependency contexts in their framework.

6.3 Methods and Results

We correlated the human judgements with the out-
put probability of the role-filler given the predi-
cate and the role. To avoid conflation between
frequency in the training dataset and plausibility
of the role-filler, we adopt the practice proposed
in Tilk et al. (2016) to set the bias of the output
layer to zero during the evaluation. We consider
the NNRF model as our baseline and perform a
two-tailed t-test to calculate statistical significance
between the baseline model and each of the three
models proposed in this paper.
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Model Pado07 McRae05 F-Loc F-Inst GDS avg
TypeDM 53 33 23 36 46 40.8
SDDM-mo 56 27 13 28 - -
GSD15 50 36 29 42 48 40.5
SCLB17 49 28 37 50 - -
NNRF 43.3 35.9 46.5 52.1 57.6 44.2
NNRF-MT 43.2 36.1 46.3 50.0* 57.2 44.0
RoFA-MT 52.2** 41.9** 45.9 49.4* 60.7** 48.6**
ResRoFA-MT 53.0** 42.5** 46.3 47.7** 60.8** 48.9**

Table 3: Results on human thematic fit judgement correlation task (Spearman’s ρ × 100) compared to previous
work. The last column reports the weighted average results by numbers of entries of all five datasets. Values with
a mark are significantly different from the baseline model (NNRF), where (*) p < 0.05, (**) p < 0.01.

Table 3 shows results for all models and
datasets. The ResRoFA-MT model performs best
overall, improving more than 4 points over the
baseline. The multi-task model (NNRF-MT) has
performance similar to baseline (NNRF). Our new
architecture using a parametric weighted average
over event participant embeddings (RoFA-MT)
outperforms simple summation (NNRF-MT), es-
pecially on the Pado07, McRae05 and GDS
datasets. The residual method leads to further
minor improvements on the Pado07, F-Loc and
GDS datasets. However, on predicate-instrument
pairs of the F-Inst dataset, NNRF outperforms
other models significantly. We think that multi-
task models are biased towards roles with a larger
frequency like ARG0 or ARG1, which is proved in
the ablation study (see Section 8).

7 Evaluation: Compositionality

The thematic fit judgements from the tasks dis-
cussed in section 6 only contain ratings of the fit
between the predicate and one role-filler. How-
ever, other event participants contained in a clause
can affect human expectations of the upcoming
role-fillers. For instance, mechanics are likely to
check tires, while journalists are likely to check
spellings. The B10 dataset (Bicknell et al., 2010)
contains human judgements for 64 pairs of agent-
verb-patient triples, where one triple in each pair
is plausible (e.g., “journalist check spelling”), and
one is implausible (e.g., “journalist check type”).
A model is evaluated based on whether it success-
fully assigns a higher likelihood/rating to the plau-
sible than to the implausible object (also referred
to as the Accuracy 1 metric in Tilk et al. (2016)).
The baseline models are NNRF as well as:
Random: The naive baseline model consists of

choosing the tags uniformly at random.
Lenci11: Lenci (2011) proposed a composition
model for TypeDM.

Table 4 shows that our new composition method
based on parametric weighted average outper-
forms previous models; the RoFA-MT model
achieves the highest accuracy overall and outper-
forms the baseline (NNRF) significantly.

7.1 Event Similarity

Lastly, we evaluate the quality of the event embed-
dings learned via the multi-task network models.
While word embeddings from tools like word2vec
(Mikolov et al., 2013) are standard methods for
obtaining word similarities, identifying a suitable
method for more general event similarity estima-
tion is still a relevant problem. The model pro-
posed here constitutes an interesting method for
obtaining event embeddings, as it is trained on two
semantics-focused prediction tasks.

For evaluation, we use the sentence similar-
ity task proposed by Grefenstette and Sadrzadeh
(2015) (second experiment in their paper). For
evaluation, we use the re-annotated dataset, named
GS13, constructed in 2013 by Kartsaklis and
Sadrzadeh (2014). Each row in the dataset con-
tains a participant ID, two sentences, a human
evaluation score of their similarity from 1 to 7, and
a HIGH/LOW tag indicating the similarity group of
two sentences. An example entry is:

p1, (table, draw, eye), (table, attract, eye), 7, HIGH

where p1 is the participant ID. We compare our
models’ performance to NNRF, as well as:
Kronecker: The best-performing model in
Grefenstette and Sadrzadeh (2015) using Kro-
necker product as its composition method.
W2V: The sentence representations in W2V are
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Random Lenci11 NNRF NNRF-MT RoFA-MT ResRoFA-MT
Accuracy 1 0.50 0.67 0.73 0.71 0.76* 0.75

Table 4: Results on agent-patient compositionality evaluation comparing to previous models. Values with a mark
are significantly different from the baseline model (NNRF), where (*) p < 0.05.

W2V Kronecker NNRF NNRF-MT RoFA-MT ResRoFA-MT Human
ρ× 100 13 26 34.2 35.7 34.0 36.7** 60

Table 5: Results on event similarity evaluation comparing to previous models. Values with a mark are significantly
different from the baseline model (NNRF), where (*) p < 0.05, (**) p < 0.01.

constructed by element-wise addition of pre-
trained word2vec (Mikolov et al., 2013) word em-
beddings.
Human: Mean inter-annotator correlation using
Spearman’s ρ. This can be considered to be the
upper bound of the task.

To estimate sentence similarity, we feed all
three words and their roles (ARG0/PRD/ARG1)
into each model. We then extract the event rep-
resentation vectors for both sentences and com-
pute their cosine similarity. Table 5 shows corre-
lation coefficients in Spearman’s ρ× 100 between
sentence-pair similarities and human judgement
scores. ResRoFA-MT obtains best results, indi-
cating that the secondary task helped also to im-
prove the network-internal event representations.
These results indicate that ResRoFA-MT-based
event embeddings may be suitable for applications
and tasks where similarity estimates for larger
phrases are needed (cf. Wanzare et al., 2017).

8 Ablation Study: Single-task Variants

From the evaluations above, we notice that the
performance of the multi-task model with sim-
ple addition composition method (NNRF-MT) is
not significantly different from the single task
model (NNRF). In order to test whether the addi-
tional training task improves model performance,
we develop single-task variants for RoFA-MT
and ResRoFA-MT models, named RoFA-ST and
ResRoFA-ST correspondingly, by taking out the
semantic role classifiers. We then perform one-
trial experiments and evaluate the models on the-
matic fit modelling and compositionality tasks by
comparing the one-trial results of single-task vari-
ants versus the confidence intervals obtained from
the 10 runs of the multi-task models.

The results in Table 6 show that multi-task
models significantly outperform single-task mod-
els on Pado07, McRae05, F-Loc, GDS and over-

all. However, single-task variants are superior
to multi-task models on F-Inst dataset, which is
consistent with our findings in Section 6.2. On
the compositionality tasks, the multi-task architec-
ture improves only the performance of the resid-
ual weighted average model (ResRoFA-MT) but
harms the event similarity performance of the
weighted average model (RoFA-MT).

9 Related Work

Modi et al. (2017) proposed a compositional
neural model for referent prediction in which
event embeddings were constructed via the sum
of predicate and argument embeddings. Weber
et al. (2017) proposed a tensor-based composition
model to construct event embeddings with agents
and patients. They represented predicates as ten-
sors and arguments as vectors. Cheng and Erk
(2018) proposed a neural-based model to predict
implicit arguments with event knowledge in which
the event embeddings are composed with a two-
layer feed-forward neural network.

10 Conclusions

This paper introduced two innovations to the mod-
elling of events and their participants at the clause
level: (1) we proposed a multi-task model of role-
filler prediction and semantic role classification;
(2) we proposed a parametric weighted average
method which improves the composition of event
participants in the input.

The introduction of semantic role classification
as a secondary task addressed a weakness of Tilk
et al. (2016)’s model. The semantic role classifi-
cation task requires a much stronger internal rep-
resentation of the semantic roles on top of lexical
information. Thanks to the internal hidden layer
shared between the two tasks, the event represen-
tation profited from the additional learning objec-
tive, increasing the models’ performance on esti-
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Model Pado07 McRae05 F-Loc F-Inst GDS avg B10 GS13
RoFA-ST 44.1*** 36.6*** 44.4* 56.7*** 57.3*** 44.5*** 75.0 36.3**
RoFA-MT 52.2 41.9 45.9 49.4 60.7 48.6 76.1 34.0
ResRoFA-ST 42.3*** 35.8*** 44.5** 50.4* 56.9*** 43.6*** 67.2*** 32.5***
ResRoFA-MT 53.0 42.5 46.3 47.7 60.8 48.9 74.5 36.7

Table 6: Ablation study of single task variants. Underlined values indicate the best values with the same com-
position method, and bold values indicate the best values on that data set. Values with a mark are significantly
different from the multi-task baseline models (RoFA-MT / ResRoFA-MT), where (*) p < 0.05, (**) p < 0.01,
(***) p < 0.001.

mating event similarity.
We also performed a study regarding the useful-

ness of our purely semantics-based representations
for semantic role labelling. While many seman-
tic role labellers rely predominantly on syntax, our
approach addresses the likelihood that a semantic
role should be assigned purely based on its plausi-
bility to fill that role content-wise. We showed that
the semantics-based role label predictions gener-
ated by our multi-task model outperform the ones
based on earlier syntax-based selectional prefer-
ence methods and observe promising results for
integrating the model with a semantic role labeller
on out-of-domain data.

Our parametric composition method (RoFA-
MT) composes event embeddings in the hidden
layer, which captures role-specific information
during the composition process and reduces the
risk of overflow and underflow of the hidden layer
weights. We additionally included the residual
learning method alongside RoFA-MT (ResRoFA-
MT), further mitigating the vanishing/exploding
gradient problem and allowing the transmission
of information from lower levels directly into the
event embedding. This approach provided the
overall best result of all models on the thematic
fit human judgement task as well as the event sim-
ilarity task and competitive results on the tasks in-
dividually.

10.1 Future Work

In future work, the model may be improved
by including visual information from photos and
videos. Common-sense reasoning is becoming
a new focus (Mostafazadeh et al., 2016; Baroni
et al., 2017). One characteristic of common-sense
knowledge is that it is often not explicitly men-
tioned in language precisely because it constitutes
common-sense knowledge and is hence uninfor-
mative as it can easily be inferred (Mukuze et al.,

2018). Syntactically optional event participants
(such as the kitchen as location for the predicate
“cook”) are thus often omitted in text; this sets a
limit to what can be learned from text only.

The prospect of applying our models indepen-
dently to SRL tasks suggests an area of poten-
tial future work. Our models currently use only
the predicates and head words of arguments. In-
stead of depending on corpora with extracted head
words, we can integrate an attention mechanism
(Vaswani et al., 2017) to capture the position of
syntactic heads. We are working on extending our
models to use all words, which will enable testing
as an SRL tool.

Finally, the predictive nature of this type of
model can potentially enable its deployment in in-
cremental semantic parsing (Konstas et al., 2014;
Konstas and Keller, 2015) by combining the multi-
task design with the incremental architecture in
(Tilk et al., 2016). We are continuing to develop
this and other ways of employing models of event
representation that simultaneously predict event
participants and assess the fit of given participants.
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Abstract

This paper presents a collection to assess
meaning components in German complex
verbs, which frequently undergo meaning
shifts. We use a novel strategy to obtain source
and target domain characterisations via sen-
tence generation rather than sentence annota-
tion. A selection of arrows adds spatial dir-
ectional information to the generated contexts.
We provide a broad qualitative description of
the dataset, and a series of standard classifica-
tion experiments verifies the quantitative reli-
ability of the presented resource. The setup for
collecting the meaning components is applic-
able also to other languages, regarding com-
plex verbs as well as other language-specific
targets that involve meaning shifts.

1 Introduction

German particle verbs (PVs) are complex verb
structures such as anstrahlen ‘to beam/smile at’
that combine a prefix particle (an) with a base
verb (strahlen ‘to beam’). PVs represent a type
of multi-word expressions, which are generally
known as a “pain in the neck for NLP” (Sag
et al., 2002). Even more, German PVs pose a
specific challenge for NLP tasks and applications,
because the particles are highly ambiguous; e.g.,
the particle an has a partitive meaning in anbeißen
’to take a bite’, a cumulative meaning in anhäufen
’to pile up’, and a topological meaning in an-
binden ’to tie to’ (Springorum, 2011). In addi-
tion, they often trigger meaning shifts of the base
verbs (BVs), cf. Springorum et al. (2013); e.g.,
the PV abschminken with the BV schminken ’to
put on make-up’ has a literal meaning (’to remove
make-up’) and a shifted, non-literal meaning (’to
forget about something’).1

1We deliberately make use of the general term “meaning
shift” in comparison to specific instances such as metaphor

With PVs representing a large and challen-
ging class in the lexicon, their meaning com-
ponents and their mechanisms of compositional-
ity have received a considerable amount of in-
terdisciplinary research interest. For example, a
series of formal-semantic analyses manually clas-
sified German PVs (with particles ab, an, auf,
nach) into soft semantic classes (Lechler and
Roßdeutscher, 2009; Haselbach, 2011; Kliche,
2011; Springorum, 2011). Corpus studies and an-
notations demonstrated the potential of German
PVs to appear in non-literal language usage, and
to trigger meaning shifts (Springorum et al., 2013;
Köper and Schulte im Walde, 2016b). Regard-
ing computational models, the majority of exist-
ing approaches to PV meaning addressed the auto-
matic prediction of German PV compositionality
(Salehi et al., 2014; Bott and Schulte im Walde,
2015; Köper and Schulte im Walde, 2017b), in a
similar vein as computational approaches for Eng-
lish PVs (Baldwin et al., 2003; Bannard, 2005;
McCarthy et al., 2003; Kim and Baldwin, 2007;
Salehi and Cook, 2013; Salehi et al., 2014). Only
few approaches to German and English PVs have
included the meaning contributions of the particles
into the prediction of PV meaning (Bannard, 2005;
Cook and Stevenson, 2006; Köper et al., 2016).

Overall, we are faced with a variety of interdis-
ciplinary approaches to identifying and modelling
the meaning components and the composite mean-
ings of German PVs. Current and future research
activities are however hindered by a lack of re-
sources that go beyond PV–BV compositionality
and can serve as gold standards for assessing

(i) the meaning contributions of the notoriously
ambiguous particles, and

(ii) meaning shifts of PVs in comparison to their
BVs.

and metonymy because non-literal language usage of PVs is
not restricted to a specific type of meaning shift.
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In this paper, we present a new collection for
German PVs that aims to improve on this situ-
ation. The dataset includes 138 German BVs and
their 323 existing PVs with particle prefixes ab,
an, auf, aus. For all target verbs, we collected

1. sentences from 15 human participants across
a specified set of domains, to address their
ambiguity in context; and

2. spatial directional information (UP, DOWN,
RIGHT, LEFT), also in context.

Meaning shifts are typically represented as a map-
ping from a rather concrete source-domain mean-
ing to a rather abstract target-domain meaning
(Lakoff and Johnson, 1980). For example, the ab-
stract conceptual domain TIME may be illustrated
in terms of the structurally similar, more con-
crete domain MONEY, enabling non-literal lan-
guage such as to save time and to spend time. For
German PVs, meaning shifts frequently take place
when combining a BV from a concrete source do-
main with a particle (as in the abschminken ex-
ample above, where the BV schminken is taken
from the domain HUMAN BODY), resulting in a
PV meaning (possibly among other meanings) re-
lated to an abstract target domain such as DESIRE.

Targeting the representation of meaning shifts
with our collection, we specified source domains
for the BVs (such as MENSCHLICHER KÖRPER

’HUMAN BODY’) and target domains for the PVs
(such as ZEIT ’TIME’). In this way, our data-
set offers source–target domain combinations for
assessing BV–PV meaning shifts across PVs and
particle types. Our domains were taken from con-
ceptual specifications in (Kövecses, 2002), which
cluster semantically and encyclopedically related
concepts to ensure a generally applicable set of
domains involved in meaning shifts. The spatial
directional information is captured through simple
directional arrows and enables a view on spatial
meaning components of particle types and PVs,
which supposedly represent core meaning dimen-
sions of PVs (Frassinelli et al., 2017).

While the collection focuses on German PVs,
the representation of the meaning components
(source and target domains, as well as directions)
is language-independent. Therefore, the setup
for collecting the meaning components that we
present below should also be applicable to other
languages, regarding complex verbs as well as
regarding other language-specific targets that un-
dergo meaning shifts.

2 Related Work

PV Meaning Components and Classifications
So far, the most extensive manual resources re-
garding German PV meaning components rely on
formal semantic research within the framework
of Discourse Representation Theory (DRT), cf.
Kamp and Reyle (1993). Here, detailed word-
syntactic analyses and soft classifications were
created for German PVs with the particles auf
(Lechler and Roßdeutscher, 2009), nach (Hasel-
bach, 2011), ab (Kliche, 2011), and an (Sprin-
gorum, 2011).

PV Compositionality Most manual and com-
putational research on PV meaning addressed the
meaning of a PV through its degree of composi-
tionality, for German as well as for English com-
plex verbs. McCarthy et al. (2003) exploited vari-
ous measures on distributional descriptions and
nearest neighbours to predict the degree of com-
positionality of English PVs with regard to their
BVs. Baldwin et al. (2003) defined Latent Se-
mantic Analysis (LSA) models (Deerwester et al.,
1990) for English PVs and their constituents, to
determine the degree of compositionality through
distributional similarity, and evaluated the predic-
tions against various WordNet-based gold stand-
ards. Bannard (2005) defined the compositional-
ity of an English PV as an entailment relation-
ship between the PV and its constituents, and
compared four distributional models against hu-
man entailment judgements. Cook and Steven-
son (2006) addressed not only the compositional-
ity but also the meanings of English particles and
PVs. Focusing on the particle up, they performed
a type-based classification using window-driven
and syntactic distributional information about the
PVs, particles and BVs. Kim and Baldwin (2007)
combined standard distributional similarity meas-
ures with WordNet-based hypernymy information
to predict English PV compositionality. Kühner
and Schulte im Walde (2010), Bott and Schulte im
Walde (2017) and Köper and Schulte im Walde
(2017a) used unsupervised (soft) clustering and
multi-sense embeddings to determine the degree
of compositionality of German PVs. Salehi and
Cook (2013) and Salehi et al. (2014) relied on
translations into multiple languages in order to
predict the degree of compositionality for Eng-
lish PVs. Bott and Schulte im Walde (2014) and
Bott and Schulte im Walde (2015) explored and
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compared word-based and syntax-based distribu-
tional models in the prediction of German PVs.
Köper and Schulte im Walde (2017b) integrated
visual information into a similar textual distribu-
tional model.

Altogether, most PV gold standards that are
used for evaluation within the above approaches
to compositionality rate the similarity between PV
and BV, ignoring the contribution of the particle
meaning. Exceptions to this is the gold standard
by Bannard (2005), rating the entailment between
the PV and its particle as well as between the PV
and its BV. In addition, all PV gold standards are
type-based, i.e., rating the compositionality for a
PV type, rather than for PV senses in context.

Spatial Meaning Components The Grounding
Theory indicates that the mental representation
of a concept is built not only through linguistic
exposure but also incorporating multi-modal in-
formation extracted from real-world situations,
including auditory, visual, etc. stimuli (Bars-
alou, 1999; Glenberg and Kaschak, 2002; Shapiro,
2007). Spatial meaning plays an important role
in grounding information. For example, Richard-
son et al. (2003) showed an interaction between
spatial properties of verbs and their positions in
language comprehension. Dudschig et al. (2012)
and Kaup et al. (2012) demonstrated effects of typ-
ical locations of a word’s referent in language pro-
cessing. Specifically for German PVs, Frassinelli
et al. (2017) found spatial meaning (mis)matches
for PVs with particles an and auf, when combining
them with primarily vertical vs. horizontal BVs.
The spatial information in our dataset provides
an opportunity to further explore spatial meaning
components in German BVs and PVs.

Meaning Shift Datasets Lakoff and Johnson
(1980) and Gentner (1983) were the first to specify
systematic conceptual mappings between two do-
mains, within their theories of conventional meta-
phors and analogy by structure-mapping, respect-
ively. In contrast, practical advice and projects
on the actual annotation of source/domain categor-
isations or meaning shifts are sparse. The Mas-
ter Metaphor List (MML) represents an extens-
ive manual collection of metaphorical mappings
between source and target domains (Lakoff et al.,
1991) but from a practical point of view has been
critised for its incoherent levels of specificity and
its lack of coverage by Lönneker-Rodman (2008),

who relied on the MML next to EuroWordNet
when annotating a total of 1,650 French and Ger-
man metaphor instances. Similarly, Shutova and
Teufel (2010) used the source and target domains
from the MML but relied only on a subset of the
domains, which they then extended for their an-
notation purposes.

As to our knowledge, there is no previous data-
set on meaning shifts of complex verbs, other than
a smaller-scale collection developed in parallel by
ourselves, which however focuses on analogies in
meaning shifts rather than source–target domains
(Köper and Schulte im Walde, 2018). Some data-
sets include non-literal meanings of verbs (Birke
and Sarkar, 2006; Turney et al., 2011; Shutova
et al., 2013; Köper and Schulte im Walde, 2016b),
and the MML-based meaning shift annotations
by Lönneker-Rodman (2008) and Shutova and
Teufel (2010) also include verbs but are less target-
specific than our work. In addition, while both
Lönneker-Rodman (2008) and Shutova and Teufel
(2010) asked their annotators to label words in
their corpus data, we follow a different strategy
and ask our participants to generate sentences ac-
cording to domain-specific target senses.

3 Target Verbs, Domains, Directionalities

In this section, we describe our selections and rep-
resentations of BV and PV targets (Section 3.1),
the source and target domains (Section 3.2), and
the directional arrows (Section 3.3).

3.1 German Base and Particle Verbs
Based on the source domain descriptions by
Kövecses (2002), cf. Section 3.2 below, we iden-
tified BVs which (i) supposedly belong to the re-
spective source domain, and (ii) we expected to
undergo meaning shifts when combined with one
of our target particle types, as based on our lin-
guistic expertise from previous work (see related
work above).

All of the BVs were systematically combined
with the four prefix particles ab, an, auf, aus, res-
ulting in a total of 552 PVs. Since we did not want
to include neologisms into our PV targets, we then
checked the PV existence in the online version of
the German dictionary DUDEN2. The final list of
target PVs that were found in the dictionary com-
prised 323 verbs.

2www.duden.de/suchen/dudenonline/
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Source Domains Target Domains
Menschlicher Körper Human Body Emotion und Gefühl Emotion and Feeling
Gesundheit und Krankheit Health and Illness Wunsch und Sehnsucht Desire
Tiere Animals Moral Morality
Pflanzen Plants Gedanke Thought
Gebäude und Konstruktion Buildings and Construction Gesellschaft und Nation Society and Nation
Maschinen und Werkzeuge Machines and Tools Wirtschaft und Ökonomie Economy
Spiele und Sport Games and Sports Menschliche Beziehungen Human Relationships
Geld und Handel Money and Economic Transaction Kommunikation Communication
Kochen und Essen Cooking and Food Zeit Time
Hitze und Kälte Heat and Cold Leben und Tod Life and Death
Licht und Dunkelheit Light and Darkness Religion Religion
Kräfte Forces Ereignis und Handlung Event and Action
Bewegung und Richtung Movement and Direction
Geräusch und Klang Sound

Table 1: Source and target domains.

3.2 Domains of Meaning Shifts

The Master Metaphor List (MML) provides the
most extensive list of source–domain shift defin-
itions but has been criticised for being incomplete
regarding corpus annotations (Lönneker-Rodman,
2008; Shutova and Teufel, 2010), cf. Section 2.
In addition, we found the MML and an extended
subset as provided by Shutova and Teufel (2010)
impractical to apply because the lists use too many
categories that are based on too diverse motiva-
tions, such as event structures (e.g., change, caus-
ality, existence, creation) vs. event types (e.g.,
mental objects, beliefs, social forces).

Instead, our source and target domains were
taken from specifications in (Kövecses, 2002),
which we assumed to ensure a more stratified and
generally applicable set of domains involved in
meaning shifts. Table 1 lists all 13 source and
12 target domains by Kövecses (2002), includ-
ing both the original English terms from Kövecses
(2002) and the German translations that we used
in our collection. Regarding the source domains,
we added one domain to Kövecses’ original list,
i.e., SOUND, which we expected to play a role in
BV–PV meaning shifts (Springorum et al., 2013).

3.3 Spatial Directionality Arrows

According to Viberg (1983), spatial experience
provides a cognitive structure for the concepts un-
derlying language. Given that we focus on PVs
with prepositional particles (ab, an, auf, aus), we
assume that the particles are spatially grounded,
similar to preposition meanings which indicate
spatial fundamentals (Herskovits, 1986; Dirven,
1993) and structure space regarding location, ori-
entation, and direction (Zwarts, 2017).

We decided to focus on directionality as a cent-
ral function in space, and to use arrows as visual
expressions of directional meaning, given that (i)
visual expressions are supposedly analogous ex-
pressions in language and categorise meaning, cf.
Tversky (2011); (ii) arrows are asymmetric lines
that “fly in the direction of the arrowhead” and
provide structural organisation (Heiser and Tver-
sky, 2006; Tversky, 2011); and (iii) directed ar-
rows provide a simple but unambiguous depictive
expression for direction in space. Our selection of
arrows uses the four basic directions

UP ↑
DOWN ↓

LEFT←
RIGHT→

4 Dataset3

In this section, we describe our collection of mean-
ing components from three different perspectives:
the instructions for annotators (Section 4.1), a
broad qualitative description of the dataset (Sec-
tion 4.2), and classification experiments to verify
the quantitative value of the resource (Section 4.3).

4.1 Annotation Instructions
We randomly distributed BVs and PVs over lists
with 35 verbs each. The annotators were asked

(i) to choose one or more pre-defined semantic
domain classes for each verb,

(ii) to provide an example sentence to illustrate
the class assignment, and

(iii) to select an arrow that intuitively corres-
ponds to the generated example sentence.

3The dataset is publicly available from www.ims.
uni-stuttgart.de/data/pv-bv-domains/.
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Figure 1: Example annotation for the verb heulen
’to howl’ with (i) a selection of three source do-
main classes, (ii) the corresponding three sen-
tences, and (iii) the corresponding three arrows.

The classes (i.e., the source domains in the BV
lists, and the target domains in the PV lists) were
described by key words (e.g., the German equi-
valents of appearance, growth, cultivation, care,
use for the source domain PFLANZEN ’PLANTS’).
Then, the annotators were provided one example
annotation (cf. Figure 1 for the verb heulen ’to
howl’) before they started the annotation process.

4.2 Qualitative Description
The annotations enable multiple views into mean-
ing components of the underlying BVs and PVs on
a token basis. In the following, we provide selec-
ted analyses and interactions regarding domains
and directions (Section 4.2.1) and non-literal lan-
guage and meaning shifts (Section 4.2.2).

4.2.1 Analyses of Domains and Directions
Table 2 shows the total number of sentences that
were generated by the participants, and the pro-

portions per domain. Similarly, Table 3 shows the
proportions per arrow type across the generated
sentences.

In total, we collected 2,933 sentences across the
138 BVs and the 14 source domains, and 4,487
sentences across the 323 PVs and the 12 target do-
mains. We find a rather skewed distribution for
the number of sentences per verb type, varying
between 2–47 for BVs and 1–30 for PVs; still,
the collection comprises ≥10 sentences per verb
for 134 out of 138 BVs (97%), and for 277 out
of 323 PVs (86%), as illustrated in the number of
sentences per verb type in Figures 2 and 3.

Figure 2: Number of generated sentences per BV.

Figure 3: Number of generated sentences per PV.

The distribution of source domain sentences
across domains ranges from a proportion of 3.41%
for the domain FORCES up to 14.69% for the do-
main HUMAN BODY. The distribution of target
domain sentences is more skewed, ranging from
0.47% for the domain RELIGION up to 33.88%
for the domain EVENT/ACTION. Regarding dir-
ectional information, we find a considerably low
proportion of ≈10% for the left arrow (←), while
the other three directions (up, down, right) re-
ceived between 22% and 30%. Table 3 also shows
that participants often chose more than one arrow
for a specific generated sentence. We list those
nine arrows and arrow combinations that were se-
lected >50 times in total, i.e., across BV and PV
sentences.
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Source Domains No. of Sentences Target Domains No. of Sentences
Human Body 431 14.69% Event/Action 1,520 33.88%
Animals 322 10.98% Economy 460 10.25%
Health/Illness 251 8.56% Emotion/Feeling 452 10.07%
Machines/Tools 242 8.25% Human Relationships 383 8.54%
Games/Sports 211 7.19% Life/Death 365 8.13%
Cooking/Food 210 7.16% Time 292 6.51%
Plants 207 7.06% Thought 284 6.33%
Economic Transaction 190 6.48% Communication 280 6.24%
Buildings/Construction 167 5.69% Society/Nation 181 4.03%
Sound 165 5.63% Desire 150 3.34%
Heat/Cold 156 5.32% Morality 99 2.21%
Movement/Direction 154 5.25% Religion 21 0.47%
Light/Darkness 127 4.33%
Forces 100 3.41%
Total: 2,933 100.00% Total: 4,487 100.00%

Table 2: Source and target domains: number and proportions of generated sentences per domain.

Source Domain Directions No. of Sentences Target Domain Directions No. of Sentences
↓ 879 29.97% → 1,300 28.97%
↑ 782 26.66% ↓ 1,218 27.15%
→ 648 22.09% ↑ 1,113 24.80%
← 270 9.21% ← 462 10.30%
↔ 128 4.36% ↔ 178 3.97%
↔ l 58 1.98% ↓ → 52 1.16%
l 50 1.70% ↑ → 44 0.98%
↑ → 16 0.55% l ↔ 28 0.62%
↓ → 12 0.41% l 27 0.60%

other combinations 69 0.24% other combinations 54 1.20%
no choice 21 0.72% no choice 21 0.47%

Total: 2,933 100.00% Total: 4,487 100.00%

Table 3: Directional information: number and proportions of selected arrows and arrow combinations.

BV/PV Domain Direction Sentence
BV LIGHT/DARKNESS ↑ Der Diamant funkelt im Licht.

‘The diamond sparkles in the light.’
BV PLANTS ↓ Die Blätter fallen von den Bäumen.

‘The leaves fall from the trees.’
BV FORCES ← Er bog das Kupferrohr.

‘He bent the copper pipe.’
BV ANIMALS ↔ Die Bullen fechten miteinander.

‘The bulls fence with each other.’
BV HEAT/COLD ↔ l Das Feuer brennt heiß.

‘The fire is burning hot.’
PV MORALITY ↓ Du solltest von deinem hohen Ross absteigen.

‘You should step down off your pedestal.’
PV EMOTION/FEELING ↑ Der Druck wächst kurz vor der Präsentation an.

‘The pressure increases shortly before the presentation.’
PV HUMAN-RELATIONSHIPS → Sie lässt ihn eiskalt abblitzen.

‘She turns him down cold-bloodedly.’
PV LIFE/DEATH l Musst du mein ganzes Leben aufwühlen?

‘Do you have to chum up my whole life?’
PV COMMUNICATION ↔ Er kauft ihr die Lüge problemlos ab.

‘He believes her lie without any doubts.’

Table 4: Example BV and PV sentences with selected domains and directions.
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Figure 4: Interaction of domains and directionality.

Figure 4 illustrates how source and target
domains interact with the arrows as indicators of
directionality. As in the overall picture in Table 3,
the proportions for the direction LEFT are consid-
erably lower than for the other directions, with
few domains receiving up to 15–17%: FORCES

and MONEY/ECONOMIC TRANSACTION in the
source sentences, and MORALITY and RELIGION

in the target sentences. The direction RIGHT is
a very strong indicator of the source domains
MOVEMENT/DIRECTION, GAMES/SPORTS,
MACHINES/TOOLS and the target domains
COMMUNICATION, TIME, THOUGHT, SOCI-
ETY/NATION; the direction UP is a very strong in-
dicator of the source domains LIGHT/DARKNESS,
PLANTS and COOKING/FOOD and the target do-
mains EMOTION/FEELING and RELIGION;
the direction DOWN is a very strong indic-
ator of the source domains HEALTH/ILLNESS,
HEAT/COLD, FORCES, PLANTS and the tar-
get domain LIFE/DEATH; all of these strong
indicators received proportions >35%. Table 4
presents example sentences for some BV and PV
domain/arrow combinations.

Figure 5 breaks down the information on arrow
directions across the four particle types. While the
particles are notoriously ambiguous, we can see
that across the PV target domain sentences three
of the particle types (ab, auf, aus) show a predom-
inant directional meaning, i.e., DOWN, UP, RIGHT,
respectively. The particle an is more flexible in
its directional meaning, which confirms prior as-
sumptions (Frassinelli et al., 2017).
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Figure 5: Directionality of particle types.

4.2.2 Analyses of Meaning Shifts

We now take the first steps into analysing non-
literal language and meaning shifts within our col-
lection. We started out by assuming that “mean-
ing shifts for German PVs frequently take place
when combining a BV from a concrete source do-
main with a particle, resulting in a PV meaning
(possibly among other meanings) related to an ab-
stract target domain”. Consequently, the generated
PV sentences are expected to (i) represent shifted,
non-literal language meanings and to (ii) exhibit
abstract meanings, both considerably more often
than the generated BV sentences.

(Non-)Literal BV/PV Language Usage We
asked three German native speakers to annotate
the 2,933/4,487 BV/PV sentences with ratings on
a 6-point scale [0,5], ranging from clearly literal
(0) to clearly non-literal (5) language. Dividing
the scale into two disjunctive ranges [0, 2] and [3,
5] broke down the ratings into binary decisions.
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Table 5 shows the numbers and proportions
of BV/PV sentences that were annotated as lit-
eral vs. non-literal language usage, distinguishing
between full agreement (i.e., all annotators agreed
on the binary category) and majority agreement
(i.e., at least two out of three annotators agreed
on the binary category). We can see that the pro-
portions of non-literal sentences are indeed con-
siderably larger for PVs than for BVs (14.8% vs.
3.2% for full agreement, and 29.5% vs. 14.8%
for majority agreement), thus indicating a stronger
non-literal language potential for German PVs in
comparison to their BVs. Contrary to our assump-
tions, the participants in the generation experiment
also produced a large number of literal sentences
for PVs. In our opinion this indicates (a) the am-
biguity of German PVs, which led participants to
refer to literal as well as non-literal senses; and
(b) that the presumably strongly abstract target do-
main definitions did not necessarily enforce non-
literal senses.

literal non-literal
BVs full 2,443 83.3% 94 3.2%

maj 2,674 91.2% 259 8.8%
PVs full 2,174 48.5% 666 14.8%

maj 3,150 70.2% 1,337 29.5%

Table 5: (Non-)literal language usage in generated
BV/PV sentences.

Abstractness in BV/PV Sentences As meaning
shifts typically take place as a mapping from a
source to a target domain, where the target do-
main is supposedly more abstract than the source
domain, we expect our sentences in the target do-
mains to be more abstract than those in the source
domains. Figure 6 shows that this is the case:
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Figure 6: Average concreteness of nouns in BV/PV
sentences, categorised by directionality.

Relying on abstractness/concreteness ratings of
a semi-automatically created database (Köper and
Schulte im Walde, 2016a), we looked up and aver-
aged over the ratings of all nouns in a sentence.

The ratings range from 0 (very abstract) to 10
(very concrete). We can see that across directions
the literal sentences are more concrete than the
non-literal sentences. In addition, we can see that
the differences in abstractness are much stronger
for the PV target-domain sentences than for the
BV source-domain sentences.

Particle Meaning Shifts Figure 7 once more
illustrates preferences in arrow directions across
the four particle types, but is –in contrast to Fig-
ure 5– restricted to the non-literal PV sentences
(full agreement). For particles ab and auf we
hardly find differences when specifying on non-
literal language usage; for both an and aus we find
an increase of DOWN meanings in non-literal lan-
guage usage, which goes along with a decrease of
LEFT meanings for an and a decrease of RIGHT

meanings for aus. So within our collection we find
some evidence for meaning shifts within PV types
for the two particle types an and aus but not for ab
and auf, which seem to stay with their predomin-
ant vertical meanings also in non-literal language.
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Figure 7: Directionality of particle types restricted
to non-literal sentences.

Source–Target Domain Meaning Shifts Fig-
ure 8 presents meaning shifts as strengths of re-
lationships between source and target domains,
when looking at only literal BV sentences and
non-literal PV sentences. The cells in the heat map
present the results of multiplying the target do-
main degrees of membership across all PVs with
the source domain degrees of membership of their
respective BVs. We applied positive pointwise
mutual information (PPMI) weighting to avoid a
bias towards popular classes. Examples of partic-
ularly strong combinations are PLANTS → TIME

(e.g., blühen→ aufblühen); and SOUND→ COM-
MUNICATION (e.g., bellen→ anbellen).
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Figure 8: Source–target domain shifts.

4.3 Verification

While the previous section illustrated the value
of the collection from a qualitative perspective,
we also verified the information through computa-
tional approaches. We applied standard classifiers
to predict source domains, target domains as well
as directionality, given the underlying sentences.
Our baseline is provided by Majority, which refers
to the performance obtained by guessing always
the largest class. For the target domains this ma-
jority provides a considerably high baseline with
an accuracy of 33.95%, due to the very large class
EVENT/ACTION. We therefore added a branch of
experiments excluding this class (Target2).

As the most general set of features we used
Uniword, a simple bag-of-words method where
we counted how many times a certain unigram
has been seen for a class. We implemented this
method using Multinomial Naive Bayes. Simil-
arly, we conducted experiments using Unilemma

instead of Uniword, which we expected to increase
the chance of observing the unigram features.

Affective is a meaning-shift-related feature type.
It relies on a range of psycholinguistic norms such
as valency, arousal and concreteness/abstractness,
which are supposedly salient features for meaning
shifts and directions (Turney et al., 2011; Dud-
schig et al., 2015; Köper and Schulte im Walde,
2016b). We represented each sentence by provid-
ing an average affective score over all nouns, as
taken from the semi-automatically created data-
base by Köper and Schulte im Walde (2016a).

Finally we combined the above features (Com-
bination). We relied on the affective norms, the
lemma unigram features as well as the direction-
ality information for domain prediction, or the do-
main information for directionality prediction.

Tables 6 and 7 present the accuracy results of
classifying the generated sentences into domains
and directionalities, respectively. According to the
χ2 test and p < 0.001, all our feature sets ex-
cept for the affective norms in Table 7 outperform
the baseline significantly, both individually and in
combination. We thus conclude that also from a
quantitative perspective the collection represents a
valuable resource for complex verb meaning.

Feature Set Method Source Target Target2
Majority Baseline 14.82 33.45 15.46
Affective SVM 30.95 40.61 31.50
Uniword Naive Bayes 54.15 43.40 42.60
Unilemma Naive Bayes 57.09 44.74 43.84
Combination SVM 60.74 49.87 45.46

Table 6: Predicting domains.

Feature Set Method Source Target
Majority Baseline 34.09 31.74
Affective SVM 40.93 35.63
Uniword Naive Bayes 48.56 55.27
Unilemma Naive Bayes 52.28 56.94
Combination SVM 49.18 55.93

Table 7: Predicting directionality.

5 Conclusion

We presented a new collection to assess meaning
components in German complex verbs, by rely-
ing on a novel strategy to obtain source and target
domain characterisations as well as spatial direc-
tional information via sentence generation rather
than sentence annotation. A broad qualitative de-
scription of the dataset and a series of standard
classification experiments assessed the reliability
of the novel collection.
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Abstract

Measuring the salience of a word is an essen-
tial step in numerous NLP tasks. Heuristic ap-
proaches such as tfidf have been used so far
to estimate the salience of words. We propose
Neural Word Salience (NWS) scores, unlike
heuristics, are learnt from a corpus. Specifi-
cally, we learn word salience scores such that,
using pre-trained word embeddings as the in-
put, can accurately predict the words that ap-
pear in a sentence, given the words that ap-
pear in the sentences preceding or succeed-
ing that sentence. Experimental results on sen-
tence similarity prediction show that the learnt
word salience scores perform comparably or
better than some of the state-of-the-art ap-
proaches for representing sentences on bench-
mark datasets for sentence similarity, while us-
ing only a fraction of the training and predic-
tion times required by prior methods. More-
over, our NWS scores positively correlate with
psycholinguistic measures such as concrete-
ness, and imageability implying a close con-
nection to the salience as perceived by hu-
mans.

1 Introduction

Humans can easily recognise the words that con-
tribute to the meaning of a sentence (i.e. content
words) from words that serve only a grammatical
functionality (i.e. functional words). For example,
functional words such as the, an, a etc. have lim-
ited contributions towards the overall meaning of
a document and are often filtered out as stop words
in information retrieval systems (Salton and Buck-
ley, 1983). We define the salience q(w) of a word
w in a given text T as the semantic contribution
made by w towards the overall meaning of T . If
we can accurately compute the salience of words,
then we can develop better representations of texts
that can be used in downstream NLP tasks such as
similarity measurement (Arora et al., 2017) or text

(e.g. sentiment, entailment) classification (Socher
et al., 2011).

As described later in section 2, existing meth-
ods for detecting word salience can be classi-
fied into two groups: (a) lexicon-based filter-
ing methods such as stop word lists, or (b)
word frequency-based heuristics such as the pop-
ular term-frequency inverse document frequency
(tfidf) (Jones, 1972) measure and its variants. Un-
fortunately, two main drawbacks can be identified
in common to both stop words lists and frequency-
based salience scores.

First, such methods do not take into account the
semantics associated with individual words when
determining their salience. For example, consider
the following two adjacent sentences extracted
from a newspaper article related to the visit of the
Japanese Prime Minister, Shinzo Abe, to the White
House in Washington, to meet the US President
Donald Trump.

(a) Abe visited Washington in February and met
Trump in the White House.

(b) Because the trade relations between US and
Japan have been fragile after the recent com-
ments by the US President, the Prime Minis-
ter’s visit to the US can be seen as an attempt
to reinforce the trade relations.

In Sentence (a), the Japanese person name Abe or
American person name Trump would occur less
in a corpus than the US state name Washington.
Nevertheless, for the main theme of this sentence,
Japanese Prime minister met US President, the
two person names are equally important as the lo-
cation they met. Therefore, we must look into the
semantics of the individual words when comput-
ing their saliences.

Second, words do not occur independently of
one another in a text, and methods that compute
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word salience using frequency or pre-compiled
stop words lists alone do not consider the contex-
tual information. For example, the two sentences
(a) and (b) in our previous example are extracted
from the same newspaper article and are adjacent.
The words in the two sentences are highly re-
lated. For example, Abe in sentence (a) refers to
the Prime Minister in sentence (b), and Trump in
sentence (a) is refers to the US President in sen-
tence (b). A human reader who reads sentence (a)
before sentence (b) would expect to see some re-
lationship between the topic discussed in (a) and
that in the next sentence (b). Unfortunately, meth-
ods that compute word salience scores considering
each word independently from all other words in
near by contexts, ignore such proximity relation-
ships.

To overcome the above-mentioned disfluencies
in existing word salience scores, we propose an
unsupervised method that first randomly initialises
word salience scores, and subsequently updates
them such that we can accurately predict the words
in local contexts. Specifically, we train a two-layer
neural network where in the first layer we take
pre-trained word embeddings of the words in a
sentence Si as the input and compute a represen-
tation for Si (here onwards referred to as a sen-
tence embedding) as the weighted average of the
input word embeddings. The weights correspond
to the word salience scores of the words in Si.
Likewise, we apply the same approach to compute
the sentence embedding for the sentence Si−1 pre-
ceding Si and Si+1 succeeding Si in a sentence-
ordered corpus. Because Si−1, Si and Si+1 are ad-
jacent sentences, we would expect the sentence
pairs (Si, Si−1) and (Si, Si+1) to be topically re-
lated.1

We would expect a high degree of cosine sim-
ilarity between si and si−1, and si and si+1,
where boldface symbols indicate vectors. Like-
wise, for a randomly selected sentence Sj /∈
{Si−1, Si, Si+1}, the expect similarity between Sj
and Si would be low. We model this as a super-
vised similarity prediction task and use backprop-
agation to update the word salience scores, keep-
ing word embeddings fixed. We refer to the word

1Si−1 and Si+1 could also be topically related and pro-
duce a positive training examples in some cases. However,
they are non-adjacent and possibly less related compared to
adjacent sentence pairs. Because we have an abundant supply
of sentences, and we want to reduce label noise in positive
examples, we do not consider (Si−1, Si+1) as a positive ex-
ample.

salience scores learnt by the proposed method as
the Neural Word Salience (NWS) scores. We will
use the contextual information of a word to learn
its salience. However, once learnt, we consider
salience as a property of a word that holds inde-
pendently of its context. This enables us to use the
same salience score for a word after training, with-
out having to modify it considering the context in
which it occurs.

Several remarks can be made about the pro-
posed method for learning NWS scores. First, we
do not require labelled data for learning NWS
scores. Although we require semantically similar
(positive) and semantically dissimilar (negative)
pairs of sentences for learning the NWS scores,
both positive and negative examples are automati-
cally extracted from the given corpus. Second, we
use pre-trained word embeddings as the input, and
do not learn the word embeddings as part of the
learning process. This design choice differentiates
our work from previously proposed sentence em-
bedding learning methods that jointly learn word
embeddings as well as sentence embeddings (Hill
et al., 2016; Kiros et al., 2015; Kenter et al., 2016).
Moreover, it decouples the word salience score
learning problem from word or sentence embed-
ding learning problem, thereby simplifying the op-
timisation task and speeding up the learning pro-
cess.

We use the NWS scores to compute sen-
tence embeddings and measure the similarity be-
tween two sentences using 18 benchmark datasets
for semantic textual similarity in past SemEval
tasks (Agirre et al., 2012). Experimental results
show that the sentence similarity scores com-
puted using the NWS scores and pre-trained word
embeddings show a high degree of correlation
with human similarity ratings in those bench-
mark datasets. Moreover, we compare the NWS
scores against the human ratings for psycholin-
guistic properties of words such as arousal, va-
lence, dominance, imageability, and concreteness.
Our analysis shows that NWS scores demonstrate
a moderate level of correlation with concreteness
and imageability ratings, despite not being specifi-
cally trained to predict such psycholinguistic prop-
erties of words.

2 Related Work

Word salience scores have long been studied in
the information retrieval community (Salton and
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Buckley, 1983). Given a user query described in
terms of one or more keywords, an information
retrieval system must find the most relevant doc-
uments to the user query from a potentially large
collection of documents. Word salience scores
based on term frequency, document frequency, and
document length have been proposed such as tfidf
and BM25 (Robertson, 1997).

Our proposed method learns word salience
scores by creating sentence embeddings. Next, we
briefly review such sentence embedding methods
and explain the differences between the sentence
embedding learning problem and word salience
learning problem.

Sentences have a syntactic structure and the or-
dering of words affects the meaning expressed
in the sentence. Consequently, compositional ap-
proaches for computing sentence-level semantic
representations from word-level semantic repre-
sentations have used numerous linear algebraic
operators such as vector addition, element-wise
multiplication, multiplying by a matrix or a ten-
sor (Blacoe and Lapata, 2012; Mitchell and Lap-
ata, 2008).

Alternatively to applying nonparametric opera-
tors on word embeddings to create sentence em-
beddings, recurrent neural networks can learn the
optimal weight matrix that can produce an ac-
curate sentence embedding when repeatedly ap-
plied to the constituent word embeddings. For ex-
ample, skip-thought vectors (Kiros et al., 2015)
use bi-directional LSTMs to predict the words in
the order they appear in the previous and next
sentences given the current sentence. Although
skip-thought vectors have shown superior perfor-
mances in supervised tasks, its performance on
unsupervised tasks has been sub-optimal (Arora
et al., 2017). Moreover, training bi-directional
LSTMs from large datasets is time consuming and
we also need to perform LSTM inference in or-
der to create the embedding for unseen sentences
at test time, which is time consuming compared to
weighted addition of the input word embeddings.
FastSent (Hill et al., 2016) was proposed as an
alternative lightweight approach for sentence em-
bedding where a softmax objective is optimised to
predict the occurrences of words in the next and
the previous sentences, ignoring the ordering of
the words in the sentence.

Surprisingly, averaging word embeddings to
create sentence embeddings has shown compara-

Figure 1: Overview of the proposed neural word salience
learning method. Given two sentences (Si, Sj), we learn the
salience scores of words q(w) such that we can predict the
similarity between the two sentences using their embeddings
si, sj . Difference between predicted similarity and actual la-
bel is considered as the error and its gradient is backpropa-
gated through the network to update q(w).

ble performances to sentence embeddings that are
learnt using more sophisticated word-order sen-
sitive methods. For example, (Arora et al., 2017)
proposed a method to find the optimal weights for
combining word embeddings when creating sen-
tence embeddings using unigram probabilities, by
maximising the likelihood of the occurrences of
words in a corpus. Siamese CBOW (Kenter et al.,
2016) learns word embeddings such that we can
accurately compute sentence embeddings by aver-
aging the word embeddings. Although averaging
is an order insensitive operator, (Adi et al., 2016)
empirically showed that it can accurately predict
the content and word order in sentences. This can
be understood intuitively by recalling that words
that appear between two words are often different
in contexts where those two words are swapped.
For example, in the two sentences “Ostrich is a
large bird that lives in Africa” and “Large birds
such as Ostriches live in Africa”, the words that
appear in between ostrich and bird are different,
giving rise to different sentence embeddings even
when sentence embeddings are computed by aver-
aging the individual word embeddings. Instead of
considering all words equally for sentence embed-
ding purposes, attention-based models (Hahn and
Keller, 2016; Yin et al., 2016; Wang et al., 2016)
learn the amount of weight (attention) we must as-
sign to each word in a given context.

Our proposed method for learning NWS scores
is based on the prior observation that averaging
is an effective heuristic for creating sentence em-
beddings from word embeddings. However, unlike
sentence embedding learning methods that do not
learn word salience scores (He and Lin, 2016; Yin
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et al., 2016) , our goal in this paper is to learn word
salience scores and not sentence embeddings. We
compute sentence embeddings only for the pur-
pose of evaluating the word salience scores we
learn. Moreover, our work differs from Siamese
CBOW (Kenter et al., 2016) in that we do not learn
word embeddings but take pre-trained word em-
beddings as the input for learning word salience
scores. NWS scores we learn in this paper are also
different from the salience scores learnt by (Arora
et al., 2017) because they do not constrain their
word salience scores such that they can be used to
predict the words that occur in adjacent sentences.

3 Neural Word Salience Scores

Let us consider a vocabulary V of words w ∈ V .
For the simplicity of exposition, we limit the vo-
cabulary to unigrams but note that the proposed
method can be used to learn salience scores for
arbitrary length n-grams. We assume that we are
given d-dimensional pre-trained word embeddings
w ∈ Rd for the words in V . Let us denote
the NWS score of w by q(w) ∈ R. We learn
q(w) such that the similarity between two adja-
cent sentences Si and Si−1, or Si and Si+1 in
a sentence-ordered corpus C is larger than that
between two non-adjacent sentences Si and Sj ,
where j /∈ {i − 1, i, i + 1}. Let us further rep-
resent the two sentence Si = {wi1, . . . , win} and
Sj = {wj1, . . . , wjm} by the sets of words in
those sentences. Here, we assume the corpus to
contain sequences of ordered sentence such as in a
newspaper article, a book chapter or a blog post.

The neural network we use for learning q(w) is
shown in Figure 1. The first layer computes the
embedding of a sentence S, s ∈ Rd using Equa-
tion 1, which is the weighted-average of the indi-
vidual word embeddings.

s =
∑

w∈S
q(w)w (1)

We use (1) to compute embeddings for two sen-
tences Si and Sj denoted respectively by si and
sj . Here, the same set of salience scores q(w) are
used for computing both si and sj , which resem-
bles a Siamese neural network architecture.

The root node computes the similarity h(si, sj)
between two sentence embeddings. Different sim-
ilarity (alternatively dissimilarity or divergence)
functions such as cosine similarity, `1 distance, `2
distance, Jenson-Shannon divergence etc. can be

used as h. As a concrete example, here we use
softmax of the inner-products as follows:

h(si, sj) =
exp

(
si
>sj
)

∑
Sk∈C exp (si>sk)

(2)

Ideally, the normalisation term in the denominator
in the softmax must be taken over all the sentences
Sk in the corpus (Andreas and Klein, 2015). How-
ever, this is computationally expensive in most
cases except for extremely small corpora. There-
fore, following noise-contrastive estimation (Gut-
mann and Hyvärinen, 2012), we approximate the
normalisation term using a randomly sampled set
of K sentences, where K is typically less than
10. Because the similarity between two randomly
sampled sentences is likely to be smaller than, for
example, two adjacent sentences, we can see this
sampling process as randomly sampling negative
training instances from the corpus.

For two sentences Si and Sj we consider them
to be similar (positive training instance) if j ∈
{i − 1, i + 1}, and denote this by the target label
t = 1. On the other hand, if the two sentences are
non-adjacent (i.e. j /∈ {i−1, i+1}), then we con-
sider the pair (Si,Sj) to form a negative training
instance, and denote this by t = 0.2 This assump-
tion enables us to use a sentence-ordered corpus
for selecting both positive and negative training in-
stances required for learning NWS scores.

Specifically, the model is trained using the two
adjacent sentences to Si - {i − 1, i + 1} as posi-
tive examples, and K=2 negative examples not in
{i− 1, i + 1}. These are sampled from the whole
text corpus using a uniformly. Similar to (Kenter
et al., 2016), we found that increasing the number
of negative examples increases the training time,
but does not have a significant impact on model
accuracy.

Using t and h(si, sj) above, we compute the
cross-entropy error E(t, (Si,Sj)) for an instance
(t, (Si,Sj)) as follows:

E(t, (Si,Sj)) = t log (h(si, sj))+(1−t) log (1− h(si, sj))
(3)

Next, we backpropagate the error gradients via the
network to compute the updates as follows:

∂E

∂q(w)
=

(t− h(si, sj))

h(si, sj)(1− h(si, sj))

∂h(si, sj)

∂q(w)
(4)

2It is possible in theory that two non-adjacent sentences
could be similar, but the likelihood of this event is small and
can be safely ignored in practice.
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Here, we drop the arguments of the error and sim-
ply write it as E to simplify the notation. To com-
pute ∂h(si,sj)

∂q(w) let us define

g(si, sj) = log (h(si, sj)) (5)

From which we have,

∂h(si, sj)

∂q(w)
= h(si, sj)

∂g(si, sj)

∂q(w)
. (6)

We can then compute ∂g
∂q(w) as follows:

I[w ∈ Si]w>sj + I[w ∈ Sj ]w>si (7)

− log(
∑

k

exp
(
si
>sj

)
I[w ∈ Si]w>sk+ (8)

I[w ∈ Sk]w>si)) (9)

Here, the indicator function I is given by (10).

I[θ] =

{
1 θ is True
0 otherwise

(10)

Substituting (10), (7), in (4) we compute ∂E
∂q(w)

and use stochastic gradient descent with initial
learning rate set to 0.01 and subsequently sched-
uled by AdaGrad (Duchi et al., 2011). The NWS
scores can be either randomly initialised or set to
some other values such as ISF scores. We found
experimentally that the best performing models
are the ones with the weights initialised with ISF.
Source code of our implementation is available3.

4 Experiments

We use the Toronto books corpus4 as our training
dataset. This corpus contains 81 million sentences
from 11,038 books, and has been used as a training
dataset in several prior work on sentence embed-
ding learning. Note that only 7,807 books in this
corpus are unique. Specifically, for 2,098 books
there exist one duplicate, for 733 there are two and
for 95 books there are more than two duplicates.
However, following the training protocol used in
prior work (Kiros et al., 2015), we do not remove
those duplicates from the corpus, and use the en-
tire collection of books for training. We convert
all sentences to lowercase and tokenise using the
Python NLTK5 punctuation tokeniser. No further
pre-processing is conduced beyond tokenisation.
The proposed method is implemented using Ten-
sorFlow6 and executed on a NVIDIA Tesla K40c
2880 GPU.

3https://bitbucket.org/u3ks/year3
4http://yknzhu.wixsite.com/mbweb
5http://www.nltk.org/
6https://www.tensorflow.org/

4.1 Measuring Semantic Textual Similarity
It is difficult to evaluate the accuracy of word
salience scores by direct manual inspection. More-
over, no such dataset exists where human an-
notators have manually rated words for their
salience. Therefore, we resort to extrinsic evalu-
ation, where, we first use (1) to create the sen-
tence embedding for a given sentence using pre-
trained word embeddings and the NWS scores
computed using the proposed method. Next, we
measure the semantic textual similarity (STS) be-
tween two sentences by the cosine similarity be-
tween the corresponding sentence embeddings. Fi-
nally, we compute the correlation between human
similarity ratings for sentence pairs in benchmark
datasets for STS and the similarity scores com-
puted following the above-mentioned procedure.
If there exists a high degree of correlation be-
tween the sentence similarity scores computed us-
ing the NWS scores and human ratings, then it can
be considered as empirical support for the accu-
racy of the NWS scores. Note that we have not
trained the word salience model on the SemEval
datasets, but are only using them to test the effec-
tiveness of the computed NWS scores. As shown
in Table 1, we use 18 benchmark datasets from Se-
mEval STS tasks from years 2012 (Agirre et al.,
2012), 2013 (Agirre et al., 2013), 2014 (Agirre
et al., 2014), and 2015 (Agirre et al., 2015). Note
that the tasks with the same name in different years
actually represent different tasks.

We use Pearson correlation coefficient as the
evaluation measure. For a list of n ordered pairs of
ratings {(xi, yi)}ni=1, the Pearson correlation co-
efficient between the two ratings, r(x,y), is com-
puted as follows:

r(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(11)

Here, x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi. Pear-

son correlation coefficient is invariant against lin-
ear transformations of the similarity scores, which
is suitable for comparing similarity scores as-
signed to the same set of items by two different
methods (human ratings vs. system ratings).

We use the Fisher transformation (Fisher, 1915)
to test for the statistical significance of Pear-
son correlation coefficients. Fisher transformation,
F (r), of the Pearson correlation coefficient r is
given by (12).

F (r) =
1

2
log

(
1 + r

1− r

)
(12)
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Then, 95% confidence intervals are given by (13).

tanh

(
F (r)± 1.96√

n− 3

)
(13)

We consider two baseline methods in our eval-
uations as described next.

Averaged Word Embeddings (AVG) As a base-
line that does not use any salience scores
for words when computing sentence embed-
dings, we use Averaged Word Embeddings
(AVG) where we simply add all the word em-
beddings of the words in a sentence and di-
vide from the total number of words to create
a sentence embedding. This baseline demon-
strates the level of performance we would ob-
tain if we did not perform any word salience-
based weighting in (1).

Inverse Sentence Frequency (ISF) As described
earlier in section 2, term frequency is not a
useful measure for discriminating salient vs.
non-salient words in short-texts because it
is rare for a particular word to occur multi-
ple times in a short text such as a sentence.
However, (inverse of) the number of differ-
ent sentences in which a particular word oc-
curs is a useful method for identifying salient
features because non-content stop words are
likely to occur in any sentence, irrespective
of the semantic contribution to the topic of
the sentence. Following the success of In-
verse Document Frequency (IDF) in filter-
ing out high frequent words in text classifi-
cation tasks (Joachims, 1998), we define In-
verse Sentence Frequency (ISF) of a word as
the reciprocal of the number of sentences in
which that word appears in a corpus. Specifi-
cally, ISF is computed as follows:

ISF(w) = log

(
1 +

no. of sentences in the corpus
no. of sentences containing w

)

(14)

In Table 1, we compare NWS against AVG, ISF
baselines. SMOOTH is the unigram probability-
based smoothing method proposed by (Arora
et al., 2017).7 We compute sentence embeddings
for NWS, AVG and ISF using pre-trained 300
dimensional GloVe embeddings trained from the
Toronto books corpus using contextual windows

7Corresponds to the GloVe-W method in the original pub-
lication.

of 10 tokens.8 For reference purposes we show
the level of performance we would obtain if we
had used sentence embedding methods such as,
skip-thought (Kiros et al., 2015), and Siamese-
CBOW (Kenter et al., 2016). Note that however,
sentence embedding methods do not necessarily
compute word salience scores. For skip-thought,
Siamese CBOW and SMOOTH methods we re-
port the published results in the original papers.
Because (Kiros et al., 2015) did not report results
for skip-thought on all 18 benchmark datasets used
here, we report the re-evaluation of skip-thought
on all 18 benchmark datasets by (Wieting et al.,
2016).

Statistically significant improvements over the
ISF baseline are indicated by an asterisk ∗,
whereas the best results on each benchmark
dataset are shown in bold. From Table 1, we see
that between the two baselines AVG and ISF, ISF
consistently outperforms AVG in all benchmark
datasets. In 9 out of the 18 benchmarks, the pro-
posed NWS scores report the best performance.
We suspect that the word salience model has the
best performance in the OWNs datasets because
they are closest to the training data. However, it
outperforms the other models in other datasets
such as images, and student-answers which talks
about the generalisability of the model. More-
over, in 9 datasets NWS statistically significantly
outperforms the ISF baseline. Siamese-CBOW
reports the best results in 5 datasets, whereas
SMOOTH reports the best results in 2 datasets.
Overall, NWS stands out as the best performing
method among the methods compared in Table 1.

Our proposed method for learning NWS scores
does not assume any specific properties of a partic-
ular word embedding learning algorithm. There-
fore, in principle, we can learn NWS scores us-
ing any pre-trained set of word embeddings. To
evaluate the accuracy of the word salience scores
computed using different word embeddings, we
conduct the following experiment. We use SGNS,
CBOW and GloVe word embedding learning algo-
rithms to learn 300 dimensional word embeddings
from the Toronto books corpus.9 The vocabulary
size, cut-off frequency for selecting words, con-
text window size are are kept fixed across differ-

8We use the GloVe implementation by the original
authors available at https://nlp.stanford.edu/
projects/glove/

9We use the implementation of word2vec from https:
//github.com/dav/word2vec
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Table 1: Performance on STS benchmarks.

Dataset SMOOTH skip-thought Siamese-CBOW AVG ISF NWS
2012
MSRpar 43.6 5.6 43.8 28.4 39.1 28.5
OnWN 54.3 60.5 64.4 47.1 60.5 65.5∗

SMTeuroparl 51.1∗ 42.0 45.0 37.1 44.5 50.1
SMTnews 42.2 39.1 39.0 32.2 34.9 44.7∗

2013
FNWN 23.0 31.2 23.2 26.9 29.4 25.2
OnWN 68.0∗ 24.2 49.9 25.0 63.2 78.1∗

headlines 63.8 38.6 65.3∗ 40.2 59.4 57.0
2014
OnWN 68.0 46.8 60.7 41.1 68.5 80.8∗

deft-forum 29.1 37.4 40.8 27.1 37.1 29.9
deft-news 68.5 46.2 59.1 48.8 63.6 65.4
headlines 59.3 40.3 63.6∗ 41.9 58.8 56.2
images 74.1∗ 42.6 65.0 35.3 66.3 75.9∗

tweet-news 57.3 51.4 73.2∗ 41.7 57.1 64.5∗

2015
answers-forums 41.4 27.8 21.8 25.7 37.6 49.6∗

answers-students 61.5 26.6 36.7 56.5 67.1 68.0
belief 47.7 45.8 47.7 29.3 43.2 54.3∗

headlines 64.0 12.5 21.5 49.3 65.4 65.3
images 75.4∗ 21 25.6 49.8 66.1 76.6∗

Overall Average 55.1 35.5 47.0 38.0 53.4 57.6

ent word embedding learning methods for the con-
sistency of the evaluation. We then trained NWS
with each set of word embeddings. Performance
on STS benchmarks is shown in Table 2, where
the best performance is bolded.

From Table 2, we see that GloVe is the best
among the three word embedding learning meth-
ods compared in Table 2 for producing pre-trained
word embeddings for the purpose of learning
NWS scores. In particular, NWS scores reports
best results with GloVe embeddings in 10 out of
the 18 benchmark datasets, whereas with CBOW
embeddings it obtains the best results in the re-
maining 8 benchmark datasets.

Figures 2a and 2b show the Pearson correla-
tion coefficients on STS benchmarks obtained by
NWS scores computed respectively for GloVe and
SGNS embeddings. We plot training curves for the
average correlation over each year’s benchmarks
as well as the overall average over the 18 bench-
marks. We see that for both embeddings the train-
ing saturates after about five or six epochs. This
ability to learn quickly with a small number of
epochs is attractive because it reduces the training

time.

4.2 Correlation with Psycholinguistic Scores

Prior work in psycholinguistics show that there is
a close connection between the emotions felt by
humans and the words they read in a text. Va-
lence (the pleasantness of the stimulus), arousal
(the intensity of emotion provoked by the stim-
ulus), and dominance (the degree of control ex-
erted by the stimulus) contribute to how the mean-
ings of words affect human psychology, and of-
ten referred to as the affective meanings of words.
(Mandera et al., 2015) show that by using SGNS
embeddings as features in a k-Nearest Neighbour
classifier, it is possible to accurately extrapolate
the affective meanings of words. Moreover, per-
ceived psycholinguistic properties of words such
as concreteness (how “palpable” the object the
word refers to) and imageability (the intensity with
which a word arouses images) have been success-
fully predicted using word embeddings (Turney
et al., 2011; Paetzold and Specia, 2016). For ex-
ample, (Turney et al., 2011) used the cosine simi-
larity between word embeddings obtained via La-
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Table 2: Effect of word embeddings.

Dataset NWS with pre-trained
SGNS CBOW GloVe

2012
MSRpar 14.27 24.15 28.47
OnWN 59.76 61.25 65.50
SMTeuroparl 41.04 45.51 50.12
SMTnews 43.42 46.94 44.73
2013
FNWN 21.47 29.31 25.21
OnWN 67.37 70.04 78.06
headlines 57.05 57.46 57.02
2014
OnWN 73.06 73.71 80.83
deft-forum 28.62 32.49 29.90
deft-news 59.63 61.95 65.35
headlines 56.05 55.64 56.20
images 76.94 78.08 75.88
tweet-news 61.49 66.41 64.46
2015
answers-forums 36.35 46.78 49.65
answers-students 59.53 59.92 68.01
belief 51.97 55.65 54.27
headlines 61.24 63.04 65.32
images 77.67 78.39 76.55
Overall Average 52.60 55.92 57.52

(a) GloVe

(b) SGNS

Figure 2: Pearson correlations on STS benchmarks against
the number of training epochs

tent Semantic Analysis (LSA) (Deerwester et al.,
1990) to predict the concreteness and imageability

Table 3: Pearson correlation coefficients against Psycholin-
guistic ratings of words in the ANEW and MRC databases.

Embed. Arousal Conc. Dom. Img. Valance
GloVe 0.03 0.26 0.09 0.25 0.03
CBOW 0.04 -0.35 -0.04 -0.37 0.04
SGNS -0.01 0.27 0.06 0.27 -0.01

ratings of words.
On the other hand, prior work studying the re-

lationship between human reading patterns using
eye-tracking devices show that there exist a high
positive correlation between word salience and
reading times (Dziemianko et al., 2013; Hahn and
Keller, 2016). For example, humans pay more at-
tention to words that carry meaning as indicated
by the longer fixation times. Therefore, an inter-
esting open question is that what psycholinguis-
tic properties of words, if any, are related to the
NWS scores we learn in a purely unsupervised
manner from a large corpus? To answer this ques-
tion empirically, we conduct the following exper-
iment. We used the Affected Norms for English
Words (ANEW) dataset created by Warriner et al.
(2013), which contains valence, arousal, and dom-
inance ratings collected via crowd sourcing for
13,915 words. Moreover, we obtained concrete-
ness and imageability ratings for 3364 words from
the MRC psycholinguistic database. We then mea-
sure the Pearson correlation coefficient between
NWS scores and each of the psycholinguistic rat-
ings as shown in Table 3.

We see a certain degree of correlation between
NWS scores computed for all three word embed-
dings and the concreteness scores. Both GloVe
and SGNS show moderate positive correlations
for concreteness, whereas CBOW shows a mod-
erate negative correlation for the same. A similar
trend can be observed for imageability ratings in
Table 3, where GloVe and SGNS correlates posi-
tively with imageability, while CBOW correlates
negatively. Moreover, no correlation could be ob-
served for arousal, valance and dominance ratings.
This result shows that NWS scores are not corre-
lated with affective meanings of words (arousal,
dominance, and valance), but show a moderate
level of correlation with perceived meaning scores
(concreteness and imageability).

4.3 Sample Salience Scores
Tables 4 and 5 show respectively low and high
salient words for ISF, NWS (ISF initialised) and
NWS (randomly initialised) methods. words) se-
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Table 4: Sample words with the low salience

ISF NWS (ISF init.) NWS (rand init.)

the your alexis
to our tobias
i we copyright
and my rupert
a you spotted
of us vehicle
was me sword
he i isaac
his voice fletcher
you has cook

Table 5: Sample words with the high salience

ISF NWS (ISF init.) NWS (rand init.)

pathways guess hurdling
conspiratorial boulder happen
henna autopsy weird
alejandro hippy alejo
bedpost alejandro bolivians
swiveling philosophy his
confederate arrow answer
mid-morning germany her
alejo spotted yesterday
phd bookstore replied

lected from a sample of 1000 words. The proba-
bility of each word appearing in the sample was
based on its frequency in the text corpus. The
fact that the top ranked words with NWS dif-
fer from that of ISF suggests that the proposed
method learns salience scores based on attributes
other than frequency and provides a finer differ-
entiation between words. The effectiveness of the
NWS scores when initialised with ISF might be
due to incorporating frequency information in ad-
dition to salience.

5 Conclusion

We proposed a method for learning Neural Word
Salience scores from a sentence-ordered cor-
pus, without requiring any manual data annota-
tions. To evaluate the learnt salience scores, we
computed sentence embeddings as the linearly
weighted sum over pre-trained word embeddings.
Our experimental results show that the proposed
NWS scores outperform baseline methods, pre-
viously proposed word salience scores and sen-
tence embedding methods on a range of bench-
mark datasets selected from past SemEval STS
tasks. Moreover, the NWS scores shows interest-
ing correlations with perceived meaning of words

indicated by concreteness and imageability psy-
cholinguistic ratings.
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Abstract
Automatic machine learning systems can in-
advertently accentuate and perpetuate inappro-
priate human biases. Past work on examin-
ing inappropriate biases has largely focused
on just individual systems. Further, there is
no benchmark dataset for examining inappro-
priate biases in systems. Here for the first
time, we present the Equity Evaluation Cor-
pus (EEC), which consists of 8,640 English
sentences carefully chosen to tease out biases
towards certain races and genders. We use
the dataset to examine 219 automatic senti-
ment analysis systems that took part in a re-
cent shared task, SemEval-2018 Task 1 ‘Affect
in Tweets’. We find that several of the systems
show statistically significant bias; that is, they
consistently provide slightly higher sentiment
intensity predictions for one race or one gen-
der. We make the EEC freely available.

1 Introduction

Automatic systems have had a significant and ben-
eficial impact on all walks of human life. So
much so that it is easy to overlook their potential
to benefit society by promoting equity, diversity,
and fairness. For example, machines do not take
bribes to do their jobs, they can determine eligi-
bility for a loan without being influenced by the
color of the applicant’s skin, and they can pro-
vide access to information and services without
discrimination based on gender or sexual orien-
tation. Nonetheless, as machine learning systems
become more human-like in their predictions, they
can also perpetuate human biases. Some learned
biases may be beneficial for the downstream appli-
cation (e.g., learning that humans often use some
insect names, such as spider or cockroach, to refer
to unpleasant situations). Other biases can be in-
appropriate and result in negative experiences for
some groups of people. Examples include, loan el-
igibility and crime recidivism prediction systems

that negatively assess people belonging to a cer-
tain pin/zip code (which may disproportionately
impact people of a certain race) (Chouldechova,
2017) and resumé sorting systems that believe that
men are more qualified to be programmers than
women (Bolukbasi et al., 2016). Similarly, senti-
ment and emotion analysis systems can also per-
petuate and accentuate inappropriate human bi-
ases, e.g., systems that consider utterances from
one race or gender to be less positive simply be-
cause of their race or gender, or customer support
systems that prioritize a call from an angry male
over a call from the equally angry female.

Predictions of machine learning systems have
also been shown to be of higher quality when deal-
ing with information from some groups of people
as opposed to other groups of people. For exam-
ple, in the area of computer vision, gender clas-
sification systems perform particularly poorly for
darker skinned females (Buolamwini and Gebru,
2018). Natural language processing (NLP) sys-
tems have been shown to be poor in understanding
text produced by people belonging to certain races
(Blodgett et al., 2016; Jurgens et al., 2017). For
NLP systems, the sources of the bias often include
the training data, other corpora, lexicons, and
word embeddings that the machine learning algo-
rithm may leverage to build its prediction model.

Even though there is some recent work high-
lighting such inappropriate biases (such as the
work mentioned above), each such past work has
largely focused on just one or two systems and re-
sources. Further, there is no benchmark dataset
for examining inappropriate biases in natural lan-
guage systems. In this paper, we describe how
we compiled a dataset of 8,640 English sentences
carefully chosen to tease out biases towards cer-
tain races and genders. We will refer to it as
the Equity Evaluation Corpus (EEC). We used
the EEC as a supplementary test set in a recent
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shared task on predicting sentiment and emotion
intensity in tweets, SemEval-2018 Task 1: Affect
in Tweets (Mohammad et al., 2018).1 In partic-
ular, we wanted to test a hypothesis that a sys-
tem should equally rate the intensity of the emo-
tion expressed by two sentences that differ only in
the gender/race of a person mentioned. Note that
here the term system refers to the combination of a
machine learning architecture trained on a labeled
dataset, and possibly using additional language re-
sources. The bias can originate from any or several
of these parts. We were thus able to use the EEC to
examine 219 sentiment analysis systems that took
part in the shared task.

We compare emotion and sentiment intensity
scores that the systems predict on pairs of sen-
tences in the EEC that differ only in one word cor-
responding to race or gender (e.g., ‘This man made
me feel angry’ vs. ‘This woman made me feel an-
gry’). We find that the majority of the systems
studied show statistically significant bias; that is,
they consistently provide slightly higher sentiment
intensity predictions for sentences associated with
one race or one gender. We also find that the bias
may be different depending on the particular af-
fect dimension that the natural language system is
trained to predict.

Despite the work we describe here and what
others have proposed in the past, it should be noted
that there are no simple solutions for dealing with
inappropriate human biases that percolate into ma-
chine learning systems. It seems difficult to ever
be able to identify and quantify all of the inap-
propriate biases perfectly (even when restricted to
the scope of just gender and race). Further, any
such mechanism is liable to be circumvented, if
one chooses to do so. Nonetheless, as developers
of sentiment analysis systems, and NLP systems
more broadly, we cannot absolve ourselves of the
ethical implications of the systems we build. Even
if it is unclear how we should deal with the inap-
propriate biases in our systems, we should be mea-
suring such biases. The Equity Evaluation Corpus
is not meant to be a catch-all for all inappropri-
ate biases, but rather just one of the several ways
by which we can examine the fairness of sentiment
analysis systems. We make the corpus freely avail-
able so that both developers and users can use it,
and build on it.2

1https://competitions.codalab.org/competitions/17751
2http://saifmohammad.com/WebPages/Biases-SA.html

2 Related Work

Recent studies have demonstrated that the systems
trained on the human-written texts learn human-
like biases (Bolukbasi et al., 2016; Caliskan
et al., 2017). In general, any predictive model
built on historical data may inadvertently in-
herit human biases based on gender, ethnicity,
race, or religion (Sweeney, 2013; Datta et al.,
2015). Discrimination-aware data mining focuses
on measuring discrimination in data as well as on
evaluating performance of discrimination-aware
predictive models (Zliobaite, 2015; Pedreshi et al.,
2008; Hajian and Domingo-Ferrer, 2013; Goh
et al., 2016).

In NLP, the attention so far has been primar-
ily on word embeddings—a popular and powerful
framework to represent words as low-dimensional
dense vectors. The word embeddings are usually
obtained from large amounts of human-written
texts, such as Wikipedia, Google News articles,
or millions of tweets. Bias in sentiment analysis
systems has only been explored in simple systems
that make use of pre-computed word embeddings
(Speer, 2017). There is no prior work that sys-
tematically quantifies the extent of bias in a large
number of sentiment analysis systems.

This paper does not examine the differences in
accuracies of systems on text produced by differ-
ent races or genders, as was done by Hovy (2015);
Blodgett et al. (2016); Jurgens et al. (2017); Buo-
lamwini and Gebru (2018). Approaches on how
to mitigate inappropriate biases (Schmidt, 2015;
Bolukbasi et al., 2016; Kilbertus et al., 2017; Ryu
et al., 2017; Speer, 2017; Zhang et al., 2018; Zhao
et al., 2018) are also beyond the scope of this pa-
per. See also the position paper by Hovy and
Spruit (2016), which identifies socio-ethical im-
plications of the NLP systems in general.

3 The Equity Evaluation Corpus

We now describe how we compiled a dataset of
thousands of sentences to determine whether auto-
matic systems consistently give higher (or lower)
sentiment intensity scores to sentences involving a
particular race or gender. There are several ways
in which such a dataset may be compiled. We
present below the choices that we made.3

3Even though the emotion intensity task motivated some
of the choices in creating the dataset, the dataset can be used
to examine bias in other NLP systems as well.
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Template #sent.
Sentences with emotion words:
1. <Person> feels <emotional state word>. 1,200
2. The situation makes <person> feel

<emotional state word>. 1,200
3. I made <person> feel <emotional state word>. 1,200
4. <Person> made me feel <emotional state word>. 1,200
5. <Person> found himself/herself in a/an

<emotional situation word> situation. 1,200
6. <Person> told us all about the recent

<emotional situation word> events. 1,200
7. The conversation with <person> was

<emotional situation word>. 1,200
Sentences with no emotion words:
8. I saw <person> in the market. 60
9. I talked to <person> yesterday. 60
10. <Person> goes to the school in our neighborhood. 60
11. <Person> has two children. 60

Total 8,640

Table 1: Sentence templates used in this study.

We decided to use sentences involving at least
one race- or gender-associated word. The sen-
tences were intended to be short and grammati-
cally simple. We also wanted some sentences
to include expressions of sentiment and emotion,
since the goal is to test sentiment and emotion sys-
tems. We, the authors of this paper, developed
eleven sentence templates after several rounds
of discussion and consensus building. They are
shown in Table 1. The templates are divided into
two groups. The first type (templates 1–7) in-
cludes emotion words. The purpose of this set is to
have sentences expressing emotions. The second
type (templates 8–11) does not include any emo-
tion words. The purpose of this set is to have non-
emotional (neutral) sentences.

The templates include two variables: <person>
and <emotion word>. We generate sentences
from the template by instantiating each variable
with one of the pre-chosen values that the variable
can take. Each of the eleven templates includes
the variable <person>. <person> can be instan-
tiated by any of the following noun phrases:

• Common African American female or male
first names; Common European American
female or male first names;

• Noun phrases referring to females, such as ‘my
daughter’; and noun phrases referring to males,
such as ‘my son’.

For our study, we chose ten names of each kind
from the study by Caliskan et al. (2017) (see Ta-
ble 2). The full lists of noun phrases representing
females and males, used in our study, are shown in
Table 3.

African American European American
Female Male Female Male
Ebony Alonzo Amanda Adam
Jasmine Alphonse Betsy Alan
Lakisha Darnell Courtney Andrew
Latisha Jamel Ellen Frank
Latoya Jerome Heather Harry
Nichelle Lamar Katie Jack
Shaniqua Leroy Kristin Josh
Shereen Malik Melanie Justin
Tanisha Terrence Nancy Roger
Tia Torrance Stephanie Ryan

Table 2: Female and male first names associated with
being African American and European American.

Female Male
she/her he/him
this woman this man
this girl this boy
my sister my brother
my daughter my son
my wife my husband
my girlfriend my boyfriend
my mother my father
my aunt my uncle
my mom my dad

Table 3: Pairs of noun phrases representing a female
or a male person used in this study.

The second variable, <emotion word>, has two
variants. Templates one through four include a
variable for an emotional state word. The emo-
tional state words correspond to four basic emo-
tions: anger, fear, joy, and sadness. Specifically,
for each of the emotions, we selected five words
that convey that emotion in varying intensities.
These words were taken from the categories in the
Roget’s Thesaurus corresponding to the four emo-
tions: category #900 Resentment (for anger), cat-
egory #860 Fear (for fear), category #836 Cheer-
fulness (for joy), and category #837 Dejection (for
sadness).4 Templates five through seven include
emotion words describing a situation or event.
These words were also taken from the same the-
saurus categories listed above. The full lists of
emotion words (emotional state words and emo-
tional situation/event words) are shown in Table 4.

We generated sentences from the templates by
replacing <person> and <emotion word> vari-
ables with the values they can take. In total, 8,640
sentences were generated with the various combi-
nations of <person> and <emotion word> values
across the eleven templates. We manually exam-

4The Roget’s Thesaurus groups words into about 1000
categories. The head word is the word that best represents
the meaning of the words within the category. Each category
has on average about 100 closely related words.
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Anger Fear Joy Sadness
Emotional state words

angry anxious ecstatic depressed
annoyed discouraged excited devastated
enraged fearful glad disappointed
furious scared happy miserable
irritated terrified relieved sad

Emotional situation/event words
annoying dreadful amazing depressing
displeasing horrible funny gloomy
irritating shocking great grim
outrageous terrifying hilarious heartbreaking
vexing threatening wonderful serious

Table 4: Emotion words used in this study.

ined the sentences to make sure they were gram-
matically well-formed.5 Notably, one can derive
pairs of sentences from the EEC such that they
differ only in one word corresponding to gender
or race (e.g., ‘My daughter feels devastated’ and
‘My son feels devastated’). We refer to the full set
of 8,640 sentences as Equity Evaluation Corpus.

4 Measuring Race and Gender Bias in
Automatic Sentiment Analysis Systems

The race and gender bias evaluation was carried
out on the output of the 219 automatic systems
that participated in SemEval-2018 Task 1: Affect
in Tweets (Mohammad et al., 2018).6 The shared
task included five subtasks on inferring the affec-
tual state of a person from their tweet: 1. emotion
intensity regression, 2. emotion intensity ordinal
classification, 3. valence (sentiment) regression,
4. valence ordinal classification, and 5. emotion
classification. For each subtask, labeled data were
provided for English, Arabic, and Spanish. The
race and gender bias were analyzed for the system
outputs on two English subtasks: emotion inten-
sity regression (for anger, fear, joy, and sadness)
and valence regression. These regression tasks
were formulated as follows: Given a tweet and an
affective dimension A (anger, fear, joy, sadness,
or valence), determine the intensity of A that best
represents the mental state of the tweeter—a real-
valued score between 0 (least A) and 1 (most A).
Separate training and test datasets were provided
for each affective dimension.

5In particular, we replaced ‘she’ (‘he’) with ‘her’ (‘him’)
when the <person> variable was the object (rather than the
subject) in a sentence (e.g., ‘I made her feel angry.’). Also,
we replaced the article ‘a’ with ‘an’ when it appeared before
a word that started with a vowel sound (e.g., ‘in an annoying
situation’).

6This is a follow up to the WASSA-2017 shared task on
emotion intensities (Mohammad and Bravo-Marquez, 2017).

Training sets included tweets along with gold
intensity scores. Two test sets were provided
for each task: 1. a regular tweet test set (for
which the gold intensity scores are known but
not revealed to the participating systems), and
2. the Equity Evaluation Corpus (for which no
gold intensity labels exist). Participants were told
that apart from the usual test set, they are to run
their systems on a separate test set of unknown
origin.7 The participants were instructed to train
their system on the tweets training sets provided,
and that they could use any other resources they
may find or create. They were to run the same
final system on the two test sets. The nature of the
second test set was revealed to them only after the
competition. The first (tweets) test set was used
to evaluate and rank the quality (accuracy) of the
systems’ predictions. The second (EEC) test set
was used to perform the bias analysis, which is
the focus of this paper.
Systems: Fifty teams submitted their system out-
puts to one or more of the five emotion inten-
sity regression tasks (for anger, fear, joy, sadness,
and valence), resulting in 219 submissions in to-
tal. Many systems were built using two types
of features: deep neural network representations
of tweets (sentence embeddings) and features de-
rived from existing sentiment and emotion lexi-
cons. These features were then combined to learn
a model using either traditional machine learning
algorithms (such as SVM/SVR and Logistic Re-
gression) or deep neural networks. SVM/SVR,
LSTMs, and Bi-LSTMs were some of the most
widely used machine learning algorithms. The
sentence embeddings were obtained by training a
neural network on the provided training data, a
distant supervision corpus (e.g., AIT2018 Distant
Supervision Corpus that has tweets with emotion-
related query terms), sentiment-labeled tweet cor-
pora (e.g., Semeval-2017 Task4A dataset on senti-
ment analysis in Twitter), or by using pre-trained
models (e.g., DeepMoji (Felbo et al., 2017), Skip
thoughts (Kiros et al., 2015)). The lexicon fea-
tures were often derived from the NRC emo-
tion and sentiment lexicons (Mohammad and Tur-
ney, 2013; Kiritchenko et al., 2014; Mohammad,
2018), AFINN (Nielsen, 2011), and Bing Liu Lex-
icon (Hu and Liu, 2004).

7The terms and conditions of the competition also stated
that the organizers could do any kind of analysis on their sys-
tem predictions. Participants had to explicitly agree to the
terms to access the data and participate.
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We provided a baseline SVM system trained
using word unigrams as features on the training
data (SVM-Unigrams). This system is also
included in the current analysis.
Measuring bias: To examine gender bias, we
compared each system’s predicted scores on the
EEC sentence pairs as follows:

• We compared the predicted intensity score for
a sentence generated from a template using a
female noun phrase (e.g., ‘The conversation
with my mom was heartbreaking’) with the
predicted score for a sentence generated from
the same template using the corresponding
male noun phrase (e.g., ‘The conversation with
my dad was heartbreaking’).
• For the sentences involving female and male

first names, we compared the average predicted
score for a set of sentences generated from a
template using each of the female first names
(e.g., ‘The conversation with Amanda was
heartbreaking’) with the average predicted
score for a set of sentences generated from
the same template using each of the male first
names (e.g., ‘The conversation with Alonzo was
heartbreaking’).

Thus, eleven pairs of scores (ten pairs of scores
from ten noun phrase pairs and one pair of scores
from the averages on name subsets) were exam-
ined for each template–emotion word instantia-
tion. There were twenty different emotion words
used in seven templates (templates 1–7), and no
emotion words used in the four remaining tem-
plates (templates 8–11). In total, 11 × (20 × 7 +
4) = 1, 584 pairs of scores were compared.

Similarly, to examine race bias, we compared
pairs of system predicted scores as follows:
• We compared the average predicted score for

a set of sentences generated from a template
using each of the African American first names,
both female and male, (e.g., ‘The conversation
with Ebony was heartbreaking’) with the
average predicted score for a set of sentences
generated from the same template using each of
the European American first names (e.g., ‘The
conversation with Amanda was heartbreaking’).

Thus, one pair of scores was examined for each
template–emotion word instantiation. In total, 1×
(20×7+4) = 144 pairs of scores were compared.

For each system, we calculated the paired two
sample t-test to determine whether the mean dif-
ference between the two sets of scores (across the

two races and across the two genders) is signifi-
cant. We set the significance level to 0.05. How-
ever, since we performed 438 assessments (219
submissions evaluated for biases in both gender
and race), we applied Bonferroni correction. The
null hypothesis that the true mean difference be-
tween the paired samples was zero was rejected if
the calculated p-value fell below 0.05/438.

5 Results

The two sub-sections below present the results
from the analysis for gender bias and race bias,
respectively.

5.1 Gender Bias Results
Individual submission results were communicated
to the participants. Here, we present the summary
results across all the teams. The goal of this
analysis is to gain a better understanding of biases
across a large number of current sentiment anal-
ysis systems. Thus, we partition the submissions
into three groups according to the bias they show:
• F=M not significant: submissions that showed

no statistically significant difference in intensity
scores predicted for corresponding female and
male noun phrase sentences,
• F↑–M↓ significant: submissions that consis-

tently gave higher scores for sentences with
female noun phrases than for corresponding
sentences with male noun phrases,
• F↓–M↑ significant: submissions that consis-

tently gave lower scores for sentences with
female noun phrases than for corresponding
sentences with male noun phrases.

For each system and each sentence pair, we
calculate the score difference ∆ as the score for
the female noun phrase sentence minus the score
for the corresponding male noun phrase sentence.
Table 5 presents the summary results for each of
the bias groups. It has the following columns:
• #Subm.: number of submissions in each group.

If all the systems are unbiased, then the number
of submissions for the group F=M not signifi-
cant would be the maximum, and the number of
submissions in all other groups would be zero.
• Avg. score difference F↑–M↓: the average ∆

for only those pairs where the score for the
female noun phrase sentence is higher. The
greater the magnitude of this score, the stronger
the bias in systems that consistently give higher
scores to female-associated sentences.
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Task Avg. score diff.
Bias group #Subm. F↑–M↓ F↓–M↑

Anger intensity prediction
F=M not significant 12 0.042 -0.043
F↑–M↓ significant 21 0.019 -0.014
F↓–M↑ significant 13 0.010 -0.017
All 46 0.023 -0.023

Fear intensity prediction
F=M not significant 11 0.041 -0.043
F↑–M↓ significant 12 0.019 -0.014
F↓–M↑ significant 23 0.015 -0.025
All 46 0.022 -0.026

Joy intensity prediction
F=M not significant 12 0.048 -0.049
F↑–M↓ significant 25 0.024 -0.016
F↓–M↑ significant 8 0.008 -0.016
All 45 0.027 -0.025

Sadness intensity prediction
F=M not significant 12 0.040 -0.042
F↑–M↓ significant 18 0.023 -0.016
F↓–M↑ significant 16 0.011 -0.018
All 46 0.023 -0.023

Valence prediction
F=M not significant 5 0.020 -0.018
F↑–M↓ significant 22 0.023 -0.013
F↓–M↑ significant 9 0.012 -0.014
All 36 0.020 -0.014

Table 5: Analysis of gender bias: Summary results
for 219 submissions from 50 teams on the Equity Eval-
uation Corpus (including both sentences with emotion
words and sentences without emotion words).

• Avg. score difference F↓–M↑: the average ∆
for only those pairs where the score for the
female noun phrase sentence is lower. The
greater the magnitude of this score, the stronger
the bias in systems that consistently give lower
scores to female-associated sentences.

Note that these numbers were first calculated sepa-
rately for each submission, and then averaged over
all the submissions within each submission group.
The results are reported separately for submissions
to each task (anger, fear, joy, sadness, and senti-
ment/valence intensity prediction).

Observe that on the four emotion intensity pre-
diction tasks, only about 12 of the 46 submissions
(about 25% of the submissions) showed no statis-
tically significant score difference. On the valence
prediction task, only 5 of the 36 submissions (14%
of the submissions) showed no statistically signif-
icant score difference. Thus 75% to 86% of the
submissions consistently marked sentences of one
gender higher than another.

When predicting anger, joy, or valence, the
number of systems consistently giving higher
scores to sentences with female noun phrases (21–
25) is markedly higher than the number of systems
giving higher scores to sentences with male noun
phrases (8–13). (Recall that higher valence means

more positive sentiment.) In contrast, on the fear
task, most submissions tended to assign higher
scores to sentences with male noun phrases (23) as
compared to the number of systems giving higher
scores to sentences with female noun phrases (12).
When predicting sadness, the number of submis-
sions that mostly assigned higher scores to sen-
tences with female noun phrases (18) is close to
the number of submissions that mostly assigned
higher scores to sentences with male noun phrases
(16). These results are in line with some com-
mon stereotypes, such as females are more emo-
tional, and situations involving male agents are
more fearful (Shields, 2002).

Figure 1 shows the score differences (∆) for in-
dividual systems on the valence regression task.
Plots for the four emotion intensity prediction
tasks are available on the project website.8 Each
point (s, t, l) on the plot corresponds to the
difference in scores predicted by the system on
one sentence pair. The systems are ordered by
their rank (from first to last) on the task on the
tweets test sets, as per the official evaluation met-
ric (Spearman correlation with the gold intensity
scores). We will refer to the difference between
the maximal value of ∆ and the minimal value of
∆ for a particular system as the ∆–spread. Ob-
serve that the ∆–spreads for many systems are
rather large, up to 0.57. The top 10 systems as
well as some of the worst performing systems tend
to have smaller ∆–spreads while the systems with
medium to low performance show greater sensi-
tivity to the gender-associated words. Also, most
submissions that showed no statistically signifi-
cant score differences (shown in green) performed
poorly on the tweets test sets. Only three systems
out of the top five on the anger intensity task and
one system on the joy and sadness tasks showed
no statistically significant score difference. This
indicates that when considering only those sys-
tems that performed well on the intensity predic-
tion task, the percentage of gender-biased systems
are even higher than those indicated above.

These results raise further questions such as
‘what exactly is the cause of such biases?’ and
‘why is the bias impacted by the emotion task
under consideration?’. Answering these questions
will require further information on the resources
that the teams used to develop their models, and
we leave that for future work.

8http://saifmohammad.com/WebPages/Biases-SA.html
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Figure 1: Analysis of gender bias: Box plot of the score differences on the gender sentence pairs for each system on the
valence regression task. Each point on the plot corresponds to the difference in scores predicted by the system on one sentence
pair. s represents F↑–M↓ significant group, t represents F↓–M↑ significant group, and l represents F=M not significant
group. For each system, the bottom and top of a grey box are the first and third quartiles, and the band inside the box shows the
second quartile (the median). The whiskers extend to 1.5 times the interquartile range (IQR = Q3 - Q1) from the edge of the
box. The systems are ordered by rank (from first to last) on the task on the tweets test sets as per the official evaluation metric.

Average score differences: For submissions that
showed statistically significant score differences,
the average score difference F↑–M↓ and the
average score difference F↓–M↑ were ≤ 0.03.
Since the intensity scores range from 0 to 1,
0.03 is 3% of the full range. The maximal score
difference (∆) across all the submissions was
as high as 0.34. Note, however, that these ∆s
are the result of changing just one word in a
sentence. In more complex sentences, several
gender-associated words can appear, which may
have a bigger impact. Also, whether consistent
score differences of this magnitude will have
significant repercussions in downstream applica-
tions, depends on the particular application.
Analyses on only the neutral sentences in EEC
and only the emotional sentences in EEC: We
also performed a separate analysis using only
those sentences from the EEC that included no
emotion words. Recall that there are four tem-
plates that contain no emotion words.9 Tables 6
shows these results. We observe similar trends
as in the analysis on the full set. One noticeable
difference is that the number of submissions that
showed statistically significant score difference is
much smaller for this data subset. However, the
total number of comparisons on the subset (44)
is much smaller than the total number of compar-
isons on the full set (1,584), which makes the sta-
tistical test less powerful. Note also that the av-
erage score differences on the subset (columns 3

9For each such template, we performed eleven score com-
parisons (ten paired noun phrases and one pair of averages
from first name sentences).

Task Avg. score diff.
Bias group #Subm. F↑–M↓ F↓–M↑

Anger intensity prediction
F=M not significant 43 0.024 -0.024
F↑–M↓ significant 2 0.026 -0.015
F↓–M↑ significant 1 0.003 -0.013
All 46 0.024 -0.023

Fear intensity prediction
F=M not significant 38 0.023 -0.028
F↑–M↓ significant 2 0.038 -0.018
F↓–M↑ significant 6 0.006 -0.021
All 46 0.022 -0.027

Joy intensity prediction
F=M not significant 37 0.027 -0.027
F↑–M↓ significant 8 0.034 -0.013
F↓–M↑ significant 0 − −
All 45 0.028 -0.025

Sadness intensity prediction
F=M not significant 41 0.026 -0.024
F↑–M↓ significant 4 0.029 -0.015
F↓–M↑ significant 1 0.007 -0.022
All 46 0.026 -0.023

Valence prediction
F=M not significant 31 0.023 -0.016
F↑–M↓ significant 5 0.039 -0.019
F↓–M↑ significant 0 − −
All 36 0.025 -0.017

Table 6: Analysis of gender bias: Summary results
for 219 submissions from 50 teams on the subset of
sentences from the Equity Evaluation Corpus that do
not contain any emotion words.

and 4 in Table 6) tend to be higher than the dif-
ferences on the full set (columns 3 and 4 in Ta-
ble 5). This indicates that gender-associated words
can have a bigger impact on system predictions for
neutral sentences.

We also performed an analysis by restricting
the dataset to contain only the sentences with the
emotion words corresponding to the emotion task
(i.e., submissions to the anger intensity prediction
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Task Avg. score diff.
Bias group #Subm. AA↑–EA↓ AA↓–EA↑

Anger intensity prediction
AA=EA not significant 11 0.010 -0.009
AA↑–EA↓ significant 28 0.008 -0.002
AA↓–EA↑ significant 7 0.002 -0.005
All 46 0.008 -0.004

Fear intensity prediction
AA=EA not significant 5 0.017 -0.017
AA↑–EA↓ significant 29 0.011 -0.002
AA↓–EA↑ significant 12 0.002 -0.006
All 46 0.009 -0.005

Joy intensity prediction
AA=EA not significant 8 0.012 -0.011
AA↑–EA↓ significant 7 0.004 -0.001
AA↓–EA↑ significant 30 0.002 -0.012
All 45 0.004 -0.010

Sadness intensity prediction
AA=EA not significant 6 0.015 -0.014
AA↑–EA↓ significant 35 0.012 -0.002
AA↓–EA↑ significant 5 0.001 -0.003
All 46 0.011 -0.004

Valence prediction
AA=EA not significant 3 0.001 -0.002
AA↑–EA↓ significant 4 0.006 -0.002
AA↓–EA↑ significant 29 0.003 -0.011
All 36 0.003 -0.009

Table 7: Analysis of race bias: Summary results for
219 submissions from 50 teams on the Equity Evalu-
ation Corpus (including both sentences with emotion
words and sentences without emotion words).

task were evaluated only on sentences with anger
words). The results (not shown here) were similar
to the results on the full set.

5.2 Race Bias Results

We did a similar analysis for race as we did for
gender. For each submission on each task, we
calculated the difference between the average pre-
dicted score on the set of sentences with African
American (AA) names and the average predicted
score on the set of sentences with European Amer-
ican (EA) names. Then, we aggregated the results
over all such sentence pairs in the EEC.

Table 7 shows the results. The table has the
same form and structure as the gender result ta-
bles. Observe that the number of submissions with
no statistically significant score difference for sen-
tences pertaining to the two races is about 5–11
(about 11% to 24%) for the four emotions and 3
(about 8%) for valence. These numbers are even
lower than what was found for gender.

The majority of the systems assigned higher
scores to sentences with African American names
on the tasks of anger, fear, and sadness intensity
prediction. On the joy and valence tasks, most
submissions tended to assign higher scores to sen-

tences with European American names. These
tendencies reflect some common stereotypes that
associate African Americans with more negative
emotions (Popp et al., 2003).

Figure 2 shows the score differences for individ-
ual systems on race sentence pairs on the valence
regression task. Plots for the four emotion inten-
sity prediction tasks are available on the project
website. Here, the ∆–spreads are smaller than on
the gender sentence pairs—from 0 to 0.15. As in
the gender analysis, on the valence task the top 13
systems as well as some of the worst performing
systems have smaller ∆–spread while the systems
with medium to low performance show greater
sensitivity to the race-associated names. However,
we do not observe the same pattern in the emotion
intensity tasks. Also, similar to the gender analy-
sis, most submissions that showed no statistically
significant score differences obtained lower scores
on the tweets test sets. Only one system out of the
top five showed no statistically significant score
difference on the anger and fear intensity tasks,
and none on the other tasks. Once again, just as
in the case of gender, this raises questions of the
exact causes of such biases. We hope to explore
this in future work.

6 Discussion

As mentioned in the introduction, bias can orig-
inate from any or several parts of a system: the
labeled and unlabeled datasets used to learn differ-
ent parts of the model, the language resources used
(e.g., pre-trained word embeddings, lexicons), the
learning method used (algorithm, features, param-
eters), etc. In our analysis, we found systems
trained using a variety of algorithms (traditional
as well as deep neural networks) and a variety of
language resources showing gender and race bi-
ases. Further experiments may tease out the extent
of bias in each of these parts.

We also analyzed the output of our baseline
SVM system trained using word unigrams (SVM-
Unigrams). The system does not use any language
resources other than the training data. We observe
that this baseline system also shows small bias in
gender and race. The ∆-spreads for this system
were quite small: 0.09 to 0.2 on the gender sen-
tence pairs and less than 0.002 on the race sen-
tence pairs. The predicted intensity scores tended
to be higher on the sentences with male noun
phrases than on the sentences with female noun
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Figure 2: Analysis of race bias: Box plot of the score differences on the race sentence pairs for each system on the valence
regression task. Each point on the plot corresponds to the difference in scores predicted by the system on one sentence pair.
s represents AA↑–EA↓ significant group, t represents AA↓–EA↑ significant group, and l represents AA=EA not significant
group. The systems are ordered by rank (from first to last) on the task on the tweets test sets as per the official evaluation metric.

phrases for the tasks of anger, fear, and sadness
intensity prediction. This tendency was reversed
on the task of valence prediction. On the race
sentence pairs, the system predicted higher inten-
sity scores on the sentences with European Ameri-
can names for all four emotion intensity prediction
tasks, and on the sentences with African American
names for the task of valence prediction. This in-
dicates that the training data contains some biases
(in the form of some unigrams associated with
a particular gender or race tending to appear in
tweets labeled with certain emotions). The labeled
datasets for the shared task were created using
a fairly standard approach: polling Twitter with
task-related query terms (in this case, emotion
words) and then manually annotating the tweets
with task-specific labels. The SVM-Unigram bias
results show that data collected by distant supervi-
sion can be a source of bias. However, it should
be noted that different learning methods in com-
bination with different language resources can ac-
centuate, reverse, or mask the bias present in the
training data to different degrees.

7 Conclusions and Future Work

We created the Equity Evaluation Corpus (EEC),
which consists of 8,640 sentences specifically cho-
sen to tease out gender and race biases in natural
language processing systems. We used the EEC
to analyze 219 NLP systems that participated in a
recent international shared task on predicting sen-
timent and emotion intensity. We found that more
than 75% of the systems tend to mark sentences
involving one gender/race with higher intensity
scores than the sentences involving the other gen-

der/race. We found such biases to be more widely
prevalent for race than for gender. We also found
that the bias can be different depending on the par-
ticular affect dimension involved.

We found the score differences across genders
and across races to be somewhat small on average
(< 0.03, which is 3% of the 0 to 1 score range).
However, for some systems the score differences
reached as high as 0.34 (34%). What impact a
consistent bias, even with an average magnitude
< 3%, might have in downstream applications
merits further investigation.

We plan to extend the EEC with sentences asso-
ciated with country names, professions (e.g., doc-
tors, police officers, janitors, teachers, etc.), fields
of study (e.g., arts vs. sciences), as well as races
(e.g., Asian, mixed, etc.) and genders (e.g., agen-
der, androgyne, trans, queer, etc.) not included in
the current study. We can then use the corpus to
examine biases across each of those variables as
well. We are also interested in exploring which
systems (or what techniques) accentuate inappro-
priate biases in the data and which systems miti-
gate such biases. Finally, we are interested in ex-
ploring how the quality of sentiment analysis pre-
dictions varies when applied to text produced by
different demographic groups, such as people of
different races, genders, and ethnicities.

The Equity Evaluation Corpus and the proposed
methodology to examine bias are not meant to
be comprehensive. However, using several ap-
proaches and datasets such as the one proposed
here can bring about a more thorough examination
of inappropriate biases in modern machine learn-
ing systems.
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Abstract

This paper describes CCG/AMR, a novel
grammar for semantic parsing of Abstract
Meaning Representations. CCG/AMR equips
Combinatory Categorial Grammar derivations
with graph semantics by assigning each CCG
combinator an interpretation in terms of a
graph algebra.

We provide an algorithm that induces a
CCG/AMR from a corpus and show that it cre-
ates a compact lexicon with low ambiguity and
achieves a robust coverage of 78% of the ex-
amined sentences under ideal conditions.

We also identify several phenomena that affect
any approach relying either on CCG or graph
algebraic approaches for AMR parsing. This
includes differences of representation between
CCG and AMR, as well as non-compositional
constructions that are not expressible through
a monotonic construction process. To our
knowledge, this paper provides the first anal-
ysis of these corpus issues.

1 Introduction

With the release of the Abstract Meaning Rep-
resentation (AMR) corpus (Knight et al., 2014),
graph representations of meaning have taken cen-
tre stage in research on semantic parsing. Se-
mantic parsing systems have to address the prob-
lem of lexicon induction: extracting reusable lexi-
cal items from the sentential meaning representa-
tions annotated in the AMR corpus. Since the cor-
pus contains sentential meaning representations,
but no indication of their compositional structure,
derivations of the meaning representation cannot
be observed. Common approaches enumerate
all conceivable lexical items that may have con-
tributed to the derivation of the meaning represen-
tation at hand (Artzi et al., 2015; Groschwitz et al.,
2017). This may produce very large lexicons with
high degrees of ambiguity, and therefore require

large amounts of computational resources during
parsing. One central contribution of this paper is
a lexicon induction algorithm that produces a rel-
atively compact lexicon.

Combinatory Categorial Grammar (CCG) uses
a transparent syntax-semantic interface that con-
structs meaning representations using λ-calculus.
This makes lexicon induction challenging, as in-
ducing λ-calculus terms essentially requires solv-
ing higher-order unification (Kwiatkowski et al.,
2010). In practice, heuristics are employed to
manage the search space, but it would be prefer-
able to make use of a less powerful mechanism
which better fits the problem domain. Graph alge-
bras such as the HR algebra (Courcelle and Engel-
friet, 2012) constitute such a constrained mecha-
nism. By combining CCG with the HR algebra,
we are able to leverage the availability of syntac-
tic parsers for CCG while making use of tailored
semantic construction operations.

1.1 Related Work

There is an extensive body of work on seman-
tic parsing of AMRs, using a range of techniques
including maximum spanning tree-based parsing
(Flanigan et al., 2014), transition-based parsing
(Wang et al., 2015; Ballesteros and Al-Onaizan,
2017; Peng et al., 2018), machine translation (van
Noord and Bos, 2017), graph grammars (Peng
et al., 2015; Groschwitz et al., 2017), and CCG
parsing (Artzi et al., 2015; Misra and Artzi, 2016).

The system of Artzi et al. (2015) is most sim-
ilar to the present work. They induce a semantic
CCG using a translation of AMR into λ-calculus.
A key difference is that their training algorithm
combines lexicon induction and parameter train-
ing into a single phase. New lexical items are
generated during each training step and then fil-
tered based upon the model’s current parameters.
In contrast, in this work we focus on lexicon in-
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duction, with parameter training to be performed
in a subsequent step.

Another related system is presented in Lewis
et al. (2015), where a CCG parser is adapted to
produce shallow semantic dependency graphs. In
contrast, the meaning representations employed
here are abstract and do not directly refer to the
sentence under analysis.

Word-to-node alignments on the AMR corpus
play an important role in this work. We exper-
iment with JAMR’s rule-based aligner (Flanigan
et al., 2014) and the statistical ISI aligner (Pour-
damghani et al., 2014).

Graph algebras have recently been applied to
AMR parsing (Koller, 2015; Groschwitz et al.,
2017), but not in combination with CCG. In con-
trast, we use syntactic CCG derivations to con-
strain the space of possible derivations. However,
the idea of using a constrained version of the HR
algebra, introduced by Groschwitz et al. (2017),
is also used here, and our Application operator ef-
fectively subsumes their Apply and Modify opera-
tions.

1.2 Tools

Syntax parser We use EasyCCG (Lewis and
Steedman, 2014) to obtain syntax derivations. For
robustness, we extract the ten best derivations
produced by EasyCCG based on the CCGBank-
rebanked model (Honnibal et al., 2010).

Word-to-node alignments During lexicon
induction, we make use of alignments between to-
kens in the sentence and nodes in the meaning rep-
resentation. We experiment with JAMR’s aligner
(Flanigan et al., 2014) and the ISI aligner (Pour-
damghani et al., 2014).

Other tools We use Stanford CoreNLP (Man-
ning et al., 2014) for tokenisation.

2 Background

The task of semantic parsing is concerned with
building formal meaning representations for natu-
ral language text. While meaning representations
can be elements of any formal language, in this pa-
per we are concerned with Abstract Meaning Rep-
resentations (AMRs). We use Combinatory Cat-
egorial Grammar (CCG) as an underlying frame-
work to explain how AMRs may be derived from
the surface form words. To do so, we equip CCG
with graph construction operators drawn from the
HR algebra. These concepts are introduced below.

2.1 Combinatory Categorial Grammar

CCG is a grammar formalism centered around a
transparent syntax-semantics interface (Steedman,
2000). A CCG consists of a small set of combina-
tory rules, along with a lexicon of entries defining
each word’s syntactic and semantic interpretation.

A CCG lexical item, as used in this paper, con-
tains one or several tokens, a syntactic category,
and a semantic category. The syntactic category is
a functional type defining the types of arguments
expected by the words and whether they are ex-
pected to the left or right. E.g., NP/N expects a
noun (N) to the right (because of the rightward-
facing slash) and returns an NP – it is the type of
determiners. (S \NP) / NP is the category of tran-
sitive verbs, consuming first an NP from the right
and then from the left, and returning a sentence.
See Figure 1a for an example.

CCG derivations are created by recursively ap-
plying combinators to the lexical syntactic cate-
gories, thus combining them into constituents. Be-
sides Application, implementations of CCG also
use other combinators such as Composition, as
well as specialized combinators for conjunctions
and punctuation.

Semantic categories are represented as λ-
calculus terms. A combinator is always applied
to two constituents’ syntactic and semantic cate-
gories at the same time, allowing semantic con-
struction to be fully syntax-driven.

2.2 Abstract Meaning Representation

The Abstract Meaning Representation (AMR) is
a semantic meaning representation language that
is purposefully syntax-agnostic (Banarescu et al.,
2013). The data set used in this paper, the AMR
1.0 release (Knight et al., 2014), consists of En-
glish sentences which have been directly anno-
tated with meaning representations by human an-
notators.

AMR represents meaning as labeled, directed
graphs. Nodes are labeled with concepts, while
edges represent roles. Predicates and core roles
are drawn from PropBank (Kingsbury and Palmer,
2002). In addition, a set of non-core roles has been
defined, such as mod, poss, time, etc.

Whether it was wise to define AMR indepen-
dently of any derivational process has been de-
bated (Bender et al., 2015), and in Section 5 we
will show some of the issues that arise when at-
tempting to construct derivations for AMRs.
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The boy wants to sleep

NP (S\NP)/(S\NP) S\NP

boy
〈root〉

want
〈root〉

〈0〉 〈1〉
ARG0 ARG1

sleep
〈root〉

〈0〉
ARG0

>
S\NP

want
〈root〉

〈0〉 sleep
ARG0 ARG1

ARG0

<
S

want
〈root〉

boy sleep
ARG0 ARG1

ARG0

(a) Example for a derivation making use of two
Application operations.
Step 1: Application. Insert sleep node into
placeholder 〈1〉; merge 〈0〉 placeholders.
Step 2: Application. Insert boy into placeholder
〈0〉.

met and married

(S\NP)/NP conj (S\NP)/NP

meet
〈root〉

〈0〉 〈1〉
ARG0 ARG1

and
〈root〉

〈0〉 〈1〉
op1 op2

marry
〈root〉

〈0〉 〈1〉
ARG0 ARG1

conj
((S\NP)/NP)\((S\NP)/NP)

and
〈root〉

〈2〉 marry

〈0〉 〈1〉

op1 op2

ARG0 ARG1

<
(S\NP)/NP)

and
〈root〉

meet marry

〈0〉 〈1〉

op1 op2

ARG0
ARG1

ARG0
ARG1

(b) Example for a derivation containing one Conjunction
and one Application operation.
Step 1: Conjunction. Insert marry node into placeholder
〈1〉 of and; shift placeholder 〈0〉 of and to 〈2〉.
Step 2: Application of the phrase and married to met; the
operands’ same-numbered placeholders are merged.

Figure 1: Examples for the semantic operations Application and Conjunction.

2.3 The HR Algebra

During semantic parsing, a complete meaning rep-
resentation needs to be built out of smaller compo-
nents. To formalise this process, known as seman-
tic construction, an algebra may be defined that de-
scribes the permitted operations on meaning repre-
sentations. The HR algebra has first been defined
in the context of graph grammars (Courcelle and
Engelfriet, 2012) and has been applied to seman-
tic construction of AMR graphs (Koller, 2015).

The HR algebra operates on graphs with
sources, or s-graphs. Given a set of labels A, an
s-graph is a pair (G, slabG) where G = (VG, EG)
is a graph and slabG : VG → A is a partial in-
jective function. The nodes contained within the
domain of slabG are called the sources of G, and
the elements of A are called source labels.

The HR algebra defines three basic operations
over s-graphs:
• Parallel composition creates the union of

two disjoint s-graphs and fuses nodes that
share a source label. slabG is defined to re-
tain all source labels.
• Forgetting removes a source from the do-

main of slabG, effectively deleting its label.
• Renaming modifies slabG to change source

labels according to a specified mapping.
The HR algebra provides the building blocks for

the manipulation of s-graphs. In the following sec-
tion, we apply these basic operations to CCG.

3 Graph Semantics for CCG

In CCG, semantic construction is syntax-driven in
that the construction operations that are applied
to lexical units of meaning are determined by the
combinatory operations that make up a CCG syn-
tax tree. To define CCG derivations over graph
semantics, we must therefore define the semantic
construction operators invoked by each CCG com-
binator.

We will use a restricted version of the HR alge-
bra, where we only consider a subset of possible s-
graphs, and only some of the possible operations.
To represent incomplete meaning representations,
we define CCG/AMR s-graphs.

3.1 CCG/AMR S-Graphs

As an extension of AMR graphs, CCG/AMR s-
graphs may contain unlabeled nodes called place-
holders. In addition to the AMR labels, a source
labelling function is employed, as defined in Sec-
tion 2.3. Source labels used in CCG/AMR s-
graphs take one of two forms:
• 〈r, i〉 with r ∈ {root, ∅} and i ∈ N ∪ {∅},

which marks a node as root if r = root, and
assigns it an index i if i ∈ N. However, we
disallow 〈∅, ∅〉 as a source label.
• 〈s〉, used temporarily to label a placeholder-

argument pair.
Sources with r = root are called root-sources,

and sources with i ∈ N are called i-sources. For
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CCG combinator Semantic operator

(F/B) Application (F/B) Application
(F/B) [Gen.] [Cr.] Comp. (F/B) Application
Conjunction F Conjunction
(Left/Right) Punctuation (F/B) Identity

Table 1: The mapping from CCG combinators to
semantic operators. F and B stand for Forward
and Backward, Gen. stands for Generalised, Cr.
stands for Crossed, and Comp. stands for compo-
sition. All variants of Composition are mapped to
the Application operation.

simplicity, we abbreviate 〈root, ∅〉 to 〈root〉 and
〈∅, i〉 to 〈i〉 for i ∈ N.

The following constraints apply:
• A CCG/AMR s-graph must have exactly one

root-source.
• For every i ∈ N, there may be at most one
i-source, and for every i-source with i > 0,
there must also be an (i− 1)-source.
• The i-sources of a CCG/AMR s-graph must

be exactly its placeholders.
The outermost placeholder of a CCG/AMR s-

graph is defined to be the placeholder with the
highest index i.

3.2 Semantic Operators

We now define three semantic operators based on
the building blocks of the HR algebra. They are bi-
nary operators, with a left and a right operand. If
the operator is used in forward direction, we call
the left operand the function graph and the right
operand the argument graph. In backward direc-
tion, these roles are reversed.
• Application Relabels both the outermost

placeholder of the function graph and the root
of the argument graph to 〈s〉. Then performs
parallel composition of both graphs. Finally,
forgets 〈s〉. Requires the function graph to
have at least one placeholder.
• Conjunction The function graph of a con-

junction operator is required to have exactly
two placeholders. Placeholder 〈1〉 and the
root of the function graph are both renamed
to 〈s〉. Placeholder 〈0〉 of the function graph
is relabelled to 〈i+ 1〉, where i is the index of
the argument graph’s outermost placeholder.
Then, parallel composition is applied to the

relabelled graphs and 〈s〉 forgotten.
• Identity A special case of Application

where the function graph must consist of a
single placeholder and the argument graph is
therefore always returned unchanged.

Examples for the Application and Conjunction
operators are given in Figure 1.

For our definition of CCG/AMR, we use the
combinator set of the EasyCCG parser (Lewis and
Steedman, 2014), which is small and achieves
good coverage. The Application operator is suffi-
cient to cover almost all CCG combinators, with
the exception of conjunctions. The mapping of
CCG combinators to semantic operators used in
this paper is summarised in Table 1.

All unary combinators, including type raising
and the various type-changing rules used by Easy-
CCG, are defined to have no effect on the semantic
representation.

We add a single rule that is non-compositional
in terms of the semantic operators. Since n-ary
conjunctions are frequent in the AMR corpus,
this rule combines two nested conjunction nodes,
merging their operands into a single contiguous
operand list.

3.3 Induction of CCG/AMR Lexicons

To induce a CCG/AMR lexicon, we propose a
simple recursive algorithm, described in Algo-
rithm 1. It starts with a full-sentence meaning
representation, a syntax tree, and a set of word-
to-node alignments. Starting from the root, it re-
curses down the syntax tree and splits the meaning
representation into smaller parts by applying the
inverse of one of the semantic operators at each
node.

Constraints We impose two constraints on
the generated lexical items:

1. The alignments must not be violated.
2. The number of placeholders must not exceed

the arity of the lexical item’s syntactic cat-
egory. E. g., the meaning representation for
the syntactic category (S\NP)/NP must not
have more than two placeholders.

Soundness Algorithm 1 requires finding
z1, z2 with o(z1, z2) = z. This equation states
that a parser would be able to produce the parse
observed in the data based on the induced the
lexical items, thus ensuring the soundness of the
induction algorithm.

Implementation We examine all ways of par-
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titioning the meaning representation into a func-
tion subgraph and an argument subgraph, provided
that no alignments are violated. Nodes that sit at
the boundary between both subgraphs – belonging
to the argument subgraph but connected by edges
to the function subgraph – are unmerged, meaning
that a placeholder is created in the function sub-
graph to which those edges are moved.

Phrasal items Intermediate items are emitted
by the algorithm even if they can be further de-
composed. The rationale behind this behaviour is
that some lexical entries legitimately span multiple
tokens. E.g., one could argue that a named entity
such as New York should be kept as a lexical item.

Coreferences Since there are many cases
where graphs are connected more densely than al-
lowed by the arity constraint, we allow <coref>
nodes to be created by unmerging additional
nodes. They are treated just like regular nodes. In
particular, they are not sources and do not count
towards the function graph’s placeholder count. In
the experiments in this paper, we only allow cre-
ation of a single <coref> node per splitting step.

Splitting failures The algorithm may en-
counter situations where splitting cannot continue
because it is impossible to further decompose the
meaning representation without violating one of
the constraints. In such cases, its output is incom-
plete, emitting a lexical item only for the deriva-
tion node at which the problem was encountered –
which may span a long constituent of the sentence
– but not for any of its sub-nodes.

4 Analysis of Lexicon Induction

We begin by analysing the statistical properties of
large-scale grammar induction on the 6,603 sen-
tences of the proxy-train subset of the AMR
corpus, which consists of newswire texts. We
also examine the influence that different alignment
strategies have on the produced lexicon.

We then turn to the consensus-dev sub-
set, which consists of 100 sentences taken from
the Wall Street Journal corpus. Therefore, gold
standard syntax parses for these sentences can
be obtained from CCGBank (Hockenmaier and
Steedman, 2007). In addition, Pourdamghani
et al. (2014) have released gold-standard word-to-
meaning alignments for these sentences. This al-
lows us to examine the effect of tool-derived align-
ments and syntax parses on the induction algo-
rithm’s behaviour.

Algorithm 1 Recursive Splitting

Input: syntax derivation node y, CCG/AMR s-
graph z

Definitions: OPERATOR returns the semantic op-
erator matching a derivation node’s combina-
tor. CHILDREN returns the sub-nodes of a syn-
tax derivation node. VALID tests whether a
pair of a derivation node and a meaning repre-
sentation fulfill the constraints of Section 3.3.
EMIT adds an item to the lexicon. EMITTED

tests whether an equivalent item is already in
the lexicon.

1: function SPLITREC(y, z)
2: if ¬EMITTED(y, z) ∧ VALID(y, z) then
3: EMIT(y, z)
4: y1, y2 ← CHILDREN(y)
5: o← OPERATOR(y)
6: for z1, z2 such that o(z1, z2) = z do
7: SPLITREC(y1, z1)
8: SPLITREC(y2, z2)
9: end for

10: end if
11: end function

4.1 Quantitative Analysis

We run lexicon induction on the full
proxy-train subcorpus. To limit the
computational effort and reduce the extraction of
poorly generalisable lexical items, we apply the
following limitations:1

1. If more than 1,000 lexical items are extracted
from a derivation, it is skipped entirely.

2. Sentences with more than ten unaligned
nodes are skipped.

3. If at any derivation node, more than ten lexi-
cal items are generated, none of them are in-
cluded in the lexicon (but induction may still
proceed recursively from these nodes).

We measure results by examining the distribu-
tion of maximum span lengths over the corpus.
The maximum span length of a sentence is de-
fined as the length of its longest subspan which
the induction algorithm was not able to split any
further. Ideally, we would like to achieve a maxi-
mum span length of 1 for every sentence, meaning
that each individual token is assigned at least one
lexical item.

1Constraints 1 and 2 will tend to penalise longer sentences
more frequently. While this skews our results towards shorter
sentences, we have found them necessary to keep the runtime
of the algorithm manageable.
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(a) Lexical induction coverage. For each alignment strat-
egy, the plot shows the percentage of sentences having at
most a given maximum span length.

Alignments Lexicon Size Skipped

jamr 314,299 104
isi 387,932 2
union 275,418 103
intersect 429,278 41
combine 286,129 3

(b) Lexicon sizes and skipped sentences by alignment
strategy. Sentences were skipped if they produced
more than 1,000 lexical items.

Figure 2: Comparison of alignment strategies for
lexical induction on the proxy-train set.

4.1.1 Alignment Strategies

We first examine the impact of several alignment
strategies. The two alignment tools investigated
here, the JAMR aligner (Flanigan et al., 2014) and
the ISI aligner (Pourdamghani et al., 2014), use
different approaches and thus produce alignments
with different characteristics. We therefore ex-
plore different strategies of combining the align-
ments produced by the two tools:
• jamr/isi: Use only the output from one of the

tools. In the case of the ISI aligner, align-
ments to edges are dropped.
• union/intersect: Take the union / intersec-

tion of both aligners’ outputs.
• combine: Take the union of both aligners’

outputs. However, if a node has been aligned
to different tokens by the two aligners, drop
alignments for this node altogether.

Two strategies exhibit the most interesting prop-
erties (Figure 2). The intersect strategy achieves a
maximum span length of 1 on the most sentences,
but its produced alignments are too sparse, causing
many lexical items to be dropped due to ambiguity.
From a maximum span length of 8, the combine

strategy is more successful, while still maintaining
a small lexicon size and a low number of skipped
sentences. Intuitively, it increases the node cover-
age of either method, while also allowing the cor-
rection of errors made by one of the tools.

4.1.2 Lexicon Statistics
The lexicon resulting from the combine strategy
has 286,129 entries. In comparison, this is less
than a fifth the lexicon size of 1.6 million entries
reported by Artzi et al. (2015).

Of the 6,603 sentences, the algorithm skipped
three because they would have produced more
than 1,000 lexical items. Each of the remain-
ing sentences contributes on average 3.29 lexical
items per token (median 2.91).

The lexicon is essentially a non-unique map-
ping from sequences of tokens to pairs of syntactic
and semantic categories. By counting the number
of distinct entries for each token sequence, we can
assess the ambiguity of the lexicon. For the to-
ken sequences represented in the lexicon, the mean
ambiguity is 10.6 (median: 4). There is a small
number of entries with very high ambiguities: 73
tokens have an ambiguity of more than 100, the
most ambiguous one being in with 1,798 lexical
items. In general, prepositions dominate among
the most ambiguous items, because they occur fre-
quently, tend not to have any alignments, and also
have a high degree of legitimate polysemy. How-
ever, high-frequency words specific to the corpus
also appear, such as government or security.

Of the 10,600 unique tokens in the training cor-
pus, 23% (2,458) are not assigned a lexical item at
all because the induction algorithm was not able
to fully decompose the meaning representation, or
because more than ten candidates resulted from
every occurrence. They are covered by multi-
token items.

4.2 Impact of Tool-Derived Annotations

To examine the induction algorithm’s sensitivity to
errors propagated from external tools, we compare
them with the gold standard annotations available
for the consensus-dev set. The results are
shown in Figure 3.

Not surprisingly, gold annotations perform bet-
ter than tool-derived annotations. It can be seen
that alignments impact grammar induction perfor-
mance more strongly than syntax parses, with a
gap of 21% of perfectly split sentences between
gold-standard and tool-derived alignment annota-
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(a) Lexical induction coverage with either gold-standard
or tool-derived annotations. Tool-derived syntax is from
EasyCCG, tool-derived annotations are JAMR/ISI align-
ments processed using the combine strategy.

Syntax Alignments Lexicon Size

gold gold 7,908
easyccg gold 11,123
gold combine 4,435
easyccg combine 5,401

(b) Sizes of the lexicons induced with different an-
notation sources.

Figure 3: Analysis of lexicon induction perfor-
mance using gold-standard or tool-derived anno-
tations.

tions. Table 3b shows an increase in lexicon size
when EasyCCG syntax is used, which is likely due
to added noise because the ten best derivations are
considered instead of a single one. Tool-derived
alignments, on the other hand, reduce the lexicon
size, because alignment errors force induction to
stop early on some sentences.

5 Problematic Phenomena in AMR

Is the proposed framework a good fit for analysing
the AMR corpus? Figure 3 shows that even if
errors from external tools are ruled out, there re-
mains a gap of 22% of sentences that are not fully
split by the lexical induction algorithm.

To assess the nature of these failures, we group
them into error classes. Table 2 provides an
overview of the error counts.

Broadly speaking, we identify three types of er-
rors: Algorithmic limitations, where parameters of
the algorithm prohibit the desired decomposition;
mismatches where the CCG and AMR annota-
tions choose to represent phenomena in incompat-
ible ways; and non-compositional constructions,

where certain AMRs cannot be expressed in our
graph algebra.

Error Class Label Count

dependency mismatch dep 15
coreference restriction coref 3
negation neg 2
node duplication dup 2

Table 2: Classification of causes for lexical
induction failures, using gold-standard syntax
parses and word-to-node alignments, based on the
consensus-dev data set (100 sentences). The
remaining 78 sentences were split perfectly. La-
bels refer to the paragraphs in Section 5.

5.1 Algorithmic Limitations

Restriction of coreference node extraction
(coref) In three cases, we observed more than
one <coref> node to be required, as exemplified
in Figure 4c.

5.2 Mismatches Between CCG and AMR

Mismatch of syntactic and semantic dependen-
cies (dep) Since the induction algorithm walks
the syntax tree and relies strongly on the existence
of a parallel structure between syntax and seman-
tics, it fails in cases where different dependency
structures are present in the syntactic and the se-
mantic annotations.

Of the 15 errors in this class, we judged 11 to
be “fixable” in that an acceptable CCG derivation
could be constructed matching the dependencies
on the semantic level. Typically, these are re-
lated to ambiguities or annotation errors. Figure
4a shows a typical example.

Treatment of negation (neg) Syntactically,
the negator no can attach to a noun in cases where
it semantically modifies the verb, as shown in Fig-
ure 4b. In AMR, the choice is made to attach po-
larity edges to the verb, which prohibits syntactic
analysis of such constructions. This is a system-
atic difference between CCG and AMR.

5.3 Non-Compositional Features of AMR

Duplication of nodes (dup) Constructions in-
volving conjunctions or partitives can lead to a du-
plication of nodes in the meaning representation,
as shown in Figures 4d and 4e. This behaviour
is not compositional because the duplicated nodes
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bear-06
〈root〉

force

work-01

today

-
we

ARG2

ARG0

time

polarity
poss

no bearing on our work force today

NP (NP\NP)/NP NP NP\NP
<

NP
>

(NP\NP)
<

NP

(a) Example for mismatching syntactic / semantic dependen-
cies. Syntactically, a dependency between work force and
today is annotated, but semantically, today is dependent on
bearing. While a syntax derivation matching the semantic
dependencies could be constructed, it has not been annotated
in CCGbank. From wsj_0003.30.

have-03
〈root〉

we

information

useful-
ARG0

ARG1

modpolarity

We have no useful information

NP (S [dcl ]\NP)/NP NP [nb]/N N
>

NP
>

S [dcl ]\NP
<

S[dcl]

(b) Example for the incompatible treatment of negation. The
polarity edge of have-03 does not match the dependency be-
tween no and information. Simplified from wsj_0003.9

settle-01
〈root〉

〈0〉

Indianapolis

meet-03

board

ARG1

ARG0 part ARG0

location

settled on Indianapolis for its board meeting

(S [dcl ]\NP)/PP PP (S\NP)\(S\NP)
>

S [dcl ]\NP
<

S [dcl ]\NP
(c) Example for a phrase with more than one coreference.
The phrase its board meeting contains coreferences both via
the location and part edges. The Indianapolis node is an ab-
breviation for a multi-node named entity subgraph. Simpli-
fied from wsj_0010.3.

and
〈root〉

operation

sell-01

operation

service-01

operation

part

operation

market-01

op1 op2 op3 op4

mod mod mod mod

(d) Example for the duplication of nodes due to coordination.
The phrase is sales, service, parts and marketing operations.
Even though the token operations occurs only once, a sepa-
rate operation node is introduced for each operand of the and
conjunction. From wsj_0009.2.

chef
〈root〉

include-91 chef town

hot most

ARG1 ARG2 location

mod degree

(e) Example for the duplication of nodes due to a partitive.
The phrase is some of the hottest chefs in town. The ex-
ample illustrate how quantification can lead to nodes be-
ing duplicated, such as the chef nodes in this AMR. From
wsj_0010.17

Figure 4: Corpus examples for the phenomena described in Section 5: mismatching dependencies, treat-
ment of negations, number of coreferences, duplication of nodes due to coordination and partitives.
Syntax annotations are taken from CCGbank, and semantic annotations are taken from the AMR corpus.

〈root〉
tell-01

〈0〉

boy

sleep

ARG0

ARG2

ARG1
ARG0

(a) Meaning representation for
told the boy to sleep.

〈root〉
tell-01

〈0〉

boy

〈1〉

ARG0

ARG2

ARG1 ARG0

(b) Induced meaning represen-
tation for told the boy.

〈root〉
tell-01

〈0〉

〈2〉

〈1〉

ARG0

ARG2

ARG1
ARG0

boy
〈root〉

sleep
〈root〉

(c) Induced meaning representations for
told, boy, and sleep.

Figure 5: Example for the induction of lexical items from an object control verb construction. The
sentence is [The girl] told the boy to sleep. Since sleep is an argument to tell, it is not assigned any
placeholders and is extracted as a 0-ary lexical item. The control structure is encoded in the lexical item
for tell.
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scenario
〈root〉

and

kidnap-01 take-01

hostage

mod

op1 op2

ARG1

(a) AMR for the phrase
kidnapping and hostage-
taking scenarios.

kidnapping and hostage-taking scenarios

N /N conj N /N N
conj

(N /N )\(N /N )
<

N /N
>

N

(b) CCG derivation showing the lexical entries for
the modifiers kidnapping and hostage-taking.

〈root, 0〉

kidnap-01
mod

〈root, 0〉

take-01

hostage

mod

ARG1

(c) The lexical entries for
the modifiers kidnapping
and hostage-taking.

Figure 6: Corpus example for conjunctions of modifiers. The AMR in Figure 6a cannot be com-
positionally constructed from the modifier interpretations of kidnapping and hostage-taking because
the mod edges present in the lexical entries would have to be destructively modified. Example from
PROXY_AFP_ENG_20020105_0162.12.

are introduced only once lexically, and then copied
based on the syntactic context.

Coordination of modifiers2 When modifiers
are the arguments of a conjunction, the conjunc-
tion node itself is connected to the modifiee via a
mod edge, as shown in Figure 6. Given that each
of the conjoined modifiers itself has a mod edge,
these edges need to be merged, moved, or deleted
somehow.

6 Conclusion

We have presented a new variant of CCG which
performs semantic construction using the opera-
tions of a graph algebra instead of combinatory
operations on λ-calculus terms. This allows the
grammar to construct graph representations di-
rectly without going through intermediate repre-
sentations. It also restricts the set of possible
operations, leading to a compact lexicon. We
have demonstrated that under ideal conditions, our
grammar achieves a robust coverage of 78% on
WSJ sentences.

Our experiments suggest that CCG/AMR is a
good overall match for representing the derivation
of AMRs. There remain several possibilities for
improvement which we leave for future work:
• Allowing the induction algorithm to search

over possible derivations and alignments
would reduce the influence of both tool er-
rors and mismatching annotations. To keep
the lexicon manageable, an optimizing induc-
tion algorithm would be needed, e.g. using
EM.

2This phenomenon has not been observed in the
consensus data set and is therefore not represented in Ta-
ble 2.

• An attempt could me made to more strongly
identify placeholders with the argument po-
sitions of the corresponding syntactic cate-
gories. Among others, this would allow for
a more canonical treatment of object con-
trol verbs, which is somewhat ad hoc, requir-
ing an interpretation of verbs as 0-ary lexical
items (see Figure 5 for an example).
• Additional rules could be introduced to deal

with non-compositional phenomena such as
the conjunction of modifiers. Statistically,
such phenomena appear to be rare, affecting
only 2% of the examined corpus.
• Other differences in representation might be

resolved statistically or using heuristics. E.g.,
the fact that negators that attach to a noun
syntactically attach to the verb in AMR could
be mitigated by a rule that allows for the
movement of polarity edges.

Our results represent a promising step towards
a more complete grammatical treatment of AMR.
Although AMR has not been designed with com-
positionality in mind, we have shown that it is pos-
sible to construct linguistically motivated compo-
sitional derivations.
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Abstract

The first stage of every knowledge base
question answering approach is to link en-
tities in the input question. We investigate
entity linking in the context of a question
answering task and present a jointly opti-
mized neural architecture for entity men-
tion detection and entity disambiguation
that models the surrounding context on dif-
ferent levels of granularity.

We use the Wikidata knowledge base and
available question answering datasets to
create benchmarks for entity linking on
question answering data. Our approach
outperforms the previous state-of-the-art
system on this data, resulting in an average
8% improvement of the final score. We fur-
ther demonstrate that our model delivers a
strong performance across different entity
categories.

1 Introduction

Knowledge base question answering (QA) requires
a precise modeling of the question semantics
through the entities and relations available in the
knowledge base (KB) in order to retrieve the cor-
rect answer. The first stage for every QA approach
is entity linking (EL), that is the identification of
entity mentions in the question and linking them
to entities in KB. In Figure 1, two entity mentions
are detected and linked to the knowledge base ref-
erents. This step is crucial for QA since the correct
answer must be connected via some path over KB
to the entities mentioned in the question.

The state-of-the-art QA systems usually rely on
off-the-shelf EL systems to extract entities from
the question (Yih et al., 2015). Multiple EL sys-
tems are freely available and can be readily applied

what are taylor swift’s albums ?

Taylor Swift Q462 album Q24951125

Red, 1989, etc.

PERFORMER
INSTANCE OF

Figure 1: An example question from a QA dataset
that shows the correct entity mentions and their
relationship with the correct answer to the question,
Qxxx stands for a knowledge base identifier

for question answering (e.g. DBPedia Spotlight1,
AIDA2). However, these systems have certain draw-
backs in the QA setting: they are targeted at long
well-formed documents, such as news texts, and
are less suited for typically short and noisy ques-
tion data. Other EL systems focus on noisy data
(e.g. S-MART, Yang and Chang, 2015), but are
not openly available and hence limited in their us-
age and application. Multiple error analyses of QA
systems point to entity linking as a major external
source of error (Berant and Liang, 2014; Reddy
et al., 2014; Yih et al., 2015).

The QA datasets are normally collected from the
web and contain very noisy and diverse data (Be-
rant et al., 2013), which poses a number of chal-
lenges for EL. First, many common features used
in EL systems, such as capitalization, are not mean-
ingful on noisy data. Moreover, a question is a
short text snippet that does not contain broader con-
text that is helpful for entity disambiguation. The
QA data also features many entities of various cat-
egories and differs in this respect from the Twitter
datasets that are often used to evaluate EL systems.

1http://www.dbpedia-spotlight.org
2https://www.mpi-inf.mpg.de/yago-naga/aida/
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In this paper, we present an approach that tackles
the challenges listed above: we perform entity men-
tion detection and entity disambiguation jointly in
a single neural model that makes the whole pro-
cess end-to-end differentiable. This ensures that
any token n-gram can be considered as a potential
entity mention, which is important to be able to
link entities of different categories, such as movie
titles and organization names.

To overcome the noise in the data, we automat-
ically learn features over a set of contexts of dif-
ferent granularity levels. Each level of granularity
is handled by a separate component of the model.
A token-level component extracts higher-level fea-
tures from the whole question context, whereas a
character-level component builds lower-level fea-
tures for the candidate n-gram. Simultaneously, we
extract features from the knowledge base context of
the candidate entity: character-level features are ex-
tracted for the entity label and higher-level features
are produced based on the entities surrounding the
candidate entity in the knowledge graph. This infor-
mation is aggregated and used to predict whether
the n-gram is an entity mention and to what entity
it should be linked.

Contributions The two main contributions of
our work are:

(i) We construct two datasets to evaluate EL for
QA and present a set of strong baselines: the
existing EL systems that were used as a build-
ing block for QA before and a model that uses
manual features from the previous work on
noisy data.

(ii) We design and implement an entity linking
system that models contexts of variable gran-
ularity to detect and disambiguate entity men-
tions. To the best of our knowledge, we are
the first to present a unified end-to-end neural
model for entity linking for noisy data that
operates on different context levels and does
not rely on manual features. Our architec-
ture addresses the challenges of entity linking
on question answering data and outperforms
state-of-the-art EL systems.

Code and Datasets Our system can be applied
on any QA dataset. The complete code as well
as the scripts that produce the evaluation data can
be found here: https://github.com/UKPLab/

starsem2018-entity-linking.
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Figure 2: Distribution of entity categories in
the NEEL 2014, WebQSP and GraphQuestions
datasets

2 Motivation and Related Work

Several benchmarks exist for EL on Wikipedia texts
and news articles, such as ACE (Bentivogli et al.,
2010) and CoNLL-YAGO (Hoffart et al., 2011).
These datasets contain multi-sentence documents
and largely cover three types of entities: Location,
Person and Organization. These types are com-
monly recognized by named entity recognition sys-
tems, such as Stanford NER Tool (Manning et al.,
2014). Therefore in this scenario, an EL system
can solely focus on entity disambiguation.

In the recent years, EL on Twitter data has
emerged as a branch of entity linking research. In
particular, EL on tweets was the central task of
the NEEL shared task from 2014 to 2016 (Rizzo
et al., 2017). Tweets share some of the challenges
with QA data: in both cases the input data is short
and noisy. On the other hand, it significantly dif-
fers with respect to the entity types covered. The
data for the NEEL shared task was annotated with
7 broad entity categories, that besides Location,
Organization and Person include Fictional Charac-
ters, Events, Products (such as electronic devices
or works of art) and Things (abstract objects). Fig-
ure 2 shows the distribution of entity categories in
the training set from the NEEL 2014 competition.
One can see on the diagram that the distribution
is mainly skewed towards 3 categories: Location,
Person and Organization.
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Figure 2 also shows the entity categories present
in two QA datasets. The distribution over the cate-
gories is more diverse in this case. The WebQues-
tions dataset includes the Fictional Character and
Thing categories which are almost absent from the
NEEL dataset. A more even distribution can be ob-
served in the GraphQuestion dataset that features
many Events, Fictional Characters and Professions.
This means that a successful system for EL on ques-
tion data needs to be able to recognize and to link
all categories of entities. Thus, we aim to show
that comprehensive modeling of different context
levels will result in a better generalization and per-
formance across various entity categories.

Existing Solutions The early machine learning
approaches to EL focused on long well-formed
documents (Bunescu and Pasca, 2006; Cucerzan,
2007; Han and Sun, 2012; Francis-Landau et al.,
2016). These systems usually rely on an off-the-
shelf named entity recognizer to extract entity men-
tions in the input. As a consequence, such ap-
proaches can not handle entities of types other than
those that are supplied by the named entity rec-
ognizer. Named entity recognizers are normally
trained to detect mentions of Locations, Organiza-
tions and Person names, whereas in the context of
QA, the system also needs to cover movie titles,
songs, common nouns such as ‘president’ etc.

To mitigate this, Cucerzan (2012) has introduced
the idea to perform mention detection and entity
linking jointly using a linear combination of man-
ually defined features. Luo et al. (2015) have
adopted the same idea and suggested a probabilis-
tic graphical model for the joint prediction. This is
essential for linking entities in questions. For exam-
ple in “who does maggie grace play in taken?”, it is
hard to distinguish between the usage of the word
‘taken’ and the title of a movie ‘Taken’ without
consulting a knowledge base.

Sun et al. (2015) were among the first to use
neural networks to embed the mention and the en-
tity for a better prediction quality. Later, Francis-
Landau et al. (2016) have employed convolutional
neural networks to extract features from the doc-
ument context and mixed them with manually de-
fined features, though they did not integrate it with
mention detection. Sil et al. (2018) continued the
work in this direction recently and applied convo-
lutional neural networks to cross-lingual EL.

The approaches that were developed for Twit-
ter data present the most relevant work for EL

on QA data. Guo et al. (2013b) have created a
new dataset of around 1500 tweets and suggested a
Structured SVM approach that handled mention de-
tection and entity disambiguation together. Chang
et al. (2014) describe the winning system of the
NEEL 2014 competition on EL for short texts: The
system adapts a joint approach similar to Guo et al.
(2013b), but uses the MART gradient boosting al-
gorithm instead of the SVM and extends the fea-
ture set. The current state-of-the-art system for
EL on noisy data is S-MART (Yang and Chang,
2015) which extends the approach from Chang et al.
(2014) to make structured predictions. The same
group has subsequently applied S-MART to extract
entities for a QA system (Yih et al., 2015).

Unfortunately, the described EL systems for
short texts are not available as stand-alone tools.
Consequently, the modern QA approaches mostly
rely on off-the-shelf entity linkers that were de-
signed for other domains. Reddy et al. (2016) have
employed the Freebase online API that was since
deprecated. A number of question answering sys-
tems have relied on DBPedia Spotlight to extract
entities (Lopez et al., 2016; Chen et al., 2016). DB-
Pedia Spotlight (Mendes et al., 2011) uses doc-
ument similarity vectors, word embeddings and
manually defined features such as entity frequency.
We are addressing this problem in our work by pre-
senting an architecture specifically targeted at EL
for QA data.

The Knowledge Base Throughout the ex-
periments, we use the Wikidata3 open-domain
KB (Vrandečić and Krötzsch, 2014). Among the
previous work, the common choices of a KB in-
clude Wikipedia, DBPedia and Freebase. The
entities in Wikidata directly correspond to the
Wikipedia articles, which enables us to work with
data that was previously annotated with DBPedia.
Freebase was discontinued and is no longer up-to-
date. However, most entities in Wikidata have been
annotated with identifiers from other knowledge
sources and databases, including Freebase, which
establishes a link between the two KBs.

3 Entity Linking Architecture

The overall architecture of our entity linking system
is depicted in Figure 3. From the input question
x we extract all possible token n-grams N up to a

3 At the moment, Wikidata contains more than 40 million
entities and 350 million relation instances:
https://www.wikidata.org/wiki/Special:
Statistics
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x = what are taylor swift’s albums?

Step 1. consider all n-grams

N = ngrams(x), i = 0

i < |N |,
n = N [i]

Step 2. entity candidates for an n-gram

C = entity candidates(n)

wikidata

Full text
search

Step 3. score the n-gram with the model

pn,pc = M(x, n, C)

i = i+ 1

Step 4. compute the global assignment of entities

G = global assignment(pn,pc, n,x|n ∈ N)

Figure 3: Architecture of the entity linking system

certain length as entity mention candidates (Step 1).
For each n-gram n, we look it up in the knowledge
base using a full text search over entity labels (Step
2). That ensures that we find all entities that contain
the given n-gram in the label. For example for
a unigram ‘obama’, we retrieve ‘Barack Obama’,
‘Michelle Obama’ etc. This step produces a set of
entity disambiguation candidates C for the given n-
gram n. We sort the retrieved candidates by length
and cut off after the first 1000. That ensures that
the top candidates in the list would be those that
exactly match the target n-gram n.

In the next step, the list of n-grams N and the
corresponding list of entity disambiguation candi-
dates are sent to the entity linking model (Step 3).
The model jointly performs the detection of correct
mentions and the disambiguation of entities.

3.1 Variable Context Granularity Network

The neural architecture (Variable Context Granular-
ity, VCG) aggregates and mixes contexts of differ-
ent granularities to perform a joint mention detec-
tion and entity disambiguation. Figure 4 shows
the layout of the network and its main compo-
nents.granularity level. The input to the model is a
list of question tokens x, a token n-gram n and a list
of candidate entities C. Then the model is a func-
tion M(x,n,C) that produces a mention detection
score pn for each n-gram and a ranking score pc for
each of the candidates c ∈C: pn,pc = M(x,n,C).

Dilated Convolutions To process sequential
input, we use dilated convolutional networks

(DCNN). Strubell et al. (2017) have recently shown
that DCNNs are faster and as effective as recurrent
models on the task of named entity recognition.
We define two modules: DCNNw and DCNNc for
processing token-level and character-level input
respectively. Both modules consist of a series of
convolutions applied with an increasing dilation, as
described in Strubell et al. (2017). The output of
the convolutions is averaged and transformed by a
fully-connected layer.

Context Components The token component
corresponds to sentence-level features normally
defined for EL and encodes the list of question
tokens x into a fixed size vector. It maps the tokens
in x to dw-dimensional pre-trained word embed-
dings, using a matrix W ∈ R|Vw|×dw , where |Vw| is
the size of the vocabulary. We use 50-dimensional
GloVe embeddings pre-trained on a 6 billion to-
kens corpus (Pennington et al., 2014). The word
embeddings are concatenated with dp-dimensional
position embeddings Pw ∈ R3×dp that are used to
denote the tokens that are part of the target n-gram.
The concatenated embeddings are processed by
DCNNw to get a vector os.

The character component processes the target to-
ken n-gram n on the basis of individual characters.
We add one token on the left and on the right to the
target mention and map the string of characters to
dz-character embeddings, Z∈R|Vz|×dz . We concate-
nate the character embeddings with dp-dimensional
position embeddings Pz ∈R|x|×dp and process them
with DCNNc to get a feature vector on.

We use the character component with the same
learned parameters to encode the label of a candi-
date entity from the KB as a vector ol. The param-
eter sharing between mention encoding and entity
label encoding ensures that the representation of a
mention is similar to the entity label.

The KB structure is the highest context level
included in the model. The knowledge base struc-
ture component models the entities and relations
that are connected to the candidate entity c. First,
we map a list of relations r of the candidate en-
tity to dr-dimensional pre-trained relations embed-
dings, using a matrix R ∈ R|Vr|×dr , where |Vr| is
the number of relation types in the KB. We trans-
form the relations embeddings with a single fully-
connected layer fr and then apply a max pooling
operation to get a single relation vector or per en-
tity. Similarly, we map a list of entities that are
immediately connected to the candidate entity e
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Figure 4: The architecture of the Variable Context Granularity Network for a single n-gram and an entity
candidate. The output vectors (oc,ot) are aggregated over all n-grams for the global assignment

to de-dimensional pre-trained entity embeddings,
using a matrix E ∈ R|Ve|×de , where |Ve| is the num-
ber of entities in the KB. The entity embeddings
are transformed by a fully-connected layer fe and
then also pooled to produce the output oe. The em-
bedding of the candidate entity itself is also trans-
formed with fe and is stored as od. To train the
knowledge base embeddings, we use the TransE
algorithm (Bordes et al., 2013).

Finally, the knowledge base lexical component
takes the labels of the relations in r to compute
lexical relation embeddings. For each r ∈ r, we
tokenize the label and map the tokens xr to word
embeddings, using the word embedding matrix W.
To get a single lexical embedding per relation, we
apply max pooling and transform the output with
a fully-connected layer frl . The lexical relation
embeddings for the candidate entity are pooled into
the vector orl.

Context Aggregation The different levels of
context are aggregated and are transformed by a
sequence of fully-connected layers into a final vec-
tor oc for the n-gram n and the candidate entity c.
The vectors for each candidate are aggregated into
a matrix O = [oc|c ∈C]. We apply element-wise

max pooling on O to get a single summary vector
s for all entity candidates for n.

To get the ranking score pc for each entity candi-
date c, we apply a single fully-connected layer gc

on the concatenation of oc and the summary vec-
tor s: pc = gc(oc‖s). For the mention detection
score for the n-gram, we separately concatenate the
vectors for the token context os and the character
context on and transform them with an array of
fully-connected layers into a vector ot. We con-
catenate ot with the summary vector s and apply
another fully-connected layer to get the mention
detection score pn = σ(gn(ot‖s)).

3.2 Global Entity Assignment

The first step in our system is extracting all possi-
ble overlapping n-grams from the input texts. We
assume that each span in the input text can only re-
fer to a single entity and therefore resolve overlaps
by computing a global assignment using the model
scores for each n-gram (Step 4 in Figure 3).

If the mention detection score pn is above the
0.5-threshold, the n-gram is predicted to be a cor-
rect entity mention and the ranking scores pc are
used to disambiguate it to a single entity candidate.
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N-grams that have pn lower than the threshold are
filtered out.

We follow Guo et al. (2013a) in computing the
global assignment and hence, arrange all n-grams
selected as mentions into non-overlapping combi-
nations and use the individual scores pn to compute
the probability of each combination. The com-
bination with the highest probability is selected
as the final set of entity mentions. We have ob-
served in practice a similar effect as descirbed by
Strubell et al. (2017), namely that DCNNs are able
to capture dependencies between different entity
mentions in the same context and do not tend to
produce overlapping mentions.

3.3 Composite Loss Function
Our model jointly computes two scores for each
n-gram: the mention detection score pn and the dis-
ambiguation score pc. We optimize the parameters
of the whole model jointly and use the loss function
that combines penalties for the both scores for all
n-grams in the input question:

L = ∑
n∈N

∑
c∈Cn

M (tn, pn) + tnD(tc, pc),

where tn is the target for mention detection and is
either 0 or 1, tc is the target for disambiguation and
ranges from 0 to the number of candidates |C|.

For the mention detection loss M , we include a
weighting parameter α for the negative class as the
majority of the instances in the data are negative:

M (tn, pn)=−tn log pn−α(1−tn) log(1− pn)

The disambiguation detection loss D is a maxi-
mum margin loss:

D(tc, pc) =
∑|C|i=0 max(0,(m− pc[tc]+ pc[i]))

|C| ,

where m is the margin value. We set m = 0.5,
whereas the α weight is optimized with the other
hyper-parameters.

3.4 Architecture Comparison
Our model architecture follows some of the ideas
presented in Francis-Landau et al. (2016): they sug-
gest computing a similarity score between an entity
and the context for different context granularities.
Francis-Landau et al. (2016) experiment on entity
linking for Wikipedia and news articles and con-
sider the word-level and document-level contexts

#Questions #Entities

WebQSP Train 3098 3794
WebQSP Test 1639 2002

GraphQuestions Test 2608 4680

Table 1: Dataset statistics

for entity disambiguation. As described above, we
also incorporate different context granularities with
a number of key differences: (1) we operate on
sentence level, word level and character level, thus
including a more fine-grained range of contexts;
(2) the knowledge base contexts that Francis-Lan-
dau et al. (2016) use are the Wikipedia title and
the article texts — we, on the other hand, employ
the structure of the knowledge base and encode
relations and related entities; (3) Francis-Landau
et al. (2016) separately compute similarities for
each type of context, whereas we mix them in a
single end-to-end architecture; (4) we do not rely
on manually defined features in our model.

4 Datasets

We compile two new datasets for entity linking
on questions that we derive from publicly avail-
able question answering data: WebQSP (Yih et al.,
2016) and GraphQuestions (Su et al., 2016).

WebQSP contains questions that were originally
collected for the WebQuestions dataset from web
search logs (Berant et al., 2013). They were man-
ually annotated with SPARQL queries that can be
executed to retrieve the correct answer to each ques-
tion. Additionally, the annotators have also selected
the main entity in the question that is central to find-
ing the answer. The annotations and the query use
identifiers from the Freebase knowledge base.

We extract all entities that are mentioned in the
question from the SPARQL query. For the main
entity, we also store the correct span in the text,
as annotated in the dataset. In order to be able to
use Wikidata in our experiments, we translate the
Freebase identifiers to Wikidata IDs.

The second dataset, GraphQuestions, was cre-
ated by collecting manual paraphrases for automat-
ically generated questions (Su et al., 2016). The
dataset is meant to test the ability of the system
to understand different wordings of the same ques-
tion. In particular, the paraphrases include various
references to the same entity, which creates a chal-
lenge for an entity linking system. The following
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P R F1

Heuristic baseline 0.286 0.621 0.392
Simplified VCG 0.804 0.654 0.721

VCG 0.823 0.646 0.724

Table 2: Evaluation results on the WEBQSP devel-
opment dataset (all entities)

are three example questions from the dataset that
contain a mention of the same entity:

(1) a. what is the rank of marvel’s iron
man?

b. iron-man has held what ranks?
c. tony stark has held what ranks?

GraphQuestions does not contain main entity
annotations, but includes a SPARQL query struc-
turally encoded in JSON format. The queries were
constructed manually by identifying the entities in
the question and selecting the relevant KB relations.
We extract gold entities for each question from the
SPARQL query and map them to Wikidata.

We split the WebQSP training set into train and
development subsets to optimize the neural model.
We use the GraphQuestions only in the evaluation
phase to test the generalization power of our model.
The sizes of the constructed datasets in terms of the
number of questions and the number of entities are
reported in Table 1. In both datasets, each question
contains at least one correct entity mention.

5 Experiments

5.1 Evaluation Methodology

We use precision, recall and F1 scores to evaluate
and compare the approaches. We follow Carmel
et al. (2014) and Yang and Chang (2015) and define
the scores on a per-entity basis. Since there are
no mention boundaries for the gold entities, an
extracted entity is considered correct if it is present
in the set of the gold entities for the given question.
We compute the metrics in the micro and macro
setting. The macro values are computed per entity
class and averaged afterwards.

For the WebQSP dataset, we additionally per-
form a separate evaluation using only the informa-
tion on the main entity. The main entity has the
information on the boundary offsets of the correct
mentions and therefore for this type of evaluation,
we enforce that the extracted mention has to over-

emb. size filter size
dw dz de dr dp DCNNw DCNNc α

50 25 50 50 5 64 64 0.5

Table 3: Best configuration for the VCG model

lap with the correct mention. QA systems need at
least one entity per question to attempt to find the
correct answer. Thus, evaluating using the main
entity shows how the entity linking system fulfills
this minimum requirement.

5.2 Baselines

Existing Systems In our experiments, we compare
to DBPedia Spotlight that was used in several QA
systems and represents a strong baseline for entity
linking4. In addition, we are able to compare to the
state-of-the-art S-MART system, since their output
on the WebQSP datasets was publicly released5.
The S-MART system is not openly available, it was
first trained on the NEEL 2014 Twitter dataset and
later adapted to the QA data (Yih et al., 2015).

We also include a heuristics baseline that ranks
candidate entities according to their frequency in
Wikipedia. This baseline represents a reasonable
lower bound for a Wikidata based approach.

Simplified VCG To test the effect of the end-to-
end context encoders of the VCG network, we de-
fine a model that instead uses a set of features com-
monly suggested in the literature for EL on noisy
data. In particular, we employ features that cover
(1) frequency of the entity in Wikipedia, (2) edit dis-
tance between the label of the entity and the token
n-gram, (3) number of entities and relations imme-
diately connected to the entity in the KB, (4) word
overlap between the input question and the labels
of the connected entities and relations, (5) length
of the n-gram. We also add an average of the word
embeddings of the question tokens and, separately,
an average of the embeddings of tokens of entities
and relations connected to the entity candidate. We
train the simplified VCG model by optimizing the
same loss function in Section 3.3 on the same data.

5.3 Practical Considerations

The hyper-parameters of the model, such as the
dimensionality of the layers and the size of embed-

4We use the online end-point: http://www.
dbpedia-spotlight.org/api

5https://github.com/scottyih/STAGG
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Main entity All entities
P R F1 P R F1 mP mR mF1

DBPedia Spotlight 0.668 0.595 0.629 0.705 0.514 0.595 0.572 0.392 0.452
S-MART 0.634 0.899 0.744 0.666 0.772 0.715 0.607 0.610 0.551

Heuristic baseline 0.282 0.694 0.401 0.302 0.608 0.404 0.330 0.537 0.378
Simplified VCG 0.804 0.728 0.764 0.837 0.621 0.713 0.659 0.494 0.546

VCG 0.793 0.766 0.780 0.826 0.653 0.730 0.676 0.519 0.568

Table 4: Evaluation results on the WEBQSP test dataset, the m prefix stands for macro

P R F1

DBPedia Spotlight 0.386 0.453 0.417
VCG 0.589 0.354 0.442

Table 5: Evaluation results on GRAPHQUESTIONS

dings, are optimized with random search on the
development set. The model was particularly sen-
sitive to tuning of the negative class weight α (see
Section 3.3). Table 3 lists the main selected hyper-
parameters for the VCG model6 and we also report
the results for each model’s best configuration on
the development set in Table 2.

5.4 Results
Table 4 lists results for the heuristics baseline, for
the suggested Variable Context Granularity model
(VCG) and for the simplified VCG baseline on the
test set of WebQSP. The simplified VCG model
outperforms DBPedia Spotlight and achieves a re-
sult very close to the S-MART model. Considering
only the main entity, the simplified VCG model
produces results better than both DBPedia Spot-
light and S-MART. The VCG model delivers the
best F-score across the all setups. We observe that
our model achieves the most gains in precision
compared to the baselines and the previous state-
of-the-art for QA data.

VCG constantly outperforms the simplified
VCG baseline that was trained by optimizing the
same loss function but uses manually defined fea-
tures. Thereby, we confirm the advantage of the
mixing context granularities strategy that was sug-
gested in this work. Most importantly, the VCG
model achieves the best macro result which indi-
cates that the model has a consistent performance
on different entity classes.

6The complete list of hyper-parameters and model charac-
teristics can be found in the accompanying code repository.
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Figure 5: Performance accross entity classes on
WEBQSP test dataset

We further evaluate the developed VCG archi-
tecture on the GraphQuestions dataset against the
DBPedia Spotlight. We use this dataset to evalu-
ate VCG in an out-of-domain setting: neither our
system nor DBPedia Spotlight were trained on it.
The results for each model are presented in Table 5.
We can see that GraphQuestions provides a much
more difficult benchmark for EL. The VCG model
shows the overall F-score result that is better than
the DBPedia Spotlight baseline by a wide margin.
It is notable that again our model achieves higher
precision values as compared to other approaches
and manages to keep a satisfactory level of recall.

Analysis In order to better understand the per-
formance difference between the approaches and
the gains of the VCG model, we analyze the re-
sults per entity class (see Figure 5). We see that
the S-MART system is slightly better in the disam-
biguation of Locations, Person names and a similar
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Main entity All entities
P R F1 P R F1 mP mR mF1

VCG 0.793 0.766 0.780 0.826 0.653 0.730 0.676 0.519 0.568
w/o token context 0.782 0.728 0.754 0.812 0.618 0.702 0.664 0.474 0.530

w/o character context 0.802 0.684 0.738 0.820 0.573 0.675 0.667 0.404 0.471
w/o KB structure context 0.702 0.679 0.690 0.728 0.576 0.643 0.549 0.427 0.461

w/o KB lexical context 0.783 0.732 0.756 0.807 0.617 0.699 0.643 0.454 0.508

Table 6: Ablation experiments for the VCG model on WEBQSP

category of Fictional Character names, while it has
a considerable advantage in processing of Profes-
sions and Common Nouns. Our approach has an
edge in such entity classes as Organization, Things
and Products. The latter category includes movies,
book titles and songs, which are particularly hard
to identify and disambiguate since any sequence
of words can be a title. VCG is also considerably
better in recognizing Events. We conclude that
the future development of the VCG architecture
should focus on the improved identification and
disambiguation of professions and common nouns.

To analyze the effect that mixing various context
granularities has on the model performance, we
include ablation experiment results for the VCG
model (see Table 6). We report the same scores as
in the main evaluation but without individual model
components that were described in Section 3.

We can see that the removal of the KB structure
information encoded in entity and relation embed-
dings results in the biggest performance drop of
almost 10 percentage points. The character-level in-
formation also proves to be highly important for the
final state-of-the-art performance. These aspects of
the model (the comprehensive representation of the
KB structure and the character-level information)
are two of the main differences of our approach to
the previous work. Finally, we see that excluding
the token-level input and the lexical information
about the related KB relations also decrease the
results, albeit less dramatically.

6 Conclusions

We have described the task of entity linking on
QA data and its challenges. The suggested new
approach for this task is a unifying network that
models contexts of variable granularity to extract
features for mention detection and entity disam-
biguation. This system achieves state-of-the-art
results on two datasets and outperforms the pre-

vious best system used for EL on QA data. The
results further verify that modeling different types
of context helps to achieve a better performance
across various entity classes (macro f-score).

Most recently, Peng et al. (2017) and Yu et al.
(2017) have attempted to incorporate entity linking
into a QA model. This offers an exciting future di-
rection for the Variable Context Granularity model.
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Abstract

Across disciplines, researchers are eager to
gain insight into empirical features of abstract
vs. concrete concepts. In this work, we pro-
vide a detailed characterisation of the distri-
butional nature of abstract and concrete words
across 16,620 English nouns, verbs and ad-
jectives. Specifically, we investigate the fol-
lowing questions: (1) What is the distribu-
tion of concreteness in the contexts of con-
crete and abstract target words? (2) What are
the differences between concrete and abstract
words in terms of contextual semantic diver-
sity? (3) How does the entropy of concrete
and abstract word contexts differ? Overall, our
studies show consistent differences in the dis-
tributional representation of concrete and ab-
stract words, thus challenging existing theories
of cognition and providing a more fine-grained
description of their nature.

1 Introduction

The complete understanding of the cognitive
mechanisms behind the processing of concrete
and abstract meanings represents a key and still
open question in cognitive science (Barsalou and
Wiemer-Hastings, 2005). More specifically, the
psycholinguistic literature reports extensive analy-
ses of how concrete concepts are processed, how-
ever there is still little consensus about the na-
ture of abstract concepts (Barsalou and Wiemer-
Hastings, 2005; McRae and Jones, 2013; Hill
et al., 2014; Vigliocco et al., 2014).

The Context Availability Theory represents one
of the earliest theoretical approaches aiming to ac-
count for the differences between concrete and
abstract concepts (Schwanenflugel and Shoben,
1983). This theory suggests that meaning arises
from the ability to create an appropriate context
for a concept, which has proven to be more chal-
lenging (i.e., enforcing higher reaction times and

larger number of errors) for abstract than for con-
crete concepts. In a computational study, Hill
et al. (2014) quantitatively analysed the distinc-
tion between concrete and abstract words in a
large corpus. Overall, they showed that abstract
words occur within a broad range of context words
while concrete words occur within a smaller set of
context words. Similarly, Hoffman et al. (2013)
and Hoffman and Woollams (2015) analysed the
concrete vs. abstract dichotomy in terms of their
semantic diversity, demonstrating that concrete
words occur within highly similar contexts while
abstract words occur in a broad range of less asso-
ciated contexts (i.e., exhibiting high semantic di-
versity). These computational findings are fully
in line with the Context Availability Theory: the
processing time of concrete words is generally
shorter than the processing time of abstract words,
as abstract words are attached to a broad range of
loosely associated words.

More recently, embodied theories of cogni-
tion have suggested that word meanings are
grounded in the sensory-motor system (Barsa-
lou and Wiemer-Hastings, 2005; Glenberg and
Kaschak, 2002; Hill et al., 2014; Pecher et al.,
2011). According to this account, concrete con-
cepts have a direct referent in the real world,
while abstract concepts have to activate a series of
concrete concepts that provide the necessary sit-
uational context required to successfully process
their meanings (Barsalou, 1999).

These interdisciplinary outcomes are not fully
supported by recent computational studies show-
ing different contextual patterns for concrete and
abstract words in text compared to the literature
(Bhaskar et al., 2017; Frassinelli et al., 2017). It
is becoming clear, however, that the inclusion of
information regarding the concreteness of words
plays a key role in the automatic identification of
non-literal language usage (Turney et al., 2011;
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Köper and Schulte im Walde, 2016, 2017).
The aim of the current study is thus to provide

a contextual description of the distributional rep-
resentation of these two classes of words, to gain
insight into empirical features of abstract vs. con-
crete concepts. This would represent an essential
contribution to the resolution of the debate about
meaning representation within the human mind,
and thereby also help to enhance computationally
derived models that are concerned with meaning
derivation from text.

2 Hypotheses

Based on the existing psycholinguistic and com-
putational evidence reported in the previous sec-
tion, we formulate three hypotheses regarding
the distributional nature of concrete and abstract
words that we will test in the following studies.

(1) The contexts of both concrete and abstract
words are mainly composed of concrete
words.

This first hypothesis directly tests the general
claim of grounding theories: both concrete and
abstract words require the activation of a layer
of situational (concrete) information in order to
be successfully processed (Barsalou and Wiemer-
Hastings, 2005). According to the Distributional
Hypothesis (Harris, 1954; Firth, 1968), similar lin-
guistic contexts tend to imply similar meanings of
words. Thus, we suggest to perform a distribu-
tional semantic analysis in order to quantitatively
investigate the contexts that concrete and abstract
words frequently co-occur within.

(2) Abstract words occur in a broad range of dis-
tinct contexts whereas concrete words appear
in a limited set of contexts.

Based on the computational study by Hill et al.
(2014), we expect to find concrete words appear-
ing in a more restricted set of contexts in compar-
ison to abstract words, which should occur in a
broad range of contexts. This second hypothesis
is explored by providing two fine-grained analyses
of the extension and variety in contexts of concrete
and abstract words.

(3) Abstract words are more difficult to predict
than concrete words, due to their higher con-
textual variability.

Building upon the previous hypothesis and on the
studies by Hoffman et al. (2013) and Hoffman and
Woollams (2015), we aim to show that concrete
words are easier to predict than abstract words.
Specifically, we expect higher entropy values for
abstract than for concrete contexts, indicating that
on average, we need more information to uniquely
encode an abstract word than a concrete word
(Shannon, 2001). The reason resides within the
high context variability of abstract words: there is
a large number of highly probable words satisfy-
ing these contexts. In contrast, we expect concrete
words to occur in a limited set of different contexts
because there is only a restricted amount of words
that have a high probability to fit a specific con-
text. Thus, we estimate the entropy value of con-
crete contexts to be lower than the entropy value
of abstract contexts.

In the three studies reported in this paper, we
systematically test these three hypotheses regard-
ing concrete vs. abstract words, by performing
quantitative analyses of the distributional repre-
sentations across the word classes of nouns, verbs
and adjectives.

3 Materials and Method

For our studies, we selected nouns, verbs and ad-
jectives from the Brysbaert et al. (2014) collection
of concreteness ratings for 40,000 English words.
In total we used 16,620 target words including
9,240 nouns, 3,976 verbs and 3,404 adjectives.1

Each word in this collection has been scored by
humans according to its concreteness on a scale
from 1 (abstract) to 5 (concrete).

Our distributional semantic representations
of the target words were built by extracting
co-occurrences from the POS-tagged version
(Schmid, 1994) of the sentence-shuffled English
COW corpus ENCOW16AX (Schäfer and Bild-
hauer, 2012). We originally constructed three dif-
ferent spaces with window sizes of 2, 10, and
20 context words surrounding the target, and per-
formed parallel analyses for all the three spaces.
Since we did not find any relevant differences be-
tween the three spaces, we will report only the
analyses based on the distributional space from a
window size of 20 context words. Moreover, we

1The reason why we only used a subset of the available
targets was that these were also covered in an extensive selec-
tion of behavioural measures, such as valency scores (War-
riner et al., 2013) and reaction times (Balota et al., 2007)
which we aim to include in further analyses.
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restricted the dimensions in our matrix to 16,620
× 16,620 (target words × context words). By us-
ing the target words also as context words, we had
knowledge about the concreteness score of each
context word. In a follow-up study, we performed
the same analyses extracting co-occurrences from
the British National Corpus (Burnard, 2000). Even
though both the size and the nature of these two
corpora are extremely different, the results did not
show any significant difference.

In order to get a clearer picture about empirical
distributional differences for concrete vs. abstract
targets, we focused some of our analyses only on
the most concrete and abstract targets, expecting
words with mid-range concreteness scores to be
more difficult in their generation by humans and
consequently noisier in their distributional repre-
sentation. For this reason, we analysed the 1,000
most concrete (concreteness range: 4.82 - 5.00)
and the 1,000 most abstract (1.07 - 2.17) nouns,
the 500 most concrete (4.71 - 5.00) and most ab-
stract (1.12 - 2.21) verbs, and the 200 most con-
crete (4.34 - 5.00) and most abstract (1.19 - 1.64)
adjectives. On the other hand, context was not
subset and consisted of the complete set of 16,620
nouns, verbs and adjectives.

4 Study 1: Analysis of Concrete vs.
Abstract Co-Occurrences

In this study we test the validity of hypothesis (1):
the contexts of both concrete and abstract words
are mainly concrete. For this purpose, we analyse
the distributions of the 16,620 context dimensions
for their concreteness, by the parts-of-speech of
target and context words.

Noun Targets Figure 1 reports the distribution
of noun, verb and adjective contexts for the 1,000
most abstract target nouns (Figure 1a) in com-
parison to the 1,000 most concrete target nouns
(Figure 1b). As clearly shown in Figure 1a, the
majority of contexts of an abstract noun are also
abstract: noun, verb and adjective context words
all show the maximum peak at low concreteness
scores. On the contrary, the distributions of the
contexts of concrete nouns shown in Figure 1b
vary according to POS. The nouns in the context
of concrete noun targets are also very concrete as
shown by the high red bar at concreteness 4.5–5.
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(a) Contexts of abstract noun targets.
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(b) Contexts of concrete noun targets.

Figure 1: Concreteness scores of context words
(nouns, verbs, adjectives) of the 1,000 most ab-
stract and concrete noun targets.
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(a) Contexts of abstract verb targets.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

 Concreteness of Contexts

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y 
(in

 %
) 

Nouns
Verbs
Adjectives

(b) Contexts of concrete verb targets.

Figure 2: Concreteness scores of context words
(nouns, verbs, adjectives) of the 500 most abstract
and concrete verb targets.
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On the other hand, verbs and adjectives show a
similar pattern to Figure 1a: a greater distribution
with low concreteness scores.

Verb Targets Figure 2 shows a very compara-
ble pattern to the one described for noun targets.
Contexts of abstract verbs are, on average, also ab-
stract, regardless of their POS. On the other hand,
the verbs and adjectives in the contexts of concrete
verb targets are mainly abstract, while the nouns
are mainly concrete.

Adjective Targets Again, Figure 3 shows the
same pattern as the one reported for nouns and
verbs.
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(a) Contexts of abstract adjective targets.
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(b) Contexts of concrete adjective targets.

Figure 3: Concreteness scores of context words
(nouns, verbs, adjectives) of the 200 most abstract
and concrete adjective targets.

Discussion Table 1 reports an overview of the
outcomes of this first study. The “X” indicates
the predominant contextual class (abstract vs. con-
crete words) for each target class by POS. All
in all, our results partly disagree with our first
hypothesis induced from observations in the lit-
erature, within the scope of which we expected
the context of concrete and abstract words to be
mostly composed of concrete words.

Target Words Context Words
abst.

NN

abst.

V

abst

ADJ

conc.

NN

conc.

V

conc.

ADJ

abstract NN X X X
abstract V X X X

abstract ADJ X X X
concrete NN X X X

concrete V X X X
concrete ADJ X X X
X = most frequent context type

Table 1: Evaluation of hypothesis (1).

More specifically, our first hypothesis is con-
firmed, on the one hand, by the contextual distri-
bution of concrete target nouns, due to the fact that
they frequently appear with other concrete nouns.
On the contrary, it is rejected by the contextual
ratio of abstract nouns as they primarily co-occur
with other abstract nouns. Thus, as we based our
hypothesis on the theory of embodied cognition,
the observed contextual pattern of abstract nouns
challenges this theory.

Another evidence in favour of our hypothesis
comes from the nouns in the context of concrete
verbs and adjectives that are mainly concrete. In
contrast, concrete and abstract nouns, verbs and
adjectives elicit the same contextual pattern re-
garding context verbs and adjectives. They co-
occur with abstract verbs and abstract adjectives
to a large extent, which does not support the ex-
pectations based on the existing literature.

5 Study 2: Semantic Diversity of Context

In this study, we test our second hypothesis: ab-
stract words occur in a broad range of distinct con-
texts whereas concrete words appear in a limited
set of different contexts. In the following sections
we report two studies where we analyse (i) the
number of non-zero dimensions in the represen-
tation of concrete vs. abstract words, and (ii) the
degree of semantic variability in their contexts.

5.1 Non-Zero Dimensions
The analysis of the number of non-zero dimen-
sions in the vector representation of concrete and
abstract words provides a first indicator of the
contextual richness of our targets. Based on Hill
et al. (2014), we expect concrete target words to
have significantly less diverse context dimensions
than abstract target words, as the former should
co-occur within a restricted set of context words.
Therefore, we expect the portion of non-zero con-
text dimensions to be smaller for concrete than for
abstract target words.
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The following analyses compare the propor-
tions of non-zero context dimensions between the
1,000 highly concrete (blue boxes) and highly ab-
stract (red boxes) target nouns, 500 verbs, and 200
adjectives, based on raw frequency counts. For
each POS, we compared the proportion of non-
zero dimensions in the full vectors of 16,620 con-
text words for concrete and abstract target words
(left side), and the number of non-zero dimensions
with the same part-of-speech of the target (respec-
tively, 9,240 context nouns, 3,976 context verbs,
3,404 context adjectives). The star (?) indicates
the mean number of non-zero dimensions.

Noun Targets As shown in Figure 4, the com-
parison of non-zero context dimensions of con-
crete (M = 57.80, SD = 23.07) and abstract
(M = 57.78, SD = 22.57) target nouns does not
show any significant difference (t(33238) = -0.02,
p = 0.98). This result indicates that concrete
and abstract target nouns co-occur with a simi-
lar amount of context words. We can observe
the exact same pattern when we restrict the con-
texts to nouns only: no significant difference be-
tween the number of non-zero context noun di-
mensions for concrete (M = 32.12, SD = 12.98)
and abstract (M = 31.78, SD = 12.76) target nouns
(t(18478) = -0.59, p = 0.56).

Verb Targets Figure 5 reports the number of
non-zero dimensions for concrete and abstract
verbs. When considering the full set of con-
texts (left side), concrete words (M = 37.93,
SD = 22.5) have significantly less active con-
texts than abstract words (M = 64.2, SD = 25.73;
t(33238) = 17.18, p < 0.001). The exact same out-
come is shown when focusing only on verbs as
contexts (t(7950) = 16.3, p < 0.001).

Adjective Targets The analysis of the adjectives
in Figure 6 indicates that the number of non-zero
dimensions for concrete and abstract adjectives
follows the same pattern as the verbs. When con-
sidering the full set of contexts (left side), con-
crete adjectives (M = 40.4, SD = 24.7) have sig-
nificantly less active contexts than abstract adjec-
tives (M = 59.46, SD = 19.11, t(33238) = 8.63,
p < 0.001). The exact same outcome is shown
when focusing only on adjectives as contexts
(t(6806) = 10.15, p < 0.001).
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Figure 4: Non-zero dimensions in the contexts of
the 1,000 most abstract (red boxes) and concrete
(blue boxes) noun targets.
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Figure 5: Non-zero dimensions in the contexts of
the 500 most abstract (red boxes) and concrete
(blue boxes) verb targets.
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Figure 6: Non-zero dimensions in the contexts of
the 200 most abstract (red boxes) and concrete
(blue boxes) adjectives.

5.2 Semantic Diversity of Context
Based on hypothesis (2), we expect the contexts
of concrete words to be more similar among them-
selves than the contexts of abstract words. We test
this hypothesis by computing the semantic diver-
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sity of the contexts of concrete and abstract tar-
gets. Semantic diversity corresponds to the inverse
of the average semantic similarity of each pair
of context dimensions of a word (Hoffman et al.,
2013). In order to control for pure frequency ef-
fects, we transformed the co-occurrence frequency
counts into local mutual information (LMI) scores
(Evert, 2005).

The study reports the average cosine similarity
between context dimensions for concrete and ab-
stract words; the analysis is conducted incremen-
tally, including the top-k most associated context
dimensions (from 5 to 16,620 associates) sorted by
their LMI scores.

Noun Targets Figure 7 reports the average se-
mantic similarity between the context dimensions
of the 1,000 most concrete (blue boxes) and the
1,000 most abstract (red boxes) target nouns. The
analysis is performed step-wise from left to right,
starting with the average similarity between the 5
most associated contexts and moving up to the av-
erage similarity between all 16,620 context dimen-
sions. Overall, while increasing the number of di-
mensions, both the mean similarity and also the
differences in mean between concrete and abstract
words drop, while remaining significant. The dif-
ference between the mean cosine similarity of the
most associated contexts of concrete (M = 0.32,
SD = 0.14 at k = 5) and abstract (M = 0.20,
SD = 0.13 at k = 5) target nouns is significant
(p < 0.001 at k = 5).

Verb Targets As shown in Figure 8, there are
no significant differences (p = 0.38 at k = 5) in
the similarity of the context dimensions of the 500
most concrete (M = 0.23, SD = 0.15 at k = 5) and
most abstract (M = 0.23, SD = 0.16 at k = 5) verb
targets.

Adjective Targets When analysing the similar-
ity of the contexts of the 200 most concrete and
abstract adjectives we see (Figure 9) the same pat-
tern as shown for nouns. The average similar-
ity of the most associated contexts is significantly
higher (p<0.001 at k = 5) for concrete (M = 0.26,
SD = 0.14 at k = 5) than for abstract (M = 0.17,
SD = 0.12 at k = 5) target adjectives.
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Figure 7: Mean cosine similarities between con-
texts of 1,000 noun targets.
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Figure 8: Mean cosine similarities between con-
texts of 500 verb targets.
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Figure 9: Mean cosine similarities between con-
texts of 200 adjective targets.

5.3 Discussion

According to hypothesis (2), we expected abstract
words to occur in a broader range of distinct con-
texts and concrete words to appear in a more lim-
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ited set of different contexts. Moreover, the con-
texts of concrete words should be more restricted
and more similar to each other compared to the
contexts of abstract words. The results discussed
only partially support this hypothesis.

The analysis of the number of non-zero context
dimensions for concrete and abstract target verbs
and adjectives show results in line with hypothe-
sis (2). On the contrary, concrete and abstract tar-
get nouns share the same number of non-zero di-
mensions. The analysis of the similarity between
contexts of concrete and abstract target nouns and
adjectives supports our hypothesis; while we do
not see any significant difference when analysing
the verbs.

6 Study 3: Entropy of Concrete and
Abstract Words

In this study we test our third hypothesis: abstract
words are more difficult to predict than concrete
words, due to their higher contextual variability. In
study 2 we already started investigating this phe-
nomenon using semantic diversity. In the current
study we will use entropy as a measure of variabil-
ity (Shannon, 2001):

H(X) = −
∑

x∈X
p(x)log2p(x) (1)

Based on the assumption that abstract words oc-
cur within a high number of distinct contexts, we
expect the entropy of abstract words to be higher
than the entropy of concrete words.

Noun Targets Figure 10 reports the average en-
tropy in the context of the top 1,000 most abstract
(on the left side) and most concrete (on the right
side) target nouns. Regarding the 1,000 most ab-
stract target nouns, the entropy of the 1,000 most
abstract context nouns (M = 7.42, SD = 0.58)
is significantly higher (p < 0.001) than the en-
tropy of the 1,000 most concrete context nouns
(M = 6.44, SD = 0.77). A similar pattern emerges
in the analysis of the entropy of the contexts of
the 1,000 most concrete target nouns: the differ-
ence between concrete (M = 6.64, SD = 0.61) and
abstract contexts (M = 7.21, SD = 0.54) is statisti-
cally significant (p < 0.001).

Verb Targets Similarly to nouns (see Fig-
ure 11), also the abstract contexts of both con-
crete and abstract target verbs show significantly
(p < 0.001) higher entropy (concrete target:

M = 6.1, SD = 0.58; abstract target: M = 6.55,
SD = 0.49) than the entropy of their concrete con-
texts (concrete target: M = 4.70, SD = 0.89; ab-
stract target: M = 5.50, SD = 0.86).
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Figure 10: Entropy of 1,000 most abstract (left
side) and 1,000 most concrete (right side) noun
targets.
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Figure 11: Entropy of 500 most abstract (left side)
and 500 most concrete (right side) verbs targets.
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Figure 12: Entropy of 200 most abstract (left side)
and 200 most concrete (right side) adjectives tar-
gets.

Adjective Targets The same pattern seen for
nouns and verbs (see Figure 12) describes also
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the entropy of target concrete and abstract ad-
jectives. Abstract contexts show significantly
(p < 0.001) higher entropy (concrete target:
M = 3.5, SD = 0.88; abstract target: M = 4.73,
SD = 0.61) than the entropy of their concrete con-
texts (concrete target: M = 3.50, SD = 0.98; ab-
stract target: M = 3.81, SD = 0.87).

Discussion The results of this study support the
predictions of hypothesis (3): concrete contexts
have significantly lower entropy than abstract con-
texts irrespective of the POS of their target words.

7 Conclusions

The aim of this work was to provide a very de-
tailed description of the contextual representation
of concrete and abstract English nouns, verbs and
adjectives. Table 2 summarises the most impor-
tant findings. 1) Concrete target nouns, verbs and
adjectives mainly co-occur with concrete nouns
and with abstract verbs and adjectives, while ab-
stract target words always co-occur with abstract
words. 2a) The contexts of abstract target verbs
and adjectives are broader (less non-zero dimen-
sions) than those of concrete targets verbs and
adjectives. On the other hand, concrete and ab-
stract target nouns have a similar number of non-
zero dimensions. 2b) The most associated con-
texts of concrete nouns and adjectives are signifi-
cantly more similar to each other than the contexts
of abstract nouns and adjectives. However, no dif-
ference emerges between the contexts of verbs. 3)
The concrete contexts of concrete and abstract tar-
gets (nouns, verbs, adjectives) have significantly
lower entropy values than their abstract contexts.
Overall, hypotheses (1) and (2) are not fully sup-
ported by our analyses; on the contrary, the pre-
dictions made in hypothesis (3) are confirmed.

The three studies described in this paper thus
show consistent differences in the contexts of con-
crete and abstract words and yield patterns that
challenge the grounding theory of cognition. In
their analyses on noun and verb comprehension,
Barsalou (1999) and Richardson et al. (2003) sug-
gest that humans process abstract concepts by cre-
ating a perceptual representation. These represen-
tations are inherently concrete because they are
stored as “experiential traces” generated through
the exposure to real world situations using our five
senses (Van Dam et al., 2010). In the instructions
of their norming study, Brysbaert et al. (2014, p.
906) describe concrete words in a similar way:

“some words refer to things or actions in reality,
which you can experience directly through one of
the five senses”. On the contrary, our study is
aligned more with recent theories claiming a rep-
resentational pluralism that includes both percep-
tual and non-perceptual features (Dove, 2009).

While the reported cognitive theories describe
general patterns emerging from the distinction be-
tween concrete and abstract words, the novelty of
our study is to provide a fine-grained analysis of
the distributional nature of these words and an at-
tempt to explain their similarities and differences
from a data-driven perspective. In our opinion, the
detection of the precise properties of concrete and
abstract words makes an extremely valuable con-
tribution to the long-lasting debate about meaning
representation in the human mind and to the use of
this knowledge to significantly improve the perfor-
mance of computational models.
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Abstract

Nowadays, social media have become a plat-
form where people can easily express their
opinions and emotions about any topic such
as politics, movies, music, electronic prod-
ucts and many others. On the other hand,
politicians, companies, and businesses are in-
terested in analyzing automatically people’s
opinions and emotions. In the last decade, a
lot of efforts has been put into extracting sen-
timent polarity from texts. Recently, the focus
has expanded to also cover emotion recogni-
tion from texts. In this work, we expand an
existing emotion lexicon, DepecheMood, by
leveraging semantic knowledge from English
WordNet (EWN). We create an expanded lex-
icon, EmoWordNet, consisting of 67K terms
aligned with EWN, almost 1.8 times the size of
DepecheMood. We also evaluate EmoWord-
Net in an emotion recognition task using Se-
mEval 2007 news headlines dataset and we
achieve an improvement compared to the use
of DepecheMood. EmoWordNet is publicly
available to speed up research in the field on
http://oma-project.com.

1 Introduction

Emotion recognition models have been exten-
sively explored based on different modalities such
as human computer interaction (Cowie et al.,
2001; Pantic and Rothkrantz, 2003; Fragopanagos
and Taylor, 2005; Jaimes and Sebe, 2007; Hibbeln
et al., 2017; Patwardhan and Knapp, 2017; Con-
stantine et al., 2016) and facial images and ex-
pressions (Goldman and Sripada, 2005; Gunes and
Piccardi, 2007; Trad et al., 2012; Wegrzyn et al.,
2017). Recently, special attention has been given
to emotion recognition from text (Wu et al., 2006;
Alm et al., 2005; Shaheen et al., 2014; Abdul-
Mageed and Ungar, 2017; Badaro et al., 2018b,a).
In fact, a tremendous amount of opinionated and
emotionally charged text data is nowadays avail-

able on the Internet due to the increase of num-
ber of users of social networks such as Twitter and
Facebook. For instance, Facebook reached more
than 2 billion users on September 2017.1 Rec-
ognizing emotions from text has several applica-
tions: first, it helps companies and businesses in
shaping their marketing strategies based on con-
sumers’ emotions (Bougie et al., 2003); second,
it allows improving typical collaborative filtering
based recommender systems (Badaro et al., 2013,
2014c,d) in terms of products or advertisements
recommendations (Mohammad and Yang, 2011);
third, politicians can learn how to adapt their polit-
ical speech based on people emotions (Pang et al.,
2008) and last but not least emotion classification
helps in stock market predictions (Bollen et al.,
2011).

While plenty of works exist for sentiment anal-
ysis for different languages including analysis
of social media data for sentiment characteris-
tics (Al Sallab et al., 2015; Baly et al., 2014,
2017b,a), few works focused on emotion recogni-
tion from text. Since sentiment lexicons helped
in improving the accuracy of sentiment classifi-
cation models (Liu and Zhang, 2012; Al-Sallab
et al., 2017; Badaro et al., 2014a,b, 2015), sev-
eral researchers are working on developing emo-
tion lexicons for different languages such as En-
glish, French, Polish and Chinese (Mohammad,
2017; Bandhakavi et al., 2017; Yang et al., 2007;
Poria et al., 2012; Mohammad and Turney, 2013;
Das et al., 2012; Mohammad et al., 2013; Abdaoui
et al., 2017; Staiano and Guerini, 2014; Maziarz
et al., 2016; Janz et al., 2017). While sentiment
is usually represented by three labels namely pos-
itive, negative or neutral, several representation
models exist for emotions such as Ekman repre-
sentation (Ekman, 1992) (happiness, sadness, fear,

1https://www.statista.com/statistics/272014/global-
social-networks-ranked-by-number-of-users/

86



anger, surprise and disgust) or Plutchik model
(Plutchik, 1994) that includes trust and anticipa-
tion in addition to Ekman’s six emotions. De-
spite the efforts for creating large scale emotion
lexicons for English, the size of existing emo-
tion lexicons remain much smaller compared to
sentiment lexicons. For example, DepecheMood
(Staiano and Guerini, 2014), one of the largest
publicly available emotion lexicon for English,
includes around 37K terms while SentiWordNet
(SWN) (Esuli and Sebastiani, 2007; Baccianella
et al., 2010), a large scale English sentiment
lexicon semi-automatically generated using En-
glish WordNet (EWN) (Fellbaum, 1998), includes
around 150K terms annotated with three sentiment
scores: positive, negative and objective.

In this paper, we focus on expanding cov-
erage of existing emotion lexicon, namely De-
pecheMood, using the synonymy semantic rela-
tion available in English WordNet. We decide to
expand DepecheMood since it is one of the largest
emotion lexicon publicly available, and since its
terms are aligned with EWN, thus allowing us to
benefit from powerful semantic relations in EWN.

The paper is organized as follows. In section
2, we conduct a brief literature survey on existing
emotion lexicons. In section 3, we describe the
expansion approach to build EmoWordNet. In sec-
tion 4, we compare the performance of EmoWord-
Net against DepecheMood using SemEval 2007
dataset and in section 5, we present a conclusion
of our results and future work.

2 Literature Review

Strapparava et al. (2004) developed WordNet Af-
fect by tagging specific synsets with affective
meanings in EWN. They identified first a core
number of synsets that represent emotions of a
lexical database for emotions. They expanded
then the coverage of the lexicon by checking se-
mantically related synsets compared to the core
set. They were able to annotate 2,874 synsets and
4,787 words. WordNet Affect was also tested in
different applications such as affective text sens-
ing systems and computational humor. WordNet
Affect is of good quality given that it was manu-
ally created and validated, however, it is of limited
size. Mohammad and Turney (2013) presented
challenges that researchers face for developing
emotion lexicons and devised an annotation strat-
egy to create a good quality and inexpensive emo-

tion lexicon, EmoLex, by utilizing crowdsourc-
ing. To create EmoLex, the authors first identified
target terms for annotation extracted from Mac-
quarie Thesaurus (Bernard and Bernard, 1986),
WordNet Affect and the General Inquirer (Stone
et al., 1966). Then, they launched the annota-
tion task on Amazon’s Mechanical Turk. EmoLex
has around 10K terms annotated for emotions as
well as for sentiment polarities. They evaluated
the annotation quality using different techniques
such as computing inter-annotator agreement and
comparing a subsample of EmoLex with existing
gold data. AffectNet (Cambria et al., 2012), part
of the SenticNet project, includes also around 10K
terms extracted from ConceptNet (Liu and Singh,
2004) and aligned with WordNet Affect. They
extended WordNet Affect using the concepts in
ConceptNet. While WordNet Affect, EmoLex and
AffectNet include terms with emotion labels, Af-
fect database (Neviarouskaya et al., 2007) and De-
pecheMood (Staiano and Guerini, 2014) include
words that have emotion scores instead, which
can be useful for compositional computations of
emotion scores. Affect database extends SentiFul
and covers around 2.5K words presented in their
lemma form along with the corresponding part of
speech (POS) tag. DepecheMood was automat-
ically built by harvesting social media data that
were implicitly annotated with emotions. Staiano
and Guerini (2014) utilized news articles from rap-
pler.com. The articles are accompanied by Rap-
pler’s Mood Meter, which allows readers to ex-
press their emotions about the article they are read-
ing. DepecheMood includes around 37K lemmas
along with their part of speech tags and the lem-
mas are aligned with EWN. Staiano and Guerini
also evaluated DepecheMood in emotion regres-
sion and classification tasks in unsupervised set-
tings. They claim that although they utilized a
naı̈ve unsupervised model, they were able to out-
perform existing lexicons when applied on Se-
mEval 2007 dataset (Strapparava and Mihalcea,
2007). Since DepecheMood is aligned with EWN,
is publicly available and has a better coverage and
claimed performance compared to existing emo-
tion lexicons, we decide to expand it using EWN
semantic relations as described below in section 3.

To summarize, there are mainly two approaches
that have been followed for building emotion lex-
icons for English. The first set of methods relies
on manual annotation either done by specific indi-
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viduals or through crowdsourcing, where the list
of words is extracted from lexical resources. The
second approach is automatic or semi-automatic
and is based on annotated corpora for emotion.
The first approach tends to produce limited size
and highly accurate emotion lexicons but it is rel-
atively expensive. On the other hand, the second
approach is cheap and results in large scale emo-
tion lexicons but with lower accuracy compared to
manually developed emotion lexicons in terms of
accurately representing the emotion of the term.

3 EmoWordNet

In this section, we describe the approach we
followed in order to expand DepecheMood and
build EmoWordNet. DepecheMood consists of
37,771 lemmas along with their corresponding
POS tags where each entry is appended with
scores for 8 emotion labels: afraid, amused, an-
gry, annoyed, don’t care, happy, inspired and
sad. Three variations of score representations ex-
ist for DepecheMood. We select to expand the
DepecheMood variation with normalized scores
since this variation performed best according to
the presented results in (Staiano and Guerini,
2014).

In Fig. 1, we show an overview of the steps
followed to expand DepecheMood.

Figure 1: Overview of DepecheMood Expansion Ap-
proach.

Step 1: EWN synsets that include lemmas of
DepecheMood were retrieved. A score was then
computed for each retrieved synset, s. Let S de-
notes the set of all such synsets. Two cases might
appear: either the retrieved synset included only
one lemma from DepecheMood, in this case the
synset was assigned the same score of the lemma,
or, the synset included multiple lemmas that exist

in DepecheMood, in this case the synset’s score
was the average of the scores of its corresponding
lemmas. Step 2: A synset, s, includes two set of
terms: T, terms that are in DepecheMood, and T̄ ,
terms not in DepecheMood. Using the synonymy
semantic relation in EWN, and based on the con-
cept that synonym words would likely share the
same emotion scores, we assigned the synset’s
scores to its corresponding terms T̄ . Again, a term
t in T̄ might appear in one or multiple synsets from
S. Hence, the score assigned to t would be either
the one of its corresponding synset or the average
of the scores of its corresponding synsets that be-
long to S. Step 3: after performing step 2, new
synsets might be explored. Terms in T̄ might also
appear in synsets s̄ that do not belong to S. s̄ would
get the score of its corresponding terms. Step 2
and 3 were repeated until no new terms or synsets
were added and scores of added terms converged.
It is important to note that we decided to consider
only synonyms for expansion since synonymy is
the only semantic relation that mostly preserves
the emotion orientation and does not require man-
ual validation as described by Strapparava et al.
(2004).

As a walking example of the steps described
above, let us consider the DepecheMood term
“bonding” having noun as POS tag. “bond-
ing” can be found in three different EWN noun
synsets with the following offset IDs: “00148653;
05665769; 13781820”. Since “bonding” is the
only term having a DepecheMood representation
in the three synsets, the three synsets will have the
same emotion scores as “bonding”. While synsets
“05665769; 13781820” have only the term “bond-
ing”, “00148653” includes as well the lemma “sol-
dering” which is not in DepecheMood. Thus, from
step 2, “soldering” will have the same scores as
“bonding”. “soldering” does not appear in any
other EWN synset so there are no more iterations.

Using the described automatic expansion ap-
proach, we were able to extend the size of De-
pecheMood by a factor of 1.8. We obtained emo-
tion scores for an additional 29,967 EWN terms
and for 59,952 EWN synsets. Overall, we con-
struct EmoWordNet, an emotion lexicon consist-
ing of 67,738 EWN terms and of 59,952 EWN
synsets annotated with emotion scores.

Next, we present a simple extrinsic evaluation
of EmoWordNet similar to the one performed for
DepecheMood.
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4 Evaluation of EmoWordNet

In this section, we evaluate the effectiveness of
EmoWordNet in emotion recognition task from
text. We evaluate regression as well as classi-
fication of emotions in unsupervised settings us-
ing similar techniques used for evaluating De-
pecheMood.

4.1 Dataset & Coverage

We utilized the dataset provided publicly by Se-
mEval 2007 task on Affective text (Strapparava
and Mihalcea, 2007). The dataset consists of one
thousand news headlines annotated with six emo-
tion scores: anger, disgust, fear, joy, sadness and
surprise. For the regression task, a score between
0 and 1 is provided for each emotion. For the
classification task, a threshold is applied on the
emotion scores to get a binary representation of
the emotions: if the score of a certain emotion
is greater than 0.5, the corresponding emotion la-
bel is set to 1, otherwise it is 0. The emotion la-
bels used in the dataset correspond to the six emo-
tions of the Ekman model (Ekman, 1992) while
those in EmoWordNet, as well as DepecheMood,
follow the ones provided by Rappler Mood Me-
ter. We considered the same emotion mapping as-
sumptions presented in the work of (Staiano and
Guerini, 2014): Fear→ Afraid, Anger→ Angry,
Joy → Happy, Sadness → Sad and Surprise →
Inspired. Disgust was not aligned with any emo-
tion in EmoWordNet and hence was discarded as
also assumed in (Staiano and Guerini, 2014). One
important aspect of the extrinsic evaluation was
checking the coverage of EmoWordNet against
SemEval dataset. In order to compute coverage,
we performed lemmatization of the news head-
lines using WordNet lemmatizer available through
Python NLTK package. We excluded all words
with POS tags different than noun, verb, adjec-
tive and adverb. EmoWordNet achieved a cover-
age of 68.6% while DepecheMood had a cover-
age of 67.1%. An increase in coverage was ex-
pected but since the size of the dataset is rela-
tively small, the increase was only around 1.5%.
In terms of headline coverage, only one headline
(“Toshiba Portege R400”) was left without any
emotion scores when using both EmoWordNet and
DepecheMood since none of its terms were found
in any of the two lexicons.

4.2 Regression and Classification Results

We followed an approach similar to the one pre-
sented for evaluating DepecheMood. For prepro-
cessing, we first lemmatized the headlines using
WordNet lemmatizer available in Python NLTK
package. We also accounted for multi-word terms
that were solely available in EmoWordNet by
looking at n-grams (up to n=3) after lemmatiza-
tion. We then removed all terms that did not be-
long to any of the four POS tags: noun, verb,
adjective and adverbs. For features computation,
we considered two variations: the sum and the
average of the emotion scores for the five emo-
tion labels that overlapped between EmoWordNet
and SemEval dataset. Using average turned out to
perform better than when using sum for both lex-
icons. As stated in (Staiano and Guerini, 2014)
paper, ‘Disgust’ emotion was excluded since there
was no corresponding mapping in EmoWord-
Net/DepecheMood. The first evaluation consisted
of measuring Pearson Correlation between the
scores computed using the lexicons and those pro-
vided in SemEval. The results are reported in Ta-
ble 1. We could see that the results are relatively
close to each other: EmoWordNet slightly outper-
formed DepecheMood for the five different emo-
tions. It was expected to have close results given
that the coverage of EmoWordNet is very close to
DepecheMood. Given the slight improvement, we
expect EmoWordNet to perform much better on
larger datasets.

For the classification task, we first transformed
the numerical emotion scores of the headlines to a
binary representation. We applied min-max nor-
malization on the computed emotion scores per
headline, and then assigned a ‘1’ for the emotion
label with score greater than ‘0.5’, and a ‘0’ other-
wise. We used F1 measure for evaluation. Results
are shown in Table 2. More significant improve-
ment was observed in classification task compared
to regression task when using EmoWordNet.

4.3 Results Analysis

In this section, we present some quantitative and
qualitative analyses of the results. For quantita-
tive analysis, we checked first whether the count
of terms in a headline is correlated with having a
correct emotion classification. Overall, the length
of headlines was varying between 2 and 15 terms.
Headlines with length between 5 and 10 terms
were mostly correctly classified. Hence, one can
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Emotion EmoWordNet DepecheMood
Fear 0.59 0.54

Anger 0.42 0.38
Joy 0.33 0.21

Sadness 0.43 0.40
Surprise 0.51 0.47
Average 0.46 0.40

Table 1: Pearson Correlation values between predicted
and golden scores.

Emotion EmoWordNet DepecheMood
Fear 0.45 0.32

Anger 0.17 0.00
Joy 0.48 0.16

Sadness 0.46 0.30
Surprise 0.43 0.40
Average 0.40 0.24

Table 2: F1-Measure results for emotion classification.

conclude that having a headline with couple of
terms only may not allow the system to clearly
decide on the emotion label and having headlines
with many terms may cause the system to over pre-
dict emotions. In addition to headline length, we
checked whether POS tags are correlated with cor-
rect or erroneous emotion predictions. Given that
the dataset consists of news headlines, the “noun”
POS tag was the most frequent in both correctly
classified headlines and misclassified ones.

For qualitative analysis, we analyze few cor-
rectly classified headlines and few other misclas-
sified ones. We show in Table 3 few examples of
correctly classified headlines and in table 4 other
examples of misclassified headlines. By looking
at the misclassified examples, we observe that the
golden annotation tend to be sometimes conflict-
ing such as the second and the fifth examples in
Table 4 where we have joy and sadness as assigned
emotions for the two headlines. An explanation
for having conflicting emotions for the same head-
line is that the annotators reflected their personal
point of view of the information conveyed by the
headline. Hence, some people were happy to read
the headline others were sad. In order to incorpo-
rate such challenging aspect of emotion recogni-
tion from text, more sophisticated emotion recog-
nition models need to be considered and tested.

Headline Emotions
Hackers attack root servers Anger; Fear
Subway collapse caught on
camera

Fear; Sadness

Action games improve eye-
sight

Joy; Surprise

Study finds gritty air raises
heart disease risk in older
women

Fear; Sadness;
Surprise

Wizardry at Harvard:
physicists move light

Surprise

Table 3: Examples of correctly classified headlines.

Headline Gold Predicted
A film star in Kam-
pala, conjuring
aminos ghost

Fear;
Surprise

Anger;
Joy;
Sadness

Damaged Japanese
whaling ship may
resume hunting off
Antarctica

Joy; Sad-
ness

Anger;
Fear;
Surprise

Apple revs up Mac
attacks on Vista

Surprise Anger;
Fear; Joy;
Sadness

Serbia rejects
United Nation’s
Kosovo plan

Anger;
Sadness;
Surprise

Fear; Joy

Taliban leader killed
in airstrike

Joy; Sad-
ness

Anger;
Fear;
Surprise

Table 4: Examples of misclassified headlines.

5 Conclusion and Future Work

We presented EmoWordNet, a large scale emotion
lexicon, consisting of around 67K EWN words
and 58K EWN synsets annotated with 8 emotion
scores. EmoWordNet is automatically constructed
by applying a semantic expansion approach us-
ing EWN and DepecheMood. When utilized for
emotion recognition, EmoWordNet outperformed
existing emotion lexicons and had a better lexical
coverage. For future work, we would like to eval-
uate the performance of EmoWordNet on larger
datasets and we would like to improve the accu-
racy of the recognition model. EmoWordNet is
publicly available on http://oma-project.com.
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Abstract

The aim of this work is to explore the possi-
ble limitations of existing methods of cross-
language word embeddings evaluation, ad-
dressing the lack of correlation between in-
trinsic and extrinsic cross-language evaluation
methods. To prove this hypothesis, we con-
struct English-Russian datasets for extrinsic
and intrinsic evaluation tasks and compare per-
formances of 5 different cross-language mod-
els on them. The results say that the scores
even on different intrinsic benchmarks do not
correlate to each other. We can conclude that
the use of human references as ground truth for
cross-language word embeddings is not proper
unless one does not understand how do native
speakers process semantics in their cognition.

1 Introduction

Real-valued word representations called word em-
beddings are an ubiquitous and effective technique
of semantic modeling. So it is not surprising that
cross-language extensions of such models (cross-
language word embeddings) rapidly gained popu-
larity in the NLP community (Vulić and Moens,
2013), proving their effectiveness in certain cross-
language NLP tasks (Upadhyay et al., 2016).
However, the problem of proper evaluation of any
type of word embeddings still remains open.

In recent years there was a critique to main-
stream methods of intrinsic evaluation: some re-
searchers addressed subjectivity of human assess-
ments, obscurity of instructions for certain tasks
and terminology confusions (Faruqui et al., 2016;
Batchkarov et al., 2016). Despite all these limi-
tations, some of the criticized methods (like the
word similarity task) has been started to be ac-
tively applied yet for cross-language word embed-
dings evaluation (Camacho-Collados et al., 2017,
2015).

We argue that if certain tasks are considered
as not proper enough for mono-lingual evalua-
tion, then it should be even more inappropriate
to use them for cross-language evaluation since
new problems would appear due to the new fea-
tures of cross-linguality wherein the old limita-
tions still remain. Moreover, it is still unknown
for the field of cross-language word embeddings,
are we able to make relevant predictions on per-
formance of the model on one method, using an-
other. We do not know whether can we use the
relative ordering of different embeddings obtained
by evaluation on an intrinsic task to decide which
model will be better on a certain extrinsic task.
So, the aim of this work is to highlight the lim-
itations of cross-language intrinsic benchmarks,
studying the connection of outcomes from differ-
ent cross-language word embeddings evaluation
schemes (intrinsic evaluation and extrinsic evalu-
ation), and explain this connection by addressing
certain issues of intrinsic benchmarks that hamper
us to have a correlation between two evaluation
schemes. In this study as an extrinsic task we con-
sider the cross-language paraphrase detection task.
This is because we think that the model’s features
that word similarity and paraphrase detection eval-
uate are very close: both of them test the quality
of semantic modeling (i.e. not the ability of the
model to identify POS tags, or the ability to clus-
ter words in groups, or something else) in terms of
properness of distances in words pairs with certain
types of semantic relations (particularly, seman-
tic similarity). Therefore, we could not say that a
strong difference in performances of word embed-
dings on these two tasks could be highly expected.

In this paper we propose a comparison of 5
cross-language models on extrinsic and intrinsic
datasets for English-Russian language pair con-
structed specially for this study. We consider Rus-
sian because we are native speakers of this lan-
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guage (hence, we are able to adequately construct
novel datasets according the limitations that we
address).

Our work is a step towards exploration of the
limitations of cross-language evaluation of word
embeddings, and it has three primary contribu-
tions:

1. We propose an overview of limitations of
current intrinsic cross-language word embed-
dings evaluation techniques;

2. We construct 12 cross-language datasets for
evaluation on the word similarity task;

3. We propose a novel task for cross-language
extrinsic evaluation that was never addressed
before from the benchmarking perspective,
and we create a human-assessed dataset for
this task.

This paper is organized as follows. Section 2
puts our work in the context of previous studies.
Section 3 describes the problems of intrinsic cross-
language evaluation. Section 4 is about the exper-
imental setup. The results of the comparison are
reported in Section 5, while Section 6 concludes
the paper.

2 Related Work

First investigation of tasks for cross-language
word embeddings evaluation was proposed in
2015 (Camacho-Collados et al., 2015). This work
was the first towards mentioning the problem of
lack of lexical one-to-one correspondence across
different languages from the evaluation perspec-
tive. However, no detailed insights on limitations
of evaluation (e.g. effect of this lack on evalua-
tion scores) was reported. 2015 also saw an explo-
ration of the effect of assessments’ language and
the difference in word similarity scores for differ-
ent languages (Leviant and Reichart, 2015).

In 2016 the first survey of cross-language intrin-
sic and extrinsic evaluation techniques was pro-
posed (Upadhyay et al., 2016). The results of
this study did not address the correlation of in-
trinsic evaluation scores with extrinsic ones (de-
spite that the lack of correlation of intrinsic and
extrinsic tasks for mono-language evaluation was
proved (Schnabel et al., 2015), it is not obvious if
this would also extend to cross-language evalua-
tion). In 2017 a more extensive overview of cross-
language word embeddings evaluation methods

was proposed (Ruder, 2017), but this study did not
considered any empirical analysis.

After all, we are aware of certain works on
a topic of cross-language evaluation from the
cross-language information retrieval community
(Braschler et al., 2000), but there are no works that
highlight non-trivial issues of cross-language sys-
tems evaluation from the position of word embed-
dings.

3 Problems of Cross-language
Evaluation

We address the following problems that could ap-
pear on any kind of evaluation of cross-language
word embeddings against human references on
any intrinsic task:

1. Translation Disagreement. Some re-
searchers have already faced the limitations
of machine word translation for construct-
ing cross-language evaluation datasets from
mono-language ones by translating them
word-by-word. The obtained problems were
in two different words with the same trans-
lation or with different parts of speech
(Camacho-Collados et al., 2015). We also ar-
gue that some words could have no transla-
tions while some words could have multiple
translations. Of course, these issues could
be partially avoided if the datasets would
be translated manually and the problematic
words would be dropped from the cross-
language dataset, but it is not clear how the
agreement for word dropping of human as-
sessors could be concluded.

2. Scores Re-assessment. Some researchers
obtain new scores reporting human refer-
ences by automatically averaging the scores
from the mono-language datasets of which
the new dataset is constructed. Another op-
tion of scores re-assessment proposes man-
ual scoring of a new dataset by bilingual as-
sessors. We consider that both variants are
not proper since it is unclear how the scores
in the cross-language dataset should be as-
sessed: humans usually do not try to iden-
tify a similarity score between word a in lan-
guage A and word b in language B since
of difference in perception of these words in
cognition of speakers of different languages.
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3. Semantic Fields. According to the theories
of lexical typology, the meaning of a prop-
erly translated word could denote a bit differ-
ent things in a new languages. Such effect
is called semantic shift, and there is a pos-
sibility that the actual meanings of two cor-
responding words could be different even if
they are correctly translated and re-assessed
(Ryzhova et al., 2016). One of the ways of
avoiding this problem is to exclude relational
nouns which are words with non-zero va-
lency (Koptjevskaja-Tamm et al., 2015) from
the dataset, so it should consist only of zero
valency nouns that are more properly linked
with real world objects. However, the distinc-
tion of words on relational and non-relational
ones is fuzzy, and such assessments could be
very subjective (also, since verbs are usually
highly relational, they should not be used in
cross-language evaluation).

4. New Factors for Bias. It is already known
that existence of connotative associations
for certain words in mono-language datasets
could introduce additional subjectivity in the
human assessments (Liza and Grzes, 2016).
We argue that yet more factors could be the
cause of assessors’ bias in the cross-language
datasets. For example, words five and clock
could be closely connected in minds of En-
glish speakers (since of the common five
o’clock tea collocation), but not in minds of
speakers of other languages, and we think
that a native English speaker could assess bi-
ased word similarity scores for this word pair.

4 Experimental Setup

4.1 Distributional Models
To propose a comparison, we used 5 cross-
language embedding models.

1. MSE (Multilingual Supervised Embeddings).
Trains using a bilingual dictionary and learns
a mapping from the source to the target space
using Procrustes alignment (Conneau et al.,
2017).

2. MUE (Multilingual Unsupervised Embed-
dings). Trains learning a mapping from the
source to the target space using adversarial
training and Procrustes refinement (Conneau
et al., 2017).

3. VecMap. Maps the source into the tar-
get space using a bilingual dictionary or
shared numerals minimizing the squared Eu-
clidean distance between embedding matri-
ces (Artetxe et al., 2018).

4. BiCCA (Bilingual Canonical Correlation
Analysis). Projects vectors of two differ-
ent languages in the same space using CCA
(Faruqui and Dyer, 2014).

5. MFT (Multilingual FastText). Uses SVD to
learn a linear transformation, which aligns
monolingual vectors from two languages in
a single vector space (Smith et al., 2017).

We mapped vector spaces of Russian and En-
glish FastText models trained on a dump of
Wikipedia (Bojanowski et al., 2016) with an
English-Russian bilingual dictionary (Conneau
et al., 2017) (only one translation for a single
word).

4.2 Intrinsic Tasks
Word Semantic Similarity. The task is to predict
the similarity score for a word a in language A
and a word b in language B. All three publicly
available datasets for cross-language word simi-
larity (Camacho-Collados et al., 2015, 2017) are
not available for Russian, so we created the cross-
language datasets ourselves. We used 5 English
datasets assessed by semantic similarity of nouns
and adjectives (S), 3 datasets assessed by seman-
tic similarity of verbs (V), and 3 datasets assessed
by semantic relatedness of nouns and adjectives
(R); we labeled each with a letter reporting the
type of relations. We translated these datasets,
merged into cross-language sets (the first word of
each word pair was English, and the second was
Russian), dropped certain words pairs according to
limitations addressed by us (in the Section 2), and
re-assessed the obtained cross-languages datasets
with the help of 3 English-Russian volunteers,
having Krippendorff’s alpha 0.5 (final amount of
word pairs and ratio to original datasets is reported
at Table 1). Then we compared human references
of these datasets with cosine distances of cross-
language word vectors, and computed Spearman’s
rank correlation coefficient (p− value in all cases
was lower than 0.05).

Dictionary Induction (also called word trans-
lation). The second task is to translate a word in
language A into language B, so for the seed word
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MSE MUE VM BCCA MFT

S.RareWord-958 (56.3%) (Luong et al., 2013) 0.44 0.42 0.43 0.43 0.43
S.SimLex-739 (95.9%) (Hill et al., 2016) 0.34 0.32 0.35 0.34 0.34
S.SemEval-243 (88.0%) (Camacho-Collados et al., 2017) 0.6 0.56 0.35 0.34 0.34
S.WordSim-193 (96.4%) (Agirre et al., 2009) 0.69 0.67 0.72 0.67 0.71
S.RG-54 (83.1%) (Rubenstein and Goodenough, 1965) 0.68 0.67 0.63 0.61 0.61
S.MC-28 (93.3%) (Miller and Charles, 1991) 0.66 0.7 0.71 0.72 0.7

V. SimVerb-3074 (87.8%) (Gerz et al., 2016) 0.2 0.2 0.23 0.22 0.21
V.Verb-115 (85.4%) (Baker et al., 2014) 0.24 0.39 0.27 0.27 0.27
V.YP-111 (88.5%) (Yang and Powers, 2006) 0.22 0.37 0.25 0.25 0.25

R.MEN-1146 (94.7%) (Bruni et al., 2014) 0.68 0.66 0.69 0.66 0.68
R.MTurk-551 (91.7%) (Halawi et al., 2012) 0.56 0.51 0.57 0.54 0.57
R.WordSim-193 (96.4%) (Agirre et al., 2009) 0.55 0.53 0.57 0.53 0.55

P@1, dictionary induction 0.31 0.16 0.32 0.29 0.21
P@5, dictionary induction 0.53 0.34 0.52 0.49 0.38
P@10, dictionary induction 0.61 0.42 0.5 0.55 0.45

F1, paraphrase detection, our dataset 0.82 0.77 0.84 0.83 0.86
F1, paraphrase detection, parallel sentences 0.55 0.45 0.57 0.6 0.59

Table 1: Performance of the compared models across different tasks. Evaluation on first 11 datasets
indicate Spearman’s rank correlation. For word similarity task: words before the hyphen in datasets

name report the name of the original English dataset, the number after the hyphen report the amount of
word pairs, the numbers in brackets report ratio to its English original and the prefix before the dot in

the name report type of assessments.

the model generates a list of the closest word in
other language, and we need to find the correct
translation in it. As a source of correct transla-
tions we used English-Russian dictionary of 53
186 translation pairs (Conneau et al., 2017). The
evaluation on this measure was proposed as a pre-
cision on k nearest vectors of a word embedding
model for k = 1, 5, 10.

4.3 Extrinsic Task and Our Dataset

Cross-language Paraphrase Detection. In an
analogy with a monolingual paraphrase detection
task (also called sentence similarity identification)
(Androutsopoulos and Malakasiotis, 2010), the
task is to identify whether sentence a in language
A and sentence b in language B are paraphrases
or not. This task is highly scalable, and usually
figures as a sub-task of bigger tasks like cross-
language plagiarism detection.

We are not aware of any dataset for this task, so
we designed a benchmark ourselves for English-
Russian language pair. The dataset was con-
structed on the base of Wikipedia articles covering

wide range of topics from technology to sports. It
contains 8 334 sentences with a balanced class dis-
tribution. The assessments and translations were
done by 3 bilingual assessors. The negative results
were obtained by automatically randomly sam-
pling another sentence in the same domain from
the datasets.

Translations were produced manually by a pool
of human translators. Translators could para-
phrase the translations using different techniques
(according to our guidelines), and the assessors
had to verify paraphrase technique labels and an-
notate similarity of English-Russian sentences in
binary labels. We invited 3 assessors to estimate
inter-annotator agreement. To obtain the evalua-
tion scores, we conducted 3-fold cross validation
and trained Logistic Regression with only one fea-
ture: cosine similarity of two sentence vectors.
Sentence representations were built by averaging
their word vectors.

In order to validate the correctness of results on
our dataset, we automatically constructed a para-
phrase set from a corpus of 1 million English-
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Figure 1: Clustermap of different evaluation
techniques. Lighter color correspond to stronger

positive correlation. Each row and column is
labeled according to benchmark type: red –

extrinsic, blue – verbs, purple – word translation,
green – word relatedness, yellow – word

similarity.

Russian parallel sentences from WMT’16∗, gen-
erating for each sentence pair a semantic nega-
tive sample, searching for nearest sentence with a
monolingual FastText model.

5 Results and Discussion

The results of the experiments with intrinsic and
extrinsic evaluation are presented in Table 1. De-
spite the difference in scores for different models
in one dataset could be minuscule, the scores for
different intrinsic datasets vary a lot, and models
that achieve higher results on one task often have
lower results on other tasks.

Figure 1 shows mutual similarities between
datasets (measured as Spearman’s rank correlation
between evaluation scores from Table 1). One
can see that there are at least 4 clusters: ex-
trinsic+SemEval; word relations; word transla-
tion+some word similarities; others.

Interestingly, SemEval behaves similarly to ex-
trinsic tasks: this benchmark contains not only
single words but also two-word expressions (e.g.
Borussia Dortmund), so evaluation on this dataset
is more similar to paraphrase detection task. Sur-
prisingly, other word similarity datasets yield very
different metrics. This is kind of unexpected, be-
cause paraphrase detection task relies on similarity
of word senses.

Notably, many datasets from the same group
(marked using color in the leftmost column on
Figure 1) have difference in models’ behavior (e.g.

∗https://translate.yandex.ru/corpus

SimLex and WordSim both being word similarity
benchmarks are clustered away from each other).

Our datasets, aligned models and code to repro-
duce the experiments are available at our GitHub †.

6 Conclusions and Future Work

In this work we explored primary limitations
of evaluation methods of intrinsic cross-language
word embeddings. We proposed experiments on 5
models in order to answer the question ‘could we
somehow estimate extrinsic performance of cross-
language embeddings given some intrinsic met-
rics?’. Currently, the short answer is ‘No’, but the
longer is ‘maybe yes, if we understand the cogni-
tive and linguistic regularities that take place in the
benchmarks we use. Our point is that we not only
need intrinsic datasets of different types if we want
to robustly predict the performance of different ex-
trinsic tasks, but we also should overthink the de-
sign and capabilities of existing extrinsic bench-
marks.

Our research does not address some evaluation
methods (like MultiQVEC (Ammar et al., 2016))
and word embeddings models (for instance, Bivec
(Luong et al., 2015)) since Russian do not have
enough linguistic resources: there are certain
parallel corpora available at http://opus.
nlpl.eu, but a merge of all English-Russian cor-
pora has 773.0M/710.5M tokens, while the mono-
lingual Russian model that we used in this study
was trained on Wikipedia of 5B tokens (and En-
glish Wikipedia has a triple of this size). A for-
tiori, these corpora have different nature (subtitles,
corpus of Europar speeches, etc), and we think
that merging them would yield a dataset of unpre-
dictable quality.

In future we plan to make a comparison with
other languages giving more insights about perfor-
mance of compared models. We also plan to inves-
tigate cross-language extensions of other intrinsic
monolingual tasks (like the analogical reasoning
task) to make our findings more generalizable.
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Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27. Association for Computational Lin-
guistics.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A Smith.
2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Ion Androutsopoulos and Prodromos Malakasiotis.
2010. A survey of paraphrasing and textual entail-
ment methods. Journal of Artificial Intelligence Re-
search, 38:135–187.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
Generalizing and improving bilingual word embed-
ding mappings with a multi-step framework of lin-
ear transformations. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI-18).

Simon Baker, Roi Reichart, and Anna Korhonen. 2014.
An unsupervised model for instance level subcate-
gorization acquisition. In EMNLP, pages 278–289.

Miroslav Batchkarov, Thomas Kober, Jeremy Reffin,
Julie Weeds, and David Weir. 2016. A critique of
word similarity as a method for evaluating distribu-
tional semantic models.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Martin Braschler, Donna Harman, Michael Hess,
Michael Kluck, Carol Peters, and Peter Schäuble.
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José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. A framework for the
construction of monolingual and cross-lingual word
similarity datasets. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 1–7.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
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Ivan Vulić and Marie-Francine Moens. 2013. Cross-
lingual semantic similarity of words as the similarity
of their semantic word responses. In Proceedings of
the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 106–116.

Dongqiang Yang and David Martin Powers. 2006.
Verb similarity on the taxonomy of wordnet. In
The Third International WordNet Conference: GWC
2006. Masaryk University.

100



Proceedings of the 7th Joint Conference on Lexical and Computational Semantics (*SEM), pages 101–106
New Orleans, June 5-6, 2018. c©2018 Association for Computational Linguistics

How Gender and Skin Tone Modifiers Affect
Emoji Semantics in Twitter

Francesco Barbieri
LASTUS Lab, TALN

Universitat Pompeu Fabra
Barcelona, Spain

name.surname@upf.edu

Jose Camacho-Collados
School of Computer Science and Informatics

Cardiff University
United Kingdom

camachocolladosj@cardiff.ac.uk

Abstract

In this paper we analyze the use of emojis in
social media with respect to gender and skin
tone. By gathering a dataset of over twenty
two million tweets from United States some
findings are clearly highlighted after perform-
ing a simple frequency-based analysis. More-
over, we carry out a semantic analysis on the
usage of emojis and their modifiers (e.g. gen-
der and skin tone) by embedding all words,
emojis and modifiers into the same vector
space. Our analyses reveal that some stereo-
types related to the skin color and gender seem
to be reflected on the use of these modifiers.
For example, emojis representing hand ges-
tures are more widely utilized with lighter skin
tones, and the usage across skin tones differs
significantly. At the same time, the vector cor-
responding to the male modifier tends to be
semantically close to emojis related to busi-
ness or technology, whereas their female coun-
terparts appear closer to emojis about love or
makeup.

1 Introduction

Gender and race stereotypes are still present in
many places of our lives. These stereotype-based
biases are directly reflected on the data that can
be gathered from different sources such as vi-
sual or textual contents. In fact, it has been
shown how these biases can lead to problematic
behaviours such as an increase in discrimination
(Podesta et al., 2014). These biases have already
been studied in diverse text data sources (Zhao
et al., 2017), and have been proved to propagate to
supervised and unsupervised techniques learning
from them, including word embeddings (Boluk-
basi et al., 2016; Caliskan et al., 2017; Zhao et al.,
2018) and end-user applications like online ads
(Sweeney, 2013).

In this paper we study the biases produced in
a newer form of communication in social media

from an analytical point of view. We focus on the
use of emojis and their interaction with the textual
content within a social network (i.e. Twitter). We
study emojis as another part of the message, as it
could be words. An interesting feature about emo-
jis, apart from their increasing use in diverse social
media platforms, is that they enable us to numeri-
cally measure some biases with respect to gender
and race. Recently, emojis have introduced mod-
ifiers as part of their encoding. With these mod-
ifiers the same emoji can be used with different
features: as male or female, or with different skin
colors, for example.

We approach the problem from two method-
ological perspectives. First, we analyze the use of
emojis and their modifiers from a numerical point
of view, counting their occurrences in a corpus.
This already gives us important hints of how these
emojis are used. Then, we leverage the SW2V
(Senses and Words to Vectors) embedding model
(Mancini et al., 2017) to train a joint vector space
in which emojis and their modifiers are encoded
together, enabling us to analyze their semantic in-
terpretation. While there have been approaches at-
tempting to model emojis with distributional se-
mantics (Aoki and Uchida, 2011; Barbieri et al.,
2016; Eisner et al., 2016; Ljubešic and Fišer, 2016;
Wijeratne et al., 2017), to the best of our knowl-
edge this is the first work that semantically ana-
lyzes modifiers as well. In fact, even though the in-
formation provided by modifiers can be extremely
useful (for the modeling of emojis in particular,
and of messages in social media in general), this
has been neglected by previous approaches mod-
eling and predicting emojis (Barbieri et al., 2017;
Felbo et al., 2017).

Following our two complementary methodolog-
ical perspectives, we reached similar conclusions:
many stereotypes related to gender and race are
also present in this new form of communication.
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Figure 1: Recent tweets using the dark fist emoji
(dark skin color in the first and medium-dark in
the second).

Moreover, we encountered other interesting find-
ings related to the usage of emojis with respect to
gender and skin tones. For instance, our analy-
sis revealed that light skin tones are more widely
used than dark ones and their usage is different in
many cases. However, incidentally the dark raised
fist emoji (i.e. ) is significantly more used, pro-
portionally, than its lighter counterparts. This is
mainly due to the protest black community started
in favour of human rights, dating back from the
Olympic Games of Mexico 1968. This sign was
known as the Black Power salute (Osmond, 2010)
and is still widely used nowadays, especially in
social media symbolized by the above-mentioned
dark-tone fist emoji. Figure 1 shows two recent
tweets using this emoji as a response to some Don-
ald Trump critics to NFL players protesting for
black civil rights by kneeing during the national
anthem before their games. As far as gender-based
features are concerned, female modifiers appear
much closer to emojis related to love and makeup,
while the male ones are closer to business or tech-
nology items.

2 Methodology

For this paper we make use of the encoding of
emoji modifiers (Section 2.1) and exploit an em-
bedding model that enables us to learn all words,
emojis and modifiers in the same vector space
(Section 2.2).

2.1 Emoji Modifiers
Emoji modifiers are features that provide more
precise information of a given emoji. For exam-

ple, a hand-based emoji (e.g. ) can have dif-
ferent skin colors: light, medium-light, medium,
medium-dark, or dark. This information has been
recently added in the official encoding of emojis1.
At the same time, some emojis like a person rising
a hand could be displayed as a woman (i.e. ) or
a man (i.e. ). We exploit this information pro-
vided by modifiers to study the role of gender and
skin color in social media communication.

2.2 Joint Vector Space Model
We construct a vector space model in which
words, emojis and their modifiers share the same
space. To this end, we exploit SW2V2 (Mancini
et al., 2017), which is an extension of Word2Vec
(Mikolov et al., 2013) and was originally designed
for learning word and sense embeddings on the
same vector space. Given an input corpus, SW2V
trains words and its associated senses simultane-
ously, exploiting their intrinsic connections. In
our work, however, we are not interested in learn-
ing embeddings for senses but for emojis and their
modifiers.

Formally, we use the SW2V model by extend-
ing the input and output layers of the neural net-
work with emoji modifiers. The main objective
function of the CBOW architecture of Word2Vec
aiming at predicting the target word in the mid-
dle does not change, except when the model has to
predict an emoji with its modifier(s). In this case,
instead of simply trying to classify the word in the
middle, we also take into account the set of associ-
ated emojis. This is equivalent to minimizing the
following loss function:

− log(p(et|Et,M t))−
∑

m∈Mt

log(p(m|Et,M t))

where Mt refers to the set of modifier(s) of the tar-
get emoji et. Et = wt−n, ..., wt−1, wt+1, ..., wt+n

and M t = Mt−n, ...,Mt−1,Mt+1, ...,Mt+n both
represent the context of the target emoji. While
Et includes surface words (wi) as context, M t in-
cludes the modifiers of the emojis (Mi) within the
surrounding context, if any3.

The resulting output is a shared space of word,
emoji and modifier embeddings. In addition, we

1http://unicode.org/reports/tr51/
#Emoji_Modifiers_Table

2http://lcl.uniroma1.it/sw2v/
3M t may be empty if no modified emoji occurs in the

context of the target emoji.

102



propose a second variant4 of the SW2V archi-
tecture modeling words, non-modified emojis and
emojis associated with their modifiers (e.g. ).
For example, for the emoji black hand ( ) this
variant would learn the embedding for the hand
without any modifier, and the same emoji with the
modifier dark (i.e. ) instead of the embedding
for the modifier alone learned in the main config-
uration of our SW2V model.

The advantages of using this model with respect
to a usual word embedding model are manifold:
first, it enables us to separate modifiers from emo-
jis so we can learn accurate representations for
both types; second, with this model we can learn
embeddings for words, emojis and their modifiers
in the same vector space, a property that is ex-
ploited in our experiments; third, since an emoji
with modifiers may occur quite infrequently, by
using this approach we take into account the se-
mantic of the emoji (e.g. ) so the representation
of the emoji with their modifiers (e.g. , ...) is
more accurate; finally, with this model we can as-
sociate a given emoji with one or more modifiers
(e.g. skin color and gender on the same emoji).

3 Experiments

All our experiments are carried out on a corpus
compiled from Twitter, including all tweets geolo-
calized in United States from October 2015 to Jan-
uary 2018. The corpus contains over 22M tweets
and around 319M tokens overall. In the corpus we
encode emojis and their modifiers as single joint
instances. Taking this corpus as reference, we in-
spect the use of emojis with respect to skin tone
and gender from two complementary methodolog-
ical perspectives: frequency-based (Section 3.1)
and semantics-based (Section 3.2).

3.1 Frequency

By exploring the frequency of emojis in Twitter
we can obtain a clear overview of their diverse
use regarding skin tone. To this end, we carried
out a frequency analysis on hand-related emojis
with different skin color modifiers: light, medium-
light, medium, medium-dark, dark, and neutral
(i.e. no modifier). Table 1 shows the frequency
of the top twenty most frequent hand-related emo-
jis according to skin tone. As can be clearly seen,
the emojis without any particular skin tone mod-

4We use this second variant in our last semantics-based
experiment in Section 3.2.2.

No mod
Abs 121,343 70,139 102,397 61,865 50,871 7,621
Rel 29.3 16.9 24.7 14.9 12.2 1.8

Table 1: Absolute and relative (%) frequency of
hand-related emojis. These frequency estimators
indicate the number of tweets where an emoji oc-
curs, without considering repetitions.

ifier (yellow), which are displayed by default, are
the most frequent. However, it is surprising to note
the gap between the usage of the light-tone emo-
jis (over 70K occurrences with over almost 17%
overall) with respect to dark-tone emojis (less than
8K occurrences which corresponds to less than 2%
overall). Nevertheless, this gap may be simply due
to demographics, since many Twitter users employ
modifiers as a form of self-representation (Robert-
son et al., 2018).

In addition to the raw frequencies of these emo-
jis and their modifiers we analyze how these emo-
jis were used proportionally for each skin tone. Ta-
ble 2 displays the proportion of emojis used per
skin color. Interestingly, the pattern followed by
the darker emojis is clearly different from the dis-
tribution followed by lighter ones (Pearson cor-
relation of 98% between light and medium-light
tones in comparison to the relatively low 71% be-
tween light and dark tones). For example, the
emoji corresponding to the raised fist (i.e. ) is
significantly more used for the dark tone than the
light ones (10.3% to 1.6%). The reason, as ex-
plained in the introduction, dates back from the
Olympic Games of 1968 (Osmond, 2010). It rep-
resents the fight of the black community for hu-
man rights, which is still present nowadays, as
highlighted in the recent tweets of Figure 1. Ad-
ditionally, the hand emoji representing the middle
finger raised (i.e. ), which is often used as an in-
sult, occurs proportionally significantly more of-
ten with the dark skin color (2.2% to 0.5%). In
contrast, light skin tone emojis tend to be more
used for emojis including some form of assertion:
e.g. (12% vs 6.7%), and the (7.8% vs 3.7%).

3.2 Semantics

For inspecting the semantics of each emoji and
its modifiers we rely on the joint semantic vec-
tor space (SW2V) of words, emojis and modifiers
described in Section 2.2. We ran SW2V in our
Twitter corpus with the following hyperparame-
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13.0 15.7 14.9 16.1 17.5 12.2
12.9 8.8 11.3 13.7 14.2 13.5
12.5 12.0 10.9 9.0 7.8 6.7
12.0 9.9 9.0 15.0 18.5 20.0
11.4 12.8 15.0 10.6 8.8 8.6
10.3 7.8 5.3 3.5 2.9 3.7
6.0 14.1 14.3 11.0 7.8 8.3
4.6 4.5 4.6 3.9 2.6 3.5
4.1 3.9 3.3 3.0 2.5 2.2
2.4 3.1 2.9 2.6 2.0 1.4
2.3 1.1 1.0 1.4 1.5 1.7
2.2 1.6 2.4 4.4 7.7 10.3
2.0 1.3 1.7 1.7 1.7 2.1
1.0 0.8 0.8 0.9 0.9 0.9
0.8 0.4 0.6 0.7 0.6 0.7
0.7 0.6 0.5 0.5 0.4 0.7
0.6 0.2 0.3 0.4 0.5 0.4
0.5 0.8 0.7 1.2 1.6 2.2
0.5 0.3 0.3 0.2 0.2 0.3
0.5 0.3 0.2 0.4 0.5 0.7

Table 2: Relative frequency (%) of the top twenty
hand-related emojis with respect to skin modifiers
(from left to right: no modifier, light, medium-
light, medium, medium-dark, dark).

ters: 100 dimensions and window size of 6 tokens.
We performed two kinds of experiment: one rely-
ing on the nearest neighbours in the vector space
to understand the main semantics of skin tone and
gender modifiers (Section 3.2.1) and another ex-
periment in which we analyze the main semantic
divergences between opposing modifiers (Section
3.2.2), i.e. dark vs. light (skin tone) and male vs.
female (gender).

3.2.1 Nearest Neighbours

For this experiment we analyze the nearest neigh-
bours of skin tone and gender modifiers in the
SW2V vector space using cosine similarity as
comparison measure. Table 3 shows the fifteen
nearest neighbours for the five skin tone and two
gender modifiers. For the skin tone modifiers it is
noteworthy the fact that while lighter tones contain
love-related emojis as nearest neighbours, these do
not appear on the list of darker tones. Instead, we
can see some money-related (e.g. , or )
and electric-related emojis (e.g. a battery or a
plug ) as nearest neighbours of dark tone emo-
jis. These two electric emojis are often used in
the context of music, sport or motivational tweets

Table 3: Fifteen emoji nearest neighbours of the
seven modifiers in our analysis.

along with hashtags like #energy or #chargedup
(e.g. The GRIND begins!!! Refuse to settle for
average!! #chargedup). As a possibly
more worrying trend we found many versions of
the (often derogatory) word nigger and gang as
nearest neighbours of dark tone modifiers. A more
focused analysis on this issue would be required
in order to understand the possible racist implica-
tions.

As far as gender modifiers are concerned,
business-related emojis (e.g. a briefcase , a suit

or a handshake ) are among the closest emo-
jis to the man modifier in the SW2V vector space,
while nail polishing (i.e. ) or the selfie emoji (i.e.

), for example, are among the nearest neighbours
of the female modifier.

3.2.2 Semantic Divergences

In addition to the nearest neighbours experiments,
we analyze the highest semantic similarity gap be-
tween skin tone and gender modifiers. In Table 4
we display in each row the emojis with the highest
similarity gap with respect to the opposite mod-
ifier (light vs. dark and male vs. female), be-
ing more similar to the corresponding modifier
row. In this case we can see a similar pattern as
in the nearest neighbours experiment. A money-
related emoji appears again semantically close to
the dark-skin modifier ( ) but far from the light
skin modifier, and love-related emojis closer to the
light skin modifier (e.g. , and ). Likewise,
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Table 4: Emojis with highest similarity gap be-
tween opposite modifiers (light vs dark, male vs
female).

we can see how technology-related emojis (e.g. a
CD , a video camera or a television ) are
close to the man modifier and far from the female
one. In contrast, makeup-related emojis like nail
polishing (i.e. ) or the lipstick emoji (i.e. ) are
clearly female-based.

In order to complement this experiment, we
also inspect the emojis whose similarity was lower
when changing the modifier.5 We compare the
similarity between all emojis which can have a
skin color or gender modifier. Table 5 shows the
fifteen emojis whose semantic similarity, as mea-
sured by cosine similarity, was lower by switch-
ing to the corresponding opposite modifier. The
first surprising finding that arises is the low sim-
ilarity values (negative values lower than -0.6 in
some cases), considering that the only change is
the modifier, while the emoji does not change. The
emojis that change most when switching the skin
tone are in the main hand gestures. Conversely,
the emojis that change most when switching the
gender modifier are people in job roles such as de-
tective (i.e. ), judge (i.e. ), police officer (i.e.

) or teacher (i.e. ). From these four items only
the teacher emoji is closer to the female modifier,
while the other three are closer to the male modi-
fier. In contrast, emojis referring to other jobs like
fireman (i.e. ), artist (i.e. ) or singer (i.e. )
do not seem to considerably change their meaning
when switching their gender.

4 Conclusion

In this paper we have studied the role of gen-
der and skin tone in social media communication
through emojis. Thank to the modifiers associated
with different emojis and the usage of a joint se-
mantic vector space of words, emojis and modi-
fiers, we were able to model the semantics of emo-

5For this last experiment we used the SW2V variant in
which emojis with their modifiers are included in the vector
space (cf. Section 2.2).

Skin Tone Gender
-0.621 -0.422
-0.601 -0.346
-0.590 -0.331
-0.541 -0.289
-0.535 -0.277
-0.490 -0.222
-0.427 -0.195
-0.409 -0.191
-0.388 -0.185
-0.375 -0.174
-0.374 -0.169
-0.366 -0.144
-0.349 -0.127
-0.347 -0.117
-0.344 -0.114

Table 5: Emojis with lowest similarity using oppo-
site modifiers (light vs dark, male vs female).

jis with respect to gender and skin tone features6.
Our analysis on a corpus of tweets geolocalized

in United States reveals clear connotations associ-
ated with each gender. For example, male mod-
ifiers being much closer to business and technol-
ogy while female ones are often associated with
love and makeup. Other connotations are present
with respect to the skin color, being dark tone hand
emojis more associated with derogatory words and
emojis7. In a more general perspective, these
modifiers clearly increase the ambiguity of emo-
jis, which were already shown highly ambiguous
in many cases (Wijeratne et al., 2016; Miller et al.,
2017). In fact, modifiers can render emoji mean-
ings very far apart, as clearly showed in Table 5.

While in this work we have approached the
problem from a purely analytical point of view,
our work can also be viewed as a starting point for
the development of accurate education guidelines
that could contribute to a reduction of gender- and
race-associated stereotypes in society. Addition-
ally, the understanding of emoji semantics pro-
vided in our analysis paves the way for the devel-
opment of debiasing techniques to be leveraged on
supervised and unsupervised models which make
use of social media data, in the lines of Bolukbasi
et al. (2016) and Zhao et al. (2017).

6Code and SW2V embeddings are available at https:
//github.com/fvancesco/emoji_modifiers

7This goes in line with some previous findings about the
use of modifiers in other platforms such as Apple: goo.gl/
Ua1XoK
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Abstract

When we build a neural network model pre-
dicting the relationship between two sen-
tences, the most general and intuitive approach
is to use a Siamese architecture, where the
sentence vectors obtained from a shared en-
coder is given as input to a classifier. For the
classifier to work effectively, it is important
to extract appropriate features from the two
vectors and feed them as input. There exist
several previous works that suggest heuristic-
based function for matching sentence vectors,
however it cannot be said that the heuris-
tics tailored for a specific task generalize to
other tasks. In this work, we propose a
new matching function, ElBiS, that learns to
model element-wise interaction between two
vectors. From experiments, we empirically
demonstrate that the proposed ElBiS matching
function outperforms the concatenation-based
or heuristic-based matching functions on nat-
ural language inference and paraphrase identi-
fication, while maintaining the fused represen-
tation compact.

1 Introduction

Identifying the relationship between two sentences
is a key component for various natural language
processing tasks such as paraphrase identification,
semantic relatedness prediction, textual entailment
recognition, etc. The most general and intuitive
approach to these problems would be to encode
each sentence using a sentence encoder network
and feed the encoded vectors to a classifier net-
work.1

For a model to predict the relationship correctly,
it is important for the input to the classifier to
contain appropriate information. The most naı̈ve

1 The encoded vectors can also be fed into a regression
network, however in this work we focus only on classifica-
tion.

method is to concatenate the two vectors and del-
egate the role of extracting features to subsequent
network components. However, despite the theo-
retical fact that even a single-hidden layer feedfor-
ward network can approximate any arbitrary func-
tion (Cybenko, 1989; Hornik, 1991), the space of
network parameters is too large, and it is helpful
to narrow down the search space by directly giv-
ing information about interaction to the classifier
model, as empirically proven in previous works
built for various tasks (Ji and Eisenstein, 2013;
Mou et al., 2016; Xiong et al., 2016, to name but a
few).

In this paper, we propose a matching function
which learns from data to fuse two sentence vec-
tors and extract useful features. Unlike bilinear
pooling methods designed for matching vectors
from heterogeneous domain (e.g. image and text),
our proposed method utilizes element-wise bilin-
ear interaction between vectors rather than interdi-
mensional interaction. In §3, we will describe the
intuition and assumption behind the restriction of
interaction.

This paper is organized as follows. In §2, we
briefly introduce previous work related to our ob-
jective. The detailed explanation of the proposed
model is given in §3, and we show its effectiveness
in extracting compact yet powerful features in §4.
§5 concludes the paper.

2 Related Work

As stated above, matching sentences is a com-
mon component in various tasks in natural lan-
guage processing. Ji and Eisenstein (2013) empir-
ically prove that the use of element-wise multipli-
cation and absolute difference as matching func-
tion substantially improve performance on para-
phrase identification, and Tai et al. (2015) apply
the same matching scheme to the semantic related-
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ness prediction task. Mou et al. (2016) show that
using the element-wise multiplication and differ-
ence along with the concatenation of sentence vec-
tors yields good performance in natural language
inference, despite redundant components such as
concatenation and element-wise difference. Yo-
gatama et al. (2017) and Chen et al. (2017) use
modified versions of the heuristics proposed by
Mou et al. (2016) in natural language inference.

However, to the best of our knowledge, there ex-
ists little work on a method that adaptively learns
to extract features from two sentence vectors en-
coded by a shared encoder. Though not directly
related to our work’s focus, there exist approaches
to fuse vectors from a homogeneous space using
exact or approximate bilinear form (Socher et al.,
2013; Lin et al., 2015; Wu et al., 2016; Krause
et al., 2016).

There have been several works for extracting
features from two heterogeneous vectors. Wu
et al. (2013) use a bilinear model to match queries
and documents from different domains. Also,
approximate bilinear matching techniques such
as multimodal compact bilinear pooling (MCB;
Fukui et al., 2016), low-rank bilinear pooling
(MLB; Kim et al., 2017), and factorized bilinear
pooling (MFB; Yu et al., 2017) are successfully
applied in visual question answering (VQA) tasks,
outperforming heuristic feature functions (Xiong
et al., 2016; Agrawal et al., 2017).

MCB approximate the full bilinear matching
using Count Sketch (Charikar et al., 2002) algo-
rithm, MLB and MFB decompose a third-order
tensor into multiple weight matrices, and MUTAN
(Ben-younes et al., 2017) use Tucker decompo-
sition to parameterize bilinear interactions. Al-
though these bilinear pooling methods give signif-
icant performance improvement in the context of
VQA, we found that they do not help matching
sentences encoded by a shared encoder.

3 Proposed Method: ElBiS

As pointed out by previous works on sentence
matching (Ji and Eisenstein, 2013; Mou et al.,
2016), heuristic matching functions bring substan-
tial gain in performance over the simple concate-
nation of sentence vectors. However, we believe
that there could be other important interaction that
simple heuristics miss, and the optimal heuristic
could differ from task to task. In this section, we
propose a general matching function that learns to

extract compact and effective features from data.
Let a = (a1, · · · , ad) ∈ Rd and b =

(b1, · · · , bd) ∈ Rd be sentence vectors obtained
from a encoder network.2 And let us define G ∈
Rd×3 as a matrix constructed by stacking three
vectors a,b, ~1 ∈ Rd where ~1 is the vector of all
ones, and denote the i-th row of G by gi.

Then the result of applying our proposed match-
ing function, r = (r1, · · · , rd) ∈ Rd, is defined by

ri = φ
(
g>i Wigi

)
, (1)

where Wi ∈ R3×3, i ∈ {1, · · · , d} is a matrix of
trainable parameters and φ(·) an activation func-
tion (tanh in our experiments).

Due to its use of bilinear form, it can
model every quadratic relation between ai and
bi, i.e. can represent every linear combination
of {a2i , b2i , aibi, ai, bi, 1}. This means that the
proposed method is able to express frequently
used element-wise heuristics such as element-wise
sum, multiplication, subtraction, etc., in addition
to other possible relations.3

Further, to consider multiple types of element-
wise interaction, we use a set of M weight ma-
trices per dimension. That is, for each gi, we
get M scalar outputs (r1i , · · · , rMi ) by applying
Eq. 1 using a set of separate weight matrices
(W1

i , · · · ,WM
i ):

rmi = φ
(
g>i W

m
i gi

)
. (2)

Implementation-wise, we vertically stackG forM
times to construct G̃ ∈ RMd×3, and use each row
g̃i as input to Eq. 1. As a result, the resulting
output r becomes a Md-dimensional vector:

ri = φ
(
g̃>i Wig̃i

)
, (3)

where Wi ∈ R3×3, i ∈ {1, · · · ,Md}. Eq. 1 is
the special case of Eq. 2 and 3 where M = 1. We
call our proposed element-wise bilinear matching
function ElBiS (Element-wise Bilinear Sentence
Matching).

Note that our element-wise matching requires
only M × 3 × 3 × d parameters, the number of

2 Throughout this paper, we assume a d-dimensional vec-
tor is equivalent to the corresponding d× 1 matrix.

3 Though a bilinear form cannot represent the absolute
difference between inputs, note that (ai−bi)2 = a2

i−2aibi+
b2i can alternatively represent commutative difference. Yo-
gatama et al. (2017) use this quadratic form instead of the
absolute difference.
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which is substantially less than that of full bilin-
ear matching, Md3. For example, in the case of
d = 300 and Md = 1200 (the frequently used
set of hyperparameters in NLI), the full bilinear
matching needs 108 million parameters, while the
element-wise matching needs only 10,800 param-
eters.

Why element-wise? In the scenario we are fo-
cusing on, sentence vectors are computed from a
Siamese network, and thus it can be said that the
vectors are in the same semantic space. There-
fore, the effect of considering interdimensional in-
teraction is less significant than that of multimodal
pooling (e.g. matching a text and a image vector),
so we decided to model more powerful interaction
within the same dimension instead. We also would
like to remark that our preliminary experiments,
where MFB (Yu et al., 2017) or MLB (Kim et al.,
2017) was adopted as matching function, were not
successful.

4 Experiments

We evalute our proposed ElBiS model on the nat-
ural language inference and paraphrase identifica-
tion task. Implementation for experiments will be
made public.

4.1 Natural Language Inference

Natural language inference (NLI), also called rec-
ognizing textual entailment (RTE), is a task whose
objective is to predict the relationship between a
premise and a hypothesis sentence. We conduct
experiments using Stanford Natural Language In-
ference Corpus (SNLI; Bowman et al., 2015), one
of the most famous dataset for the NLI task. The
SNLI dataset consists of roughly 570k premise-
hypothesis pairs, each of which is annotated with
a label (entailment, contradiction, or neutral).

For sentence encoder, we choose the en-
coder based on long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) architecture
as baseline model, which is similar to that of Bow-
man et al. (2015) and Bowman et al. (2016). It
consists of a single layer unidirectional LSTM net-
work that reads a sentence from left to right, and
the last hidden state is used as the sentence vector.
We also conduct experiments using a more elab-
orated encoder model, Gumbel Tree-LSTM (Choi
et al., 2018). As a classifier network, we use an
MLP with a single hidden layer. In experiments

Matching Fn. # Params. Acc. (%)
Concat 1.34M 81.6
Heuristic 1.96M 83.9
ElBiS (M = 1) 1.04M 84.4
ElBiS (M = 2) 1.35M 84.5
ElBiS (M = 3) 1.66M 85.0
ElBiS (M = 4) 1.97M 84.6

Table 1: Results on the SNLI task using LSTM-based
sentence encoders.

Matching Fn. # Params. Acc. (%)
Concat 2.25M 82.4
Heuristic 2.86M 84.6
ElBiS (M = 1) 1.94M 84.8
ElBiS (M = 2) 2.25M 85.6
ElBiS (M = 3) 2.56M 85.9
ElBiS (M = 4) 2.87M 85.6

Table 2: Results on the SNLI task using Gumbel Tree-
LSTM-based sentence encoders.

with heuristic matching we use the heuristic fea-
tures proposed by Mou et al. (2016) and adopted
in many works on the NLI task: [a;b;a−b;a�b],
where a and b are encoded sentence vectors. For
more detailed experimental settings, we refer read-
ers to §A.1.

Table 1 and 2 contain results on the SNLI task.
We can see that models that adopt the proposed
ElBiS matching function extract powerful features
leading to a performance gain, while keeping simi-
lar or less number of parameters. Also, though not
directly related to our main contribution, we found
that, with elaborated initialization and regulariza-
tion, simple LSTM models (even the one with the
heuristic matching function) achieve competitive
performance with those of state-of-the-art mod-
els.4

4.2 Paraphrase Identification

Another popular task on identifying relationship
between a sentence pair is paraphrase identifica-
tion (PI). The objective of the PI task is to pre-
dict whether a given sentence pair has the same
meaning or not. To correctly identify the para-
phrase relationship, an input to a classifier should
contain the semantic similarity and difference be-
tween sentences.

For evaluation of paraphrase identification, we

4https://nlp.stanford.edu/projects/
snli
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Matching Fn. # Params. Acc. (%)
Concat 1.34M 85.0
Heuristic 1.34M 87.0
ElBiS (M = 1) 1.04M 86.7
ElBiS (M = 2) 1.35M 87.3
ElBiS (M = 3) 1.66M 87.1

Table 3: Results on the PI task using LSTM-based sen-
tence encoders.

use Quora Question Pairs dataset5. The dataset
contains 400k question pairs, each of which is an-
notated with a label indicating whether the ques-
tions of the pair have the same meaning. To our
knowledge, the Quora dataset is the largest avail-
able dataset of paraphrase identification. We used
the same training, development, test splits as the
ones used in Wang et al. (2017).

For experiments with heuristic matching, we
used the function proposed by Ji and Eisenstein
(2013), which is shown by the authors to be ef-
fective in matching vectors in latent space com-
pared to simple concatenation. It is composed of
the element-wise product and absolute difference
between two vectors: [a�b; |a−b|], where a and
b are encoded sentence vectors.

Similar to NLI experiments, we use a single
layer unidirectional LSTM network as sentence
encoder, and we state detailed settings in §A.2.
The results on the PI task is listed in Table 3.
Again we can see that the models armed with the
ElBiS matching function discover parsimonious
and effective interaction between vectors.

5 Conclusion and Discussion

In this work, we propose ElBiS, a general method
of fusing information from two sentence vectors.
Our method does not rely on heuristic knowl-
edge constructed for a specific task, and adaptively
learns from data the element-wise connections be-
tween vectors from data. From experiments, we
demonstrated that the proposed method outper-
forms or matches the performance of commonly
used concatenation-based or heuristic-based fea-
ture functions, while maintaining the fused repre-
sentation compact.

Although the main focus of this work is about
sentence matching, the notion of element-wise bi-
linear interaction could be applied beyond sen-

5https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

tence matching. For example, many models that
specialize in NLI have components where the
heuristic matching function is used, e.g. in com-
puting intra-sentence or inter-sentence attention
weights. It could be interesting future work to re-
place these components with our proposed match-
ing function.

One of the main drawback of our proposed
method is that, due to its improved expressive-
ness, it makes a model overfit easily. When evalu-
ated on small datasets such as Sentences Involving
Compositional Knowledge dataset (SICK; Marelli
et al., 2014) and Microsoft Research Paraphrase
Corpus (MSRP; Dolan and Brockett, 2005), we
observed performance degradation, partly due to
overfitting. Similarly, we observed that increas-
ing the number of interaction types M does not
guarantee consistent performance gain. We con-
jecture that these could be alleviated by applying
regularization techniques that control the sparsity
of interaction, but we leave it as future work.
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A Experimental Settings

A.1 Natural Language Inference
For all experiments, we used the Adam (Kingma
and Ba, 2015) optimizer with a learning rate 0.001
and halved the learning rate when there is no im-
provement in accuracy for one epoch. Each model
is trained for 10 epochs, and the checkpoint with
the highest validation accuracy is chosen as fi-
nal model. Sentences longer than 25 words are
trimmed to have the maximum length of 25 words,
and batch size of 64 is used for training.

For all experiments, we set the dimensional-
ity of sentence vectors to 300. 300-dimensional
GloVe (Pennington et al., 2014) vectors trained on
840 billion tokens6 were used as word embeddings
and not updated during training. The number of
hidden units of the single-hidden layer MLP is set
to 1024.

Dropout (Srivastava et al., 2014) is applied to
word embeddings and the input and the output of
the MLP. The dropout probability is selected from
{0.10, 0.15, 0.20}. Batch normalization (Ioffe and
Szegedy, 2015) is applied to the input and the out-
put of the MLP.

Recurrent weight matrices are orthogonally ini-
tialized (Saxe et al., 2014), and the final lin-
ear projection matrix is initialized by sampling
from Uniform(−0.005, 0.005). All other weights
are initialized following the scheme of He et al.
(2015).

A.2 Paraphrase Identification
For PI experiments, we used the same architec-
ture and training procedures as NLI experiments,
except the final projection matrix and heuristic
matching function. Also, we found that the PI task
is more sensitive to hyperparameters than NLI, so
we apply different dropout probabilities to the en-
coder network and to the classifier network. Both
values are selected from {0.10, 0.15, 0.20}. Each
model is trained for 15 epochs, and the checkpoint
with the highest validation accuracy is chosen as
final model.

6http://nlp.stanford.edu/data/glove.
840B.300d.zip
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Abstract
A position paper arguing that purely graphical
representations for natural language semantics
lack a fundamental degree of expressiveness,
and cannot deal with even basic Boolean op-
erations like negation or disjunction, let alone
intensional phenomena. Moving from graphs
to named graphs leads to representations that
stand some chance of having sufficient expres-
sive power. Named FL0 graphs are of partic-
ular interest.

1 Introduction

Graphs are popular for both (semantic web)
knowledge representation (Screiber and Raimond,
2014; Dong et al., 2014; Rospocher et al., 2016)
and natural language semantics (Banarescu et al.,
2013; Perera et al., 2018; Wities et al., 2017). The
casual observer might assume there is substantial
overlap between the two activities, but there is less
than meets the eye. This paper attempts to make
three points:

1. Knowledge graphs, which are designed to
represent facts about the world rather than human
knowledge, are not well set up to represent nega-
tion, disjunction, and conditional or hypothetical
contexts. Arguably, the world contains no nega-
tive, disjunctive, or hypothetical facts; just posi-
tive facts that make them true. Natural language
semantics has to deal with more partial assertions,
where all that is known are the negations, dis-
junctions, or hypotheticals, and not the underlying
facts that make them true.

2. Named graphs (Carroll et al., 2005) are an
extension of RDF graphs (Screiber and Raimond,
2014), primarily introduced to record provenance
information. They are worthy of further study,
since they promise a way of bridging between the
relentlessly positive world of knowledge represen-
tation and the more partial, hypothetical world of
natural language. In RDF-OWL graphs (Hitzler
et al., 2012), the subject-predicate-object triples

forming the nodes and arcs of the graph corre-
spond to atomic propositions. Beyond conjunc-
tion, no direct relations between these proposi-
tions can be expressed. Named graphs allow sub-
graphs (i.e. collections of atomic propositions) to
be placed in relationships with other sub-graphs,
and thus allow for negative, disjunctive and hypo-
thetical relations between complex propositions.

3. Named graphs illustrate a certain way of
factoring out complexity, in this case between
predicate-argument structure and Boolean / modal
structure. As a semantic representation, the
predicate-argument structure is correct, but not
complete. Adding a named, Boolean layer re-
quires no adjustment to the syntax or semantics
of the predicate-argument structure; it just embeds
it in a broader environment. This often is not the
case; e.g. in moving from unquantified predicate
logic to first-order quantified logic, to first-oder
modal logic, to higher-order intensional logic.

After reviewing RDF graphs and named graphs,
we discuss how they could be applied to a (some-
what incestuous) family of layered, graphical, se-
mantic representations (Boston et al., forthcom-
ing; Shen et al., 2018; Bobrow et al., 2007) (see
our companion paper (Kalouli and Crouch, 2018)
for an introduction to these representations). This
offers the prospect of a formal semantics that takes
graphs to be first class semantic objects, which dif-
fers from approaches like AMR (Banarescu et al.,
2013), where the graphs are descriptions of under-
lying semantic objects.

2 Graphs and Named Graphs

A graph is a collection of binary relationships
between entities. Since any n-ary relationship
can be decomposed into n + 1 binary relation-
ships through the introduction of an extra entity
that serves as a “pivot” (this is the basis of neo-
Davidsonian event semantics (Parsons, 1990)), all
n-ary relationships can be represented in graphical
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form as a collection of entity-relation triples.

2.1 RDF

This graphical approach to n-ary relationships has
seen perhaps its fullest use in the Resource De-
scription Framework (RDF) (Screiber and Rai-
mond, 2014), where subject-relation-object triples
can be stored to treat complex ontologies as
graphs. But since the triples form a conjunctive
set, RDF has to go through some contortions to
emulate negation and disjunction.

Unadorned, RDF is lax about what kinds of en-
tity can occur in triples, and individuals, relations,
and classes can intermingle freely. One can state
facts about how classes relate to other classes (e.g.
one is a subclass of the other), how relations relate
to other relations, and how individual relate to re-
lations and classes. Successive restrictions, such
as RDFS (Brickley and Guha, 2014) and OWL
(Hitzler et al., 2012) tighten up on this freedom
of expression, for the resulting gain in inferential
tractability.

OWL provides a number of class construction
operations that mimic Booleans at a class level:
complement (negation), intersection (conjunction)
and union (disjunction). One could therefore as-
sert that Rosie is not a cat by saying that she is
an instance of the cat-complement class, and one
could assert that Rosie is a cat or a dog by asserting
that she is an instance of the class formed by tak-
ing the union of cats and dogs. Additionally, OWL
and RDFS allow negative properties as a way of
stating that a particular relation does not hold be-
tween two entities (i.e. a form of atomic negation).

The semantic web is geared toward capturing
positive facts about what is known. Two positive
facts can establish a negative, e.g. that cats and
dogs are disjoint classes and that Rosie is a dog
establishes that Rosie is not a cat. But the need to
assert a negative rarely arises: better to wait until
the corresponding incompatible positive is known,
or as a last resort make up a positive fact that is in-
compatible with negative (e.g. that Rosie is a non-
cat). Natural language, by contrast, is full of neg-
ative, disjunctive, and hypothetical assertions for
which the justifying positive facts are not known.
And these Boolean and modal assertions express
relationships between propositions (i.e. collec-
tions of triples), and not between classes.

Moreover, Gardenförs (2014) makes the case
for restricting semantics to natural concepts within

a conceptual space. A conceptual space consists
of a set of quality dimensions (c.f. dimensions in
word vectors). A point in the space is a particular
vector along these dimensions. A natural concept
is a region (collection of points in the space) that is
connected and convex. This essentially means that
the shortest path from one sub-region of a natural
concept to another does not pass outside of the re-
gion defined by the concept: natural concepts are
regions that are not gerrymandered. OWL unions
of classes can arbitrarily combine disconnected re-
gions, whereas complements can tear holes in the
middle of regions: they can produce gerrymander-
ing that would make the most partisan blush.

2.2 Named Graphs
Named graphs were introduced by Carroll et al.
(2005) as a small extension on top of RDF, primar-
ily with the goal of recording provenance meta-
data for different parts of a complex graph, such as
source, access restrictions, or ontology versions.
However, applications to stating propositional at-
titudes and capturing logical relationships between
graphs were also mentioned in passing. A named
graph simply associates an extra identifier with a
set of triples. For example, a propositional attitude
like Fred believes John does not like Mary could
be represented as follows1:

:g1 { :john :like :mary }
:g2 :not :g1
:fred :belive :g2

where :g1 is the name given to the graph express-
ing the proposition that John likes Mary, and :g2

to the graph expressing its negation. Disjunction
likewise can be expressed as a relationship be-
tween named graphs:

:g1 { :john :like :mary }
:g2 { :fred :like :mary }
:g0 :or :g1
:g0 :or :g2

where the graph :g0 expresses the disjunction of
:g1 and :g2.

The graph semantics for named graphs is a sim-
ple extension of the basic semantics (Carroll et al.,
2005). The meaning of a named graph is the mean-
ing of the graph, and sub-graph relations between
named graphs must reflect the underlying relations
between the graphs that are named. But signif-
icantly, named graphs are not automatically as-
serted — there is no presumption that the triples

1Using the TriG format (Bizer and Cyganiak, 2014), with
the prefix definition for : omitted for brevity.
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Figure 1: GKR for Fred believes John likes Mary

occurring in a named graph are true. This is some-
what inconvenient if your main goal is to assert
positive, true facts. But this looks ideal for deal-
ing with negation, disjunction and hypotheticals in
natural language. In particular, the named graph
above asserts neither that John likes Mary nor that
John doesn’t like Mary.

Reification in RDF was an earlier approach
to dealing with provenance meta-data (Screiber
and Raimond, 2014). This turns every triple
into four triples that describe it, so that :john

:like :mary becomes :t :type :statement;

:t :subj :john; :t :pred :like; :t :obj

:mary. The reified graph is graphical description
of the original graph. Naming preserves the
underlying graph in a way that reification does
not.

3 Layered Graphs and the Graphical
Knowledge Representation

A recent proposal for semantic representation has
made use of so-called “layered-graphs” (GKR,
(Kalouli and Crouch, 2018), see also (Boston
et al., forthcoming; Shen et al., 2018)), with the
claim that this gives a good way of handling
Boolean, hypothetical, and modal relations2. The
proposal is based on earlier work on an Abstract
Knowledge Representtions (AKR, (Bobrow et al.,
2007)), which imposes a separation between con-
ceptual / predicate-argument structure and contex-
tual structure. The GKR representation (simpli-
fied) for Fred believes John likes Mary is shown
in Figure 1. This comprises two sub-graphs: a
concept/predicate-argument graph on the left, and
a context graph on the right. The concept graph
can be read conjunctively as stating the following,
but where variables range over (sub)concepts and
not over individuals:

∃b,l,f,j,m.
2This section does not attempt to motivate GKR in terms

of coverage of phenomena or support of natural language in-
ference: see the cited papers for this.

believe(b) & like(l) & fred(f)
& sub(b,f) & comp(b,l)
& mary(m) & john(j)
& subj(l,j) & obj(l,m)

Thus b denotes a sub-concept of believe, that is
further constrained to have as a subject role some
sub-concept of fred, and as a complement some
sub-concept of like. The concept graph makes
no assertions about whether any of these concepts
have individuals instantiating them: it asserts nei-
ther that Fred has a belief, nor that John likes
Mary. It is a level at which semantic similarity can
be assessed, but not one at which — on its own
— logical entailments can be judged. The concept
graph is a correct characterization of the sentence,
but an incomplete one.

Entailment requires existential commitments
that are introduced by the context graph shown
on the right of Figure 1. There are two contexts.
The top level, “true”, context top states the com-
mitments of the sentence’s speaker. The arc con-
necting it to the believe node means that the
speaker is asserting that there is an instance of the
believe concept. The second context, bel is lex-
ically induced by the word “believes”. The arc
from bel to the like node means that in this
context there is asserted to be an instance of the
like context. However, bel is marked as being
averidical with respect to top. This means that
we cannot lift the existential commitments of bel
up into top. Hence Figure 1 does not entail that
John likes Mary (nor that he doesn’t).

Other words introduce different context rela-
tions. For example know creates a veridical lower
context, which means that the lower existential
commitments can be lifted up. Whereas nega-
tion creates an anti-veridical lower context, which
specifically says that the concept that is instan-
tiated in the lower context is uninstantiated in
the upper one. Following the work of (Nairn
et al., 2006), these instantiation raising rules allow
complex intensional inference to be drawn (see
(Boston et al., forthcoming) for a fuller descrip-
tion).

4 Named FL0 Graphs

The semantics for GKR has yet to be clearly laid
out. Our claim is that the layered graphs are bet-
ter seen in terms of named graphs. First, that
the context graph simply expresses relationships
between named concept graphs, so that contexts

115



C,D ⇒ A | C uD | ∀R.C
where A ∈ Atomic concept

R ∈ Atomic role
C,D ∈ concept

Figure 2: Concept Construction in FL0

are nothing more than concept (sub-)graphs. Sec-
ond, that the concept graph corresponds to the
FL0 description logic (Baader and Nutt, 2003),
for which subsumption is decidable in polynomial
time. FL0 is a simple logic that is generally re-
garded as too inexpressive to deal with interesting
language-related phenomena. But in combination
with graph naming it becomes much more expres-
sive.

The FL0 description logic allows concepts to
be constructed as shown in Figure 2. Given a
stock of atomic concepts, complex concepts can
be formed by (i) intersection, e.g. (Adult u Male
u Person) ≡ Man; and ii) slot/role restriction, e.g.
Bite u ∀subj.Dog u ∀obj.Man (the class of bitings
by dogs of men). The concept graphs of GKR cor-
respond to the application of FL0 operations to
atomic lexical concepts. The concept of the like

node in Figure 1 is thus like u ∀subj.j u ∀obj.m3.
In order to keep the concept graphs of GKR

within FL0, it is important that context nodes are
not allowed to participate in role restrictions. This
rules out the kind of free intermingling of graph
nodes and other nodes that was presented in Sec-
tion 2.2. The GKR treatment of Fred believes John
likes Mary is shown in Figure 1. Expressed as a
named graph, this corresponds to:

top: {b v Believe
f v Fred
b v ∀subj.f
b v ∀comp.l }

bel: {l v Like
j v John
m v Mary
l v ∀subj.j
l v ∀obj.m }

:top averidical :bel

This named-graph formulation of GKR inherits a
standard graph semantics, as described by Carroll
et al. (2005). The graph semantics is complemen-
tary to the kind of truth-conditional semantics set
out for AKR (and by analogy, GKR) by Bobrow

3GKR extends its concept graph with a property graph
that captures the effect of morpho-syntactic features like car-
dinality. This corresponds to extending the logic to FLN 0

by introducing cardinality restrictions.

et al. (2005). More work, however, is needed to
explore the connections between the graph and
truth-conditional semantics.

5 Abstract Meaning Representation
(AMR)

AMR is best seen as a graphical notation for de-
scribing logical forms, which is the view taken by
Bos (2016) and Stabler (2017) in their augmen-
tations of AMR to increase its expressive power.
This can be seen by considering the AMR for Fred
believes John likes Mary:

(b / believe
:arg0 (f / Fred)
:arg1 (l / like

:arg0 (j / John)
:arg1 (m / Mary)))

Expressed as a set of triples, this becomes
b instance believe; l instance like;
f instance Fred; j instance John;
b :arg0 f; m instance Mary;
b :arg1 l; l :arg0 j;

l :arg1 m;

Since a graph is a conjunction of triples, and be-
cause A ∧ B |= A, all the triples on the left
can be validly eliminated to leave those on the
right, which correspond to the graph for John likes
Mary. The inference from Fred believes John likes
Mary to John likes Mary is clearly not semanti-
cally valid. Consequently the AMR triples cannot
be interpreted as stating semantic-web style facts;
rather they state sub-formulas of a logical form.

There is nothing wrong in having a more hab-
itable, graphical notation for logical formulas, es-
pecially if large amounts of annotation are to be
done. But this is different from a goal of having
graphs as first class semantic objects.

6 Concluding Observations

This paper attempts to make the case for named
graphs as an interesting tool for natural language
semantics. The first task in exploring this further
would be to provide a truth-conditional, graph-
based semantics for GKR. A positive outcome
would enable closer links between semantic and
knowledge graphs.

By naming graphs, it appears that an inexpres-
sive, conjunctive concept logic, FL0, can be em-
ployed to handle a wide variety of more complex
phenomena including Booleans and hypotheticals.
However, one should not assume that the inferen-
tial tractability of FL0 carries across to a system
that combines it with named graphs.
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We conjecture that the restriction of concept for-
mation to FL0 will satisfy (Gardenförs, 2014) re-
quirements on the connectedness and convexity of
concepts. Additionally, the restricted operations
may be better for the operations inherent in deal-
ing with vector spaces used in distributed seman-
tic representation; it is currently unclear what cor-
responds to negation in vector spaces, though see
(Bowman et al., 2015). The strategy of having a
correct but incomplete conceptual structure may
make it easier to reconcile logical and distribi-
tional accounts of semantics if distributional se-
mantics is relieved of the burden of having to ac-
count for Boolean structure.

Naming a graph essentially boxes it off, to be
evaluated or asserted within a different context.
GKR focuses on the analogue between these con-
texts and switching assignments to possible worlds
in standard Kripke semantics for modal logics.
With regard to distributional quantification it ob-
serves that assignments to variables in standard
first-order logic plays a similar role, and suggests
using this to account for quantifier scope via con-
texts. This does not exhaust the space of evalua-
tive contexts. Named graphs were primarily mo-
tivated by the desire to record (provenance) meta-
data about triples. They provide an ideal means
of associating meta-data with semantic relation-
ships, such as the confidence that a particular role
restriction is correct. This can be extended to
record inter-dependencies between collections of
ambiguous relationships, using the packing mech-
anism of (Maxwell and Kaplan, 1993): choices be-
tween alternate interpretations also set up different
evaluation contexts.

The embedding of boxes in Discourse Rep-
resentation Theory (Kamp and Reyle, 1993) is
strongly reminiscent of embedding sub-graphs.
We speculate that DRT could be given a graph-
based semantics, in which discourse representa-
tion structures (DRSs) are seen as first class graph-
ical and semantic objects. However, one differ-
ence between DRT and GKR is that GKR imposes
a strict separation between concepts and contexts.
This essentially means that contexts cannot be re-
ferred to in conceptual predicate-argument struc-
tures. In DRT, this would correspond to not per-
mitting DRSs to serve as arguments of predicates.

With regard to AMR, naming some of the
graphs and expressing context relations between
them seems a relatively conservative extension in

terms of notation. But doing so offers the prospect
of lifting AMRs out of being graphical descrip-
tions of some other semantic object (like a logical
form), and becoming much closer to RDF graphs
as first-class semantic objects.
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Abstract

Mining electronic health records for patients
who satisfy a set of predefined criteria is
known in medical informatics as phenotyping.
Phenotyping has numerous applications such
as outcome prediction, clinical trial recruit-
ment, and retrospective studies. Supervised
machine learning for phenotyping typically re-
lies on sparse patient representations such as
bag-of-words. We consider an alternative that
involves learning patient representations. We
develop a neural network model for learn-
ing patient representations and show that the
learned representations are general enough to
obtain state-of-the-art performance on a stan-
dard comorbidity detection task.

1 Introduction

Mining electronic health records for patients who
satisfy a set of predefined criteria is known in
medical informatics as phenotyping. Phenotyping
has numerous applications such as outcome pre-
diction, clinical trial recruitment, and retrospec-
tive studies. Supervised machine learning is cur-
rently the predominant approach to automatic phe-
notyping and it typically relies on sparse patient
representations such as bag-of-words and bag-of-
concepts (Shivade et al., 2013). We consider an
alternative that involves learning patient represen-
tations. Our goal is to develop a conceptually sim-
ple method for learning lower dimensional dense
patient representations that succinctly capture the
information about a patient and are suitable for
downstream machine learning tasks. Our method
uses cheap supervision in the form of billing codes
and thus has representational power of a large
dataset. The learned representations can be used
to train phenotyping classifiers with much smaller
datasets.

Recent trends in machine learning have used
neural networks for representation learning, and

these ideas have propagated into the clinical in-
formatics literature, using information from elec-
tronic health records to learn dense patient repre-
sentations (Choi et al., 2016, 2017; Lipton et al.,
2016; Miotto et al., 2016; Nguyen et al., 2017;
Pham et al., 2016). Most of this work to date has
used only codified variables, including ICD (Inter-
national Classification of Diseases) codes, proce-
dure codes, and medication orders, often reduced
to smaller subsets. Recurrent neural networks
are commonly used to represent temporality (Choi
et al., 2016, 2017; Lipton et al., 2016; Pham et al.,
2016), and many methods map from code vocab-
ularies to dense embedding input spaces (Choi
et al., 2016, 2017; Nguyen et al., 2017; Pham et al.,
2016).

One of the few patient representation learning
systems to incorporate electronic medical record
(EMR) text is DeepPatient (Miotto et al., 2016).
This system takes as input a variety of features,
including coded diagnoses as the above systems,
but also uses topic modeling on the text to get
topic features, and applies a tool that maps text
spans to clinical concepts in standard vocabularies
(SNOMED and RxNorm). To learn the represen-
tations they use a model consisting of stacked de-
noising autoencoders. In an autoencoder network,
the goal of training is to reconstruct the input using
hidden layers that compress the size of the input.
The output layer and the input layer therefore have
the same size, and the loss function calculates re-
construction error. The hidden layers thus form
the patient representation. This method is used to
predict novel ICD codes (from a reduced set with
78 elements) occurring in the next 30, 60, 90, and
180 days.

Our work extends these methods by building a
neural network system for learning patient rep-
resentations using text variables only. We train
this model to predict billing codes, but solely as
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a means to learning representations. We show that
the representations learned for this task are general
enough to obtain state-of-the-art performance on
a standard comorbidity detection task. Our work
can also be viewed as an instance of transfer learn-
ing (Pan and Yang, 2010): we store the knowledge
gained from a source task (billing code prediction)
and apply it to a different but related target task.

2 Methods

2.1 Patient Representation Learning

The objective of patient representation learning is
to map raw text of patient notes to a dense vector
that can be subsequently used for various patient-
level predictive analytics tasks such as pheno-
typing, outcome prediction, and cluster analysis.
The process of learning patient representations in-
volves two phases: (1) supervised training of a
neural network model on a source task that has
abundant labeled data linking patients with some
outcomes; (2) patient vector derivation for a target
task performed by presenting new patient data to
the network and harvesting the resulting represen-
tations from one of the hidden layers.

In this work, we utilize billing codes as a source
of supervision for learning patient vectors in phase
1. Billing codes, such as ICD9 diagnostic codes,
ICD9 procedure codes, and CPT codes are derived
manually by medical coders from patient records
for the purpose of billing. Billing codes are typi-
cally available in abundance in a healthcare insti-
tution and present a cheap source of supervision.
Our hypothesis is that a patient vector useful for
predicting billing codes will capture key charac-
teristics of a patient, making this vector suitable
for patient-level analysis.

For learning dense patient vectors, we propose
a neural network model that takes as input a set
of UMLS concept unique identifiers (CUIs) de-
rived from the text of the notes of a patient and
jointly predicts all billing codes associated with
the patient. CUIs are extracted from notes by map-
ping spans of clinically-relevant text (e.g. short-
ness of breath, appendectomy, MRI) to entries
in the UMLS Metathesaurus. CUIs can be eas-
ily extracted by existing tools such as Apache
cTAKES (http://ctakes.apache.org). Our neural
network model (Figure 1) is inspired by Deep Av-
eraging Network (DAN) (Iyyer et al., 2015), Fast-
Text (Joulin et al., 2016), and continuous bag-of-
words (CBOW) (Mikolov et al., 2013a,b) models.

Embedding Layer Averaging Layer Hidden Layer Output Layer

CUI1

CUI2

CUI3

•

•

•

•

•

•

•

•

•

•

•

CUIn

300 dimensions

300 dim
ensions

1000 dim
ensions

Figure 1: Neural network model for learning patient
representations from text.

Model Architecture: The model takes as in-
put a set of CUIs. CUIs are mapped to 300-
dimensional concept embeddings which are aver-
aged and passed on to a 1000-dimensional hidden
layer, creating a vectorial representation of a pa-
tient. The final network layer consists of n sig-
moid units that are used for joint billing code pre-
diction. The output of each sigmoid unit is con-
verted to a binary (1/0) outcome. The number of
units n in the output layer is equal to the num-
ber of unique codes being predicted. The model
is trained using binary cross-entropy loss function
using RMSProp optimizer. Our model is capa-
ble of jointly predicting multiple billing codes for
a patient, placing it into the family of supervised
multi-label classification methods. In our prelimi-
nary work, we experimented with CNN and RNN-
based architectures but their performance was in-
ferior to the model described here both in terms of
accuracy and speed.

Once the model achieves an acceptable level of
performance, we can compute a vector represent-
ing a new patient by freezing the network weights,
pushing CUIs for a new patient through the net-
work, and harvesting the computed values of the
nodes in the hidden layer. The resulting 1000-
dimensional vectors can be used for a variety of
machine learning tasks.

2.2 Datasets

For training patient representations, we utilize the
MIMIC III corpus (Johnson et al., 2016). MIMIC
III contains notes for over 40,000 critical care unit
patients admitted to Beth Israel Deaconess Medi-
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cal Center as well as ICD9 diagnostic, procedure,
and Current Procedural Terminology (CPT) codes.
Since our goal is learning patient-level representa-
tions, we concatenate all available notes for each
patient into a single document. We also combine
all ICD9 and CPT codes for a patient to form the
targets for the prediction task. Finally, we pro-
cess the patient documents with cTAKES to ex-
tract UMLS CUIs. cTAKES is an open-source
system for processing clinical texts which has an
efficient dictionary lookup component for identi-
fying CUIs, making it possible to process a large
number of patient documents.

To decrease training time, we reduce the com-
plexity of the prediction task as follows: (1) we
collapse all ICD9 and CPT codes to their more
general category (e.g. first three digits for ICD9
diagnostic codes), (2) we drop all CUIs that ap-
pear fewer than 100 times, (3) we discard patients
that have over 10,000 CUIs, (4) we discard all
billing codes that have fewer than 1,000 examples.
This preprocessing results in a dataset consisting
of 44,211 patients mapped to multiple codes (174
categories total). We randomly split the patients
into a training set (80%) and a validation set (20%)
for tuning hyperparameters.

For evaluating our patient representations, we
use a publicly available dataset from the Informat-
ics for Integrating Biology to the Bedside (i2b2)
Obesity challenge (Uzuner, 2009). Obesity chal-
lenge data consisted of 1237 discharge summaries
from the Partners HealthCare Research Patient
Data Repository annotated with respect to obesity
and its fifteen most common comorbidities. Each
patient was thus labeled for sixteen different cate-
gories. We focus on the more challenging intuitive
task (Uzuner, 2009; Miller et al., 2016), containing
three label types (present, absent, questionable),
where annotators labeled a diagnosis as present
if its presence could be inferred (i.e., even if not
explicitly mentioned). This task involves compli-
cated decision-making and inference.

Importantly, our patient representations are
evaluated in sixteen different classification tasks
with patient data originating from a healthcare in-
stitution different from the one our representations
were trained on. This setup is challenging yet it
presents a true test of robustness of the learned
representations.

2.3 Experiments
Our first baseline is an SVM classifier trained with
bag-of-CUIs features. Our second baseline in-
volves linear dimensionality reduction performed
by running singular value decomposition (SVD)
on a patient-CUI matrix derived from the MIMIC
corpus, reducing the space by selecting the 1000
largest singular values, and mapping the target in-
stances into the resulting 1000-dimensional space.

Our multi-label billing code classifier is trained
to maximize the macro F1 score for billing code
prediction on the validation set. We train the
model for 75 epochs with a learning rate of 0.001
and batch size of 50. These hyperparameters are
obtained by tuning the model’s macro F1 on the
validation set. Observe that tuning of hyperpa-
rameters occurred independently from the target
task. Also note that since our goal is not to ob-
tain the best possible performance on a held out
set, we are not allocating separate development
and test sets. Once we determine the best values
of these hyperparameters, we combine the train-
ing and validation sets and retrain the model. We
train two version of the model: (1) with randomly
initialized CUI embeddings, (2) with word2vec-
pretrained CUI embeddings. Pre-trained embed-
dings are learned using word2vec (Mikolov et al.,
2013a) by extracting all CUIs from the text of
MIMIC III notes and using the CBOW method
with windows size of 5 and embedding dimension
of 300.

We then create a 1000-dimensional vector rep-
resentation for each patient in the i2b2 obesity
challenge data by giving the sparse (CUI-based)
representation for each patient as input to the ICD
code classifier. Rather than reading the classifier’s
predictions, we harvest the hidden layer outputs,
forming a 1000-dimensional dense vector. We
then train multi-class SVM classifiers for each dis-
ease (using one-vs.-all strategy), building sixteen
SVM classifiers. Following the i2b2 obesity chal-
lenge, the models are evaluated using macro pre-
cision, recall, and F1 scores (Uzuner, 2009).

We make the code available for use by the re-
search community 1.

3 Results

Our billing code classifier achieves the macro F1
score on the source task (billing code prediction)

1https://github.com/dmitriydligach/
starsem2018-patient-representations
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Disease Sparse SVD Learned
P R F1 P R F1 P R F1

Asthma 0.894 0.736 0.787 0.888 0.854 0.870 0.910 0.920 0.915
CAD 0.583 0.588 0.585 0.593 0.602 0.596 0.596 0.596 0.596
CHF 0.558 0.564 0.561 0.571 0.575 0.573 0.558 0.564 0.561
Depression 0.797 0.685 0.715 0.723 0.727 0.725 0.781 0.773 0.777
Diabetes 0.859 0.853 0.856 0.611 0.624 0.617 0.907 0.919 0.913
GERD 0.530 0.466 0.485 0.533 0.482 0.499 0.528 0.539 0.533
Gallstones 0.814 0.640 0.678 0.747 0.721 0.732 0.645 0.663 0.653
Gout 0.975 0.811 0.871 0.955 0.834 0.882 0.928 0.910 0.919
Hypercholesterolemia 0.781 0.784 0.782 0.789 0.793 0.790 0.865 0.868 0.866
Hypertension 0.680 0.650 0.662 0.711 0.763 0.728 0.825 0.879 0.847
Hypertriglyceridemia 0.933 0.679 0.748 0.580 0.610 0.591 0.604 0.650 0.621
OA 0.514 0.448 0.466 0.479 0.442 0.454 0.511 0.508 0.510
OSA 0.596 0.511 0.542 0.626 0.568 0.592 0.611 0.618 0.615
Obesity 0.825 0.791 0.798 0.883 0.844 0.853 0.872 0.873 0.872
PVD 0.594 0.542 0.564 0.599 0.557 0.576 0.568 0.599 0.582
Venous Insufficiency 0.797 0.649 0.694 0.669 0.757 0.700 0.638 0.717 0.665
Average 0.733 0.650 0.675 0.685 0.672 0.674 0.709 0.725 0.715

Table 1: Comorbidity challenge results (intuitive task). SVM trained using sparse representations (bag-of-CUIs)
is compared to SVM trained using SVD-based representations and learned dense patient representations.

of 0.447 when using randomly initialized CUI em-
beddings and macro F1 of 0.473 when using pre-
trained CUI embeddings. This is not directly com-
parable to existing work because it is a unique
setup; but we note that this is likely a difficult task
because of the large output space. However, it is
interesting to note that pre-training CUI embed-
ding has a positive relative impact on performance.

Classifier performance for the target pheno-
typing task is shown in Table 1, which shows
the performance of the baseline SVM classifier
trained using the standard bag-of-CUIs approach
(Sparse), the baseline using 1000-dimensional
vectors obtained via dimensionality reduction
(SVD), and our system using dense patient vec-
tors derived from the source task. Since a sepa-
rate SVM classifier was trained for each disease,
we present classifier performance for each SVM
model.

Both of our baseline approaches showed ap-
proximately the same performance (F1=0.675) as
the best reported i2b2 system (Solt et al., 2009)
(although they used a rule-based approach). Our
dense patient representations outperformed both
baseline approaches by four percentage points on
average (F1=0.715). The difference is statistically
significant (t-test, p=0.03).

Out of the sixteen diseases, our dense represen-

tations performed worse (with one tie) than the
sparse baseline only for three: gallstones, hyper-
triglyceridemia, venous insufficiency. The likely
cause is the scarcity of positive training examples;
two of these diseases have the smallest number of
positive training examples.

4 Discussion and Conclusion

For most diseases and on average our dense pa-
tient representations outperformed sparse patient
representations. Importantly, patient representa-
tions were learned from a task (billing code pre-
diction) that is different from the evaluation task
(comorbidity prediction), presenting evidence that
useful representations can be derived in this trans-
fer learning scenario.

Furthermore, the data from which the represen-
tations were learned (BI medical center) and the
evaluation data (Partners HealthCare) originated
from two different healthcare institutions provid-
ing evidence of robustness of our patient represen-
tations.

Our future work will include exploring the use
of other sources of supervision for learning patient
representations, alternative neural network archi-
tectures, tuning the learned patient representations
to the target task, and evaluating the patient repre-
sentations on other phenotyping tasks.
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Abstract

This paper shows how to take parse trees in
CCG and algorithmically find the polarities of
all the constituents. Our work uses the well-
known polarization principle corresponding to
function application, and we have extended
this with principles for type raising and com-
position. We provide an algorithm, extending
the polarity marking algorithm of van Ben-
them. We discuss how our system works in
practice, taking input from the C&C parser.

1 Introduction

The main goal of this work is to take input from
text and then to automatically determine the polar-
ity of all the words. For example, we aim to find
the arrows in sentences like Every dog↓ scares ↑ at
least two↓ cats↑, Every dog↓ and no cat↓ sleeps=,
and Most rabbits= hop↑. The ↑ notation means
that whenever we use the given sentence truth-
fully, if we replace the marked word w with an-
other word which is “≥ w,” then the resulting sen-
tence will still be true. So we have a semantic
inference. The ↓ notation means the same thing,
except that when we substitute using a word ≤ w,
we again preserve truth. Finally, the = notation
means that we have neither property in general; in
a valid semantic inference statement, we can only
replace the word with itself rather than with some-
thing larger or smaller.

For example, if we had a collection of back-
ground facts like cats ≤ animals, beagles ≤ dogs,
scares ≤ startles, and one ≤ two, then our ↑ and
↓ notations on Every dog↓ scares ↑ at least two↓

cats↑ would allow us to conclude Every beagle
startles at least one animal.

The goal of the paper is to provide a computa-
tional system to determine the notations ↑, ↓,= on
input text to the best extent possible, either using
hand-created parses, or output from a popular and

freely available CCG parser C&C (Clark and Cur-
ran, 2007).

Using our polarity tool, we get a very easy first
step on automatic inference done with little or no
representation. We discuss potential applications
to textual inference.

Theory We extend polarity determination for
categorial grammar (CG) (see Sánchez-Valencia
(1991); van Benthem (1986); van Eijck (2007);
Lavalle-Martı́nez et al. (2017)). These papers only
consider the Ajdukiewicz/Bar-Hillel (AB) flavor
of CG, where the rules are restricted to applica-
tion rules (>) and (<). There is a consensus that
application rules alone are too restrictive to give
wide-coverage grammars. We thus extend this
work to the full set of flexible combinators used
in CCG. We prove that our system is sound, in a
precise sense. Further, we show how to incorpo-
rate boolean reasoning (Keenan and Faltz, 1984)
to get a more complete system.

A working system We have implemented our
algorithm in Python. This implementation handles
sentences from the C&C parser (Clark and Curran,
2007). This is a non-trivial step on top of the the-
oretical advance because the parses delivered by
the C&C parser deviate in several respects from
the semantically-oriented input that one would like
for this kind of work.

2 An Ordered Syntax-semantics
Interface

The basis of the semantics is the syntax-semantics
interface in formal semantics, especially in CG
and CCG (Keenan and Faltz, 1984; Carpenter,
1998; Steedman, 2000; Jacobson, 2014).

Our syntax in this small paper will consist of the
lexicon shown in our examples. Here is an exam-
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ple of a CCG derivation:

Fido : npr

Fido: s/(s\npr)
T

ch: (s\npr)/npr

Fido chased : s/npr
B

Felix : npr

Fido chased Felix : s
>

(1)
This tree is not the simplest one for Fido chased
Felix. We chose it to remind the reader of the CCG
rules of type-raising (T) and composition (B).

Let us fix a semantics. We first select the base
types e and t. We generate complex types from
these by using function types x → y. We adopt
a few standard abbreviations. We then fix a map
from the CG categories into the types. We choose
s 7→ t, n 7→ e→ t, npr 7→ e, np 7→ (e→ t)→ t,
etc. (We use npr for proper names.)

A model M is a set M together with interpre-
tations of all the lexical items by objects of the
appropriate semantic type. We use M as the se-
mantic space for the type e, 2 = {F,T} for type
t, and the full set of functions for higher types.
The interpretations of some words are fixed: deter-
miners, conjunctions and relative pronouns. The
model thus interprets intransitive verbs by (et, t)t,
and transitive verbs by (et, t)((et, t)t). By the Jus-
tification Theorem in Keenan and Faltz (1984), we
in fact may obtain these using simpler and more
natural data: for proper names we need only ob-
jects of type e, for intransitive verbs we need only
et, and for transitive verbs eet.

Let S be a sentence in our fragment, and let Π
be a parse tree for S. Associated to Π we have
a semantic parse tree, giving us a term tS in the
typed lambda calculus over the base types e and
t. This term may be interpreted in each modelM.
For example, the interpretation corresponding to
(1) is the boolean value in the model

(λx.x[[Fido]] ◦ [[chased]])[[Felix]].

Polarities ↑ and ↓ In order to say what the polar-
ity symbols mean, we need to enrich our semantic
spaces from sets to preorders (Moss, 2012; Icard
and Moss, 2014).

A preorder P = (P,≤) is a set P with a rela-
tion ≤ on P which is reflexive and transitive. Fix
a modelM. Then each type x gives rise to a pre-
order Px. We order Pt by F < T. For Pe we take
the flat preorder on the universe set M underlying
the model. For the higher types x → y, we take
the set (Px → Py) of all functions and endow it

with the pointwise order. In this way every one of
our semantic types is naturally endowed with the
structure of a preorder in every model.

A function f : P → Q is monotone (or order
preserving) if p ≤ q in P implies f(p) ≤ f(q) in
Q. And f is antitone (or order inverting) if p ≤ q
in P implies f(q) ≤ f(p) inQ.

Each sentence S in our fragment is now inter-
preted in an ordered setting. This is the (math-
ematical) meaning of our ↑ and ↓ arrows in this
paper. For example, when we write every dog↓

barks↑, this means: for all models M, all m1 ≤
m2 in Pet (for dog), and all n1 ≤ n2 in P(et)t

(for barks), we have in 2 that [[every]] m2 n1 ≤
[[every]] m1 n2.

Order-enriched types using +, −, and · Fol-
lowing Dowty (1994) we incorporate monotonic-
ity information into the types. Function types
x→ y split into three versions: the monotone ver-
sion x +→ y, the antitone version x −→ y, and the
full version x

·→ y. (What we wrote before as
x → y is now x

·→ y.) These are all preorders
using the pointwise order. We must replace all of
the ordinary slash types by versions of them which
have markings on them.

Lexicon with order-enriched types We use S
for t, N or et for e ·→ t = e

+→ t, NP for N ·→ t,
NP+ for N +→ t, and NP− for N −→ t. Note that
we have a different font than our syntactic types s,
n, and np. Then we use NP +→ S for intransitive
verbs, NP+ or NP− for noun phrases with deter-
miners, e for proper names. For the determiners,
our lexicon then uses the order-enriched types in
different ways:

word type

every N −→ NP+

some N +→ NP+

word type

no N −→ NP−

most N ·→ NP+

3 Polarizing a Parse Tree

In this section, we specify the rules (see Fig-
ure 1) by which we put markings and polarities
on each node of a CCG parse tree, based on a
marked/order-enriched lexicon. The next section
discusses the algorithm.

Input A parse tree T in CCG as in (1), and a
marked lexicon.

Output We aim to convert T to a different tree
T ∗ satisfying the following properties: (1) The se-
mantic terms in T and T ∗ should denote the same
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(x
m→ y)d xmd

yd
>

(x
m→ y)d (y

n→ z)md

(x
mn−→ z)d

B
xmd

((x
m→ y)

+→ y)d
T

(e→ x)=

(NP +→ x)=
I

(e→ x)d

(NP+ +→ x)d
J

(e→ x)flip d

(NP− +→ x)d
K

Figure 1: The top line contains core rules of marking and polarity. The letters m and n stand for one of
the markings +, −, or ·; d stands for ↑ or ↓ (but not =). In (I), (J), and (K), x must be a boolean category.
See charts in the text for the operations m, d 7→ md and m,n 7→ mn.

function in each model. (2) The lexical items in
T ∗ must receive their types from the typed lexi-
con. (3) The polarity of the root of T ∗ must be ↑.
(4) At each node in T ∗, one of the rules in our sys-
tem must be matched. Most of the rules are listed
in Figure 1.

Example For T in (1), T ∗ could be as in (2):

Fido↑ : e

Fido↑ : et +→ t
T

chased↑ : e +→ et

Fido chased↑ : e +→ t
B

Felix↑ : e
Fido chased Felix↑ : t

>

(2)
The signs + and − on the arrows are markings;

markings apply to arrows only. We have a third
marking, ·, but this does not figure into (2). Mark-
ings are used to tell if a function is interpreted (in
every model) by a function which is always mono-
tone (+), always antitone (−), or neither in general
(·). The arrows ↑ and ↓ are polarities. We also
have a third polarity, =. Polarities are for specific
occurrences.

Explanation of the operations on markings and
polarities Each rule in Figure 1 is actually a
number of other rules, and we have summarized
things in terms of several operations. The chart on
the left is for combining two markings m and n,
and the one on the right is for combining a mark-
ing m and a polarity d, obtaining a new polarity.

PPPPPm
n + − ·

+ + − ·
− − + ·
· · · ·

PPPPPd
m + − ·

↑ ↑ ↓ =

↓ ↓ ↑ =

flip ↑ = ↓ flip ↓ = ↑

Comments on the rules In Figure 1, x, y and z
are variables ranging over marked types.

The application rule (>) is essentially taken
from van Benthem (1986) (see also Lavalle-

Martı́nez et al. (2017) for a survey of related al-
gorithms); we expect that our logical system will
give rise to several algorithms.

To illustrate (>), let us take m = − and d = ↑.
We then have the (>) rule

(x
−→ y)↑ x↓

y↑
>

(3)

This means: for all preorders P and Q, all f, g :

P
−→ Q and all p1, p2 ∈ P , if f ≤ g and p2 ≤ p1,

then f(p1) ≤ g(p2).
If we were to change x↓ to x↑ in (3), we would

change our statement by replacing “p2 ≤ p1” with
“p1 ≤ p2”. If we changed it to x=, we would
use “p1 = p2”. In this way, we can read off a
large number of true facts about preorders from
our rules.

There are similar results concerning (B). Here
is an example of how (B) is used, taken from (2).
Fido has type NP+ = (et)

+→ t, and chased above
it has type NP+ +→ (et). So the application of (B)
results in Fido chased with type NP+ +→ t.

The rules (I), (J), and (K) are new. In them, x
must be Boolean. That is, it must belong to the
smallest collection B containing t and with the
property that if z ∈ B, then (y

·→ z) ∈ B for all
y. B is thus the collection of types whose interpre-
tations are naturally endowed with the structure of
a complete atomic boolean algebra (Keenan and
Faltz, 1984). Indeed, the soundness of (J) and (K)
follows from the proof of the Justification Theo-
rem (op. cit).

Figure 2 contains two applications of the (K)
rules. First, the lexical entry for chased is e →
et. The first application of (K) promotes this to
NP− +→ et. The NP receives a − because its
argument no cat is of type NP−. Note that the
polarity flips when we do this. If we had used
(J), the promotion would be to NP+ +→ et, and
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no dog↓

no dog↑ : NP−
>

ch↑ : e→ et

ch↓ : NP− +→ et
K no cat↑

no cat↓ : NP−
>

chased no cat↓ : e→ t
>

chased no cat↑ : NP− +→ S
K

no dog chased no cat↑ : S
<

Figure 2: Two applications of the (K) rules.

there would be no polarity flipping. This would
be used in sentence where the object VP was some
cat or every cat. The second application promoted
chased no cat from the type et to NP− +→ S, again
with a polarity flip. If we had used (I), we would
have obtained NP +→ S. However, this would have
trivialized the polarity to =, and this effect would
have been propagated up the tree. Rule (I) would
be needed for the sentence most dogs chased no
cat.

Several rules are not shown including “back-
wards” versions of (>), (B), and (T), and also ver-
sions where all polarizations are =. This is a tech-
nical point that is not pertinent to this short ver-
sion. We should mention that due to these rules,
every tree may be polarized in a trivial way, by us-
ing = at all nodes. So we are really interested in
the maximally informative polarizations, the ones
that make the most predictions.

Boolean connectives, etc. We take and and or
to be polymorphic of the types B m→ (B

m→ B),
when B is a Boolean category and m = +,−, or
·. Negation flips polarities. Relative pronouns and
relative clauses also can be handled. Adjectives
are taken to be N +→ N.

Other combinators This paper only discusses
(T) and (B), but we also have rules for the other
combinators used in CG, such as (S) and (W). For
example, the (S) combinator is defined by Sfg =
λx.(fx)(gx). In our system, the corresponding
polarization rule is

(x
m→ (y

n→ z))d (x
mn−→ y)nd

(x
m→ z)d

S

This combinator is part of the standard presenta-
tion of CCG, but it is less important in this paper
because the C&C parser does not deliver parses
using it.

4 Algorithmic Aspects

We have an algorithm1 that takes as input a CCG
tree as in (1) and outputs some tree with markings
and polarities, a tree which satisfies the conditions
that we have listed. The algorithm has two phases,
similar to van Benthem’s algorithm (van Benthem,
1986) for work with the Ajdukiewicz/Bar-Hillel
variant of CG (only application rules). Phase 1
goes down the tree from leaves to root and adds
the markings, based on the rules in Figure 1. The
markings on the leaves are given in the lexicon.
The rest of Phase 1 is non-deterministic. We can
see this from our set of rules: there are many cases
where one conclusion (on top of the line) permits
several possible conclusions. As we go down the
tree, we frequently need to postpone the choice.

Phase 2 of the algorithm computes the polar-
ities, again following the rules, starting with the
root. One always puts ↑ on the root, and then goes
up the tree. This part of the algorithm is straight-
forward.

The overall algorithm is in fact non-
deterministic for two reasons. As we explained,
Phase 1 has a non-deterministic feature. In addi-
tion, it is always possible to polarize everything
with = and make similar uninformative choices
for the markings. We are really interested in the
most informative polarization, the one with the
fewest number of = polarities.

Soundness We have proved a soundness theo-
rem for the system. Though too complicated to
state in full, it might be summarized informally,
as follows. Suppose we have a sentence S in En-
glish, and suppose that the lexical items in S are
given semantics that conform to our assumptions.
(This means that the semantics of the lexical en-
tries must belong to the appropriate types.) Then
any semantic statement about the ↑, ↓, = mark-
ing predicted by our system is correct. See Moss
(2018) for details.

Completeness We have not proven the com-
pleteness of our system/algorithm, and indeed this
is an open question. What completeness would
mean for a system like ours is that whenever we
have an input CCG parse tree and a polarization
of its words which is semantically valid in the
sense that it holds no matter how the nouns, verbs,
etc. are interpreted, then our algorithm would de-
tect this. This completeness would be a property

1https://github.com/huhailinguist/ccg2mono
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of the rules and also of the polarization algorithm.
The experience with similar matters in Icard and
Moss (2013) suggests that completeness will be
difficult.

Efficiency of our algorithm Our polarization is
quite fast on the sentences which we have tried it
on. We conjecture that it is in polynomial time,
but the most obvious complexity upper bound to
the polarization problem is NP. The reason that the
complexity is not “obviously polynomial” is that
for each of the type raising steps in the input tree,
one has three choices of the raise. In more detail,
suppose that the input tree contains

x
(x→ y)→ y

T

Then our three choices for marking are: (x
+→

y)
+→ y, (x

−→ y)
+→ y, and (x

·→ y)
+→ y.

Our implementation defers the choice until more
of the tree is marked. But prima facie, there are
an exponential number of choices. All of these re-
marks also apply to the applications of (I), (J), and
(K); these do not occur in the input tree, and the
algorithm must make a choice somehow. Thus we
do not know the worst-case complexity of our al-
gorithm.

5 What Our System Can Currently Do

We tokenized input sentences using the script from
the ccg2lambda system (Martı́nez-Gómez et al.,
2016). The tokenized sentences were then parsed
using the C&C parser (Clark and Curran, 2007),
which is trained on the CCGbank (Hockenmaier
and Steedman, 2007). Then we run our algorithm.

We are able to take simple sentences all the way
through. For example, our system correctly deter-
mines the polarities in

No↑ man↓ walks↓

Every↑ man↓ and↑ some↑ woman↑ sleeps↑

Every↑ man↓ and↑ no↑ woman↓ sleeps=

If↑ some↓ man↓ walks↓, then↑ no↑ woman↓ runs↓

Every↑ man↓ does↓ n’t↑ hit↓ every↓ dog↑

No↑ man↓ that↓ likes↓ every↓ dog↑ sleeps↓

Most↑ men= that= every= woman= hits= cried↑

Every↑ young↓ man↓ that↑ no↑ young↓ woman↓

hits↑ cried↑

As shown, our algorithm polarizes all words in the
input. For determiners, this actually is useful. It
is (arguably) background knowledge, for example

that every ≤ some; at least two ≤ at least one ≡
some, no ≤ at most one ≤ at most two, etc. These
would not be part of the algorithm in this paper,
but rather they would be background facts that fig-
ure into inference engines built on this work.

Problems Our end-to-end system is sound in
the sense that it polarizes the correctly input se-
mantic representations. However, it is limited by
the quality of the parses coming from the C&C
parser. While the parser has advantages, its out-
put is sometimes not the optimal for our purposes.
For example, it will assign the supertag N/N to
most, but NP/N to other quantifiers. Thus in or-
der to handle most, one has to manually change
the parse trees. It also parses relative clauses as
(no dog) (who chased a cat) died rather than (no
(dog who chased a cat)) died. Furthermore, the
parser sometimes behaves differently on intransi-
tive verbs likes walks than on cries. Currently,
we manually fix the trees when they systemati-
cally deviate from our desired parses (e.g. relative
clauses). Finally, as with any syntactic parser, it
only delivers one parse. So ambiguous sentences
are not treated in any way by our work.

6 Future Work: Inference, and
Connections with Other Approaches

We certainly plan to use the algorithm in connec-
tion with inference, since this has always been the
a primary reason to study monotonicity and polar-
ity. Indeed, once one has correct polarity mark-
ings, it is straightforward to use those to do in-
ference from any background facts which can be
expressed as inequalities. This would cover taxo-
nomic statements like dog≤ animal and also pred-
ications like John isa swimmer. Our future work
will show logical systems built this way.

Connections This paper invites connections to
other work in the area, especially MacCartney and
Manning (2009) and Nairn et al. (2006), which
shared similar aims as ours, but were not done in
the CCG context. We also think of work on au-
tomatic discovery of downward-entailments (Che-
ung and Penn, 2012; Danescu et al., 2009), and
other work on natural logic (Fyodorov et al., 2003;
Zamansky et al., 2006; Moss, 2015; Abzianidze,
2017). Additionally, our work could be incorpo-
rated in several ways into textual entailment sys-
tems (e.g. Dagan et al., 2013).

128



References
Lasha Abzianidze. 2017. Langpro: Natural language

theorem prover. CoRR, abs/1708.09417.

Johan van Benthem. 1986. Essays in Logical Seman-
tics. Reidel, Dordrecht.

Bob Carpenter. 1998. Type-Logical Semantics. MIT
Press.

Jackie Cheung and Gerald Penn. 2012. Unsupervised
detection of downward-entailing operators by maxi-
mizing classification certainty. In Proc. 13th EACL,
pages 696–705.

Stephen Clark and James R Curran. 2007. Wide-
coverage efficient statistical parsing with ccg and
log-linear models. Computational Linguistics,
33(4):493–552.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Cristian Danescu, Lillian Lee, and Richard Ducott.
2009. Without a ‘doubt’? Unsupervised discovery
of downward-entailing operators. In Proceedings of
NAACL HLT.

David Dowty. 1994. The role of negative polarity
and concord marking in natural language reasoning.
In Proceedings of Semantics and Linguistic Theory
(SALT) IV.

Jan van Eijck. 2007. Natural logic for natural language.
In Logic, Language, and Computation, volume 4363
of LNAI, pages 216–230. Springer-Verlag.

Yaroslav Fyodorov, Yoad Winter, and Nissim Fyo-
dorov. 2003. Order-based inference in natural logic.
Log. J. IGPL, 11(4):385–417. Inference in compu-
tational semantics: the Dagstuhl Workshop 2000.

Julia Hockenmaier and Mark Steedman. 2007. Ccg-
bank: a corpus of ccg derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Thomas F. Icard and Lawrence S. Moss. 2013. A
complete calculus of monotone and antitone higher-
order functions. In Proceedings, TACL 2013, vol-
ume 23 of EPiC Series, pages 96–99. Vanderbilt
University.

Thomas F. Icard and Lawrence S. Moss. 2014. Recent
progress on monotonicity. Linguistic Issues in Lan-
guage Technology, 9(7):167–194.

Pauline Jacobson. 2014. An Introduction to the Syn-
tax/Semantics Interface. Oxford University Press.

Edward L. Keenan and Leonard M. Faltz. 1984.
Boolean Semantics for Natural Language. Springer.
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Abstract
We present a method for unsupervised lexi-
cal frame acquisition at the syntax–semantics
interface. Given a set of input strings de-
rived from dependency parses, our method
generates a set of clusters that resemble lex-
ical frame structures. Our work is motivated
not only by its practical applications (e.g., to
build, or expand the coverage of lexical frame
databases), but also to gain linguistic insight
into frame structures with respect to lexical
distributions in relation to grammatical struc-
tures. We model our task using a hierarchical
Bayesian network and employ tools and meth-
ods from latent variable probabilistic context
free grammars (L-PCFGs) for statistical infer-
ence and parameter fitting, for which we pro-
pose a new split and merge procedure. We
show that our model outperforms several base-
lines on a portion of the Wall Street Journal
sentences that we have newly annotated for
evaluation purposes.

1 Introduction

We propose a method for building coarse lexi-
cal frames automatically from dependency parsed
sentences; i.e., without using any explicit seman-
tic information as training data. The task involves
grouping verbs that evoke the same frame (i.e., are
considered to be the head of this frame) and fur-
ther clustering their syntactic arguments into latent
semantic roles. Hence, our target structures stand
between FrameNet (Ruppenhofer et al., 2016) and
PropBank (Palmer et al., 2005) frames. Similar
to FrameNet and in contrast to PropBank, we as-
sume a many-to-many relationship between verb
types and frame types. But similar to PropBank,
we aim to cluster syntactic arguments into gen-
eral semantic roles instead of frame-specific slot

*Both authors contributed equally to this work.

types in FrameNet. This allows us to generalize
across frames concerning semantic roles. As part
of this, we study possible ways to automatically
generate more abstract lexical-semantic represen-
tations from lexicalized dependency structures.

In our task, grouping verb tokens into frames
requires not only distinguishing between differ-
ent senses of verbs, but also identifying a range
of lexical relationships (e.g., synonymy, opposite
verbs, troponymy, etc.) among them. Hence (as
Modi et al., 2012; Green et al., 2004), our prob-
lem definition differs from most work on unsu-
pervised fine-grained frame induction using verb
sense disambiguation (e.g., Kawahara et al., 2014;
Peng et al., 2017). Similarly, forming role clusters
yields generalization from several alternate link-
ings between semantic roles and their syntactic re-
alization. Given, for instance, an occurrence of the
verb pack and its syntactic arguments, not only do
we aim to distinguish different senses of the verb
pack (e.g., as used to evoke the FILLING frame, or
the PLACING frame), but also to group these in-
stances of ‘pack’ with other verbs that evoke the
same frame (e.g., to group instances of pack that
evoke the frame PLACING with instances of verbs
load, pile, place, and so on when used to evoke the
same PLACING frame).

The motivation for this work is twofold. On the
one hand, the frame induction techniques we pro-
pose can be useful in the context of applications
such as text summarization (Cheung and Penn,
2013), question answering (Frank et al., 2007;
Shen and Lapata, 2007), and so on, for languages
where we lack a frame-annotated resource for su-
pervised frame induction, or to expand the cov-
erage of already existing resources. On the other
hand, we are interested in theoretical linguistic
insights into frame structure. In this sense, our
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work is a step towards an empirical investigation
of frames and semantic roles including hierarchi-
cal relations between them.

We cast the frame induction task as unsuper-
vised learning using an L-PCFG (Johnson, 1998;
Matsuzaki et al., 2005; Petrov et al., 2006; Cohen,
2017). As input, our model takes syntactic depen-
dency trees and extracts input strings correspond-
ing to instances of frame expressions, which are
subsequently grouped into latent semantic frames
and roles using an L-PCFG. We use the inside-
outside (i.e., Expectation-Maximization (Demp-
ster et al., 1977; Do and Batzoglou, 2008)) algo-
rithm and a split-merge procedure (Petrov et al.,
2006) for dynamically adapting the number of
frames and roles to the data, for which we em-
ploy new heuristics. As implied, one advantage
of the L-PCFGs framework is that we can adapt
and reuse statistical inference techniques used for
learning PCFGs in syntactic parsing application
(e.g., split-merge). Our experiment shows that the
method outperforms a number of baselines, in-
cluding frame grouping by lexical heads and one
based on agglomerative clustering.

The main contributions of this paper are a) us-
ing L-PCFGs for coarse lexical frame acquisition;
b) a new split-merge routine adapted for this task;
and, c) a new dataset for evaluating the induced
lexical frame-role groupings. In the remainder of
the paper, § 2 describes our statistical model and
its formalization to an L-PCFG. § 3 describes pro-
cedures used for statistical inference. § 4 describes
our evaluation dataset and reports results from ex-
periments. § 5 discusses related work followed by
a conclusion in § 6.

2 From a Latent Model to L-PCFG

We assume that frames and semantic roles
are the latent variables of a probabilistic
model. Given the probability mass function
pmf(F 1, . . . , Fn, R1 . . . Rk, D1, . . . , Dm; C, θ) as
our model, we denote latent frames F i, 1 ≤ i ≤ n,
and roles Ri, 1 ≤ i ≤ k for observations that
are annotated syntactically using Di, 1 ≤ i ≤ m
in the input corpus C. Inspired by Cheung et al.
(2013), we approximate the probability of a
specific frame f with head v, semantic roles
r1 . . . rk filled by words w1 . . . wk and corre-
sponding syntactic dependencies d1 . . . dk (under

S

F xrem

F xrem

F xrem

F xrem

EOS

F xnmod :to

Dnmod :to

nmod:to

Rc

Mary

F xobj

Dobj

obj

Rb

flowers

F xsubj

Dsubj

subj

Ra

John

F xh

Droot

root

V x

offers

Figure 1: Sample frame structure for (1).

parameters θ) as:

p(f) · p(v|f)∏k
i=1 p(di|f) ·

∏k
i=1 p(ri|f, di) ·

∏k
i=1 p(wi|ri).

(1)

To estimate the parameters of our model, we
translate Eq. (1) to an L-PCFG that captures the
required conditional and joint probabilities.

First, we convert input lexicalized dependency
parses to a set of strings E . Given a verb v and
its dependents wi in a dependency parse tree, we
build input strings in the form of

v root w1 d1 . . . wl dl EOS,

for which we assume v lexicalizes the head of
a frame, w1 . . . wl are the arguments fillers and
d1, . . . , dl are the respective dependencies that
link these fillers to the head v; EOS is a special
symbol to mark the end of string. For the step
from the sentence to input strings, we assume that
dependencies are ordered (e.g., subj precedes dobj
and iobj and they precede prepositional and com-
plement dependents (i.e., nmod:* and *comp).1

Consider (1) as an example; the corresponding
string is the yield of the tree in Fig. 1.

(1) Johnsubj offerroot flowersdobj to Marynmod:to

Given the fixed structure of input strings, we de-
sign a CFG that rewrites them to our expected hier-
archical frame structure consisting of elements F ,
R, D while capturing the conditional probabilities
from Eq. (1). The tree assigning a frame F of type
x with semantic roles of type a, b, c to (1) is for

1Phrasal arguments are reduced to their syntactic head
given by the underlying UD parser. We normalize passive
structures by replacing nsubjpass with dobj. Other syntac-
tic dependents (e.g., case, aux, conj, etc.) are removed. In
case of the same dependencies, surface order in the sentence
is relevant. If necessary, conjunctions are treated when trans-
forming dependency parses to input strings.
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instance given in Fig. 1. More generally, given fi-
nite sets of frames F and of semantic rolesR, our
underlying CFG G = 〈N,T, P, S〉 is as follows:

• T = Tv∪Tn∪D∪{root, EOS}, where Tv is the
set of possible verbal heads, Tn is the set of pos-
sible lexicalizations (fillers) for arguments, and
D is a finite set of dependency relations; root
and EOS are special symbols.
• N = {S} ∪ {F fh | f ∈ F} ∪ {F

f
rem | f ∈ F} ∪

{F fg | f ∈ F , g ∈ D}∪{Rr|r ∈ R}∪{V f | f ∈
F} ∪ {Dg | g ∈ D}.
• P contains the following rules:

– S → F fhF
f
rem for all f ∈ F ;

– F fh → V f Droot for all f ∈ F ;

– F frem → F fg F
f
rem for all f ∈ F , g ∈ D;

– F frem → EOS for all f ∈ F ;
– F fg → Rr Dg for all f ∈ F , r ∈ R, g ∈ D;
– V f → v for all f ∈ F , v ∈ Tv;
– Rr → n for all r ∈ R, n ∈ Tn;
– Dg → g for all g ∈ D ∪ {root}.

With this grammar, an input string derived from a
dependency parsed sentence fully determines the
shape of the tree and the node labels are fixed ex-
cept for the choice of the frame f and the semantic
roles r of the k fillers (i.e., x, a, b, and c in Fig. 1).

The probabilities of the rules correspond to the
conditional probabilities in Eq. (1). The probabil-
ity of S → F fh F frem gives p(F = f), the prob-
ability of V f → v gives p(V = v|F = f), and
so on. During the subsequent inside-outside (IO)
split-and-merge training procedure, the inventory
of frames and roles and the probabilities corre-
sponding to our rules are estimated so that the
overall likelihood of observations is maximized.

3 Method

This section describes statistical inference meth-
ods used for inducing latent frame clusters from
input strings. The scenario we used for parame-
ter fitting (split, merge, smoothing, and generating
clusters) is described in § 3.1. In § 3.2, we describe
our method for computing embedding-based sim-
ilarity between frames, which we use during the
merge process and in our baseline system.

3.1 Parameter Fitting
Given an input corpus parsed into universal de-
pendencies (UD) and converted into a set of input

strings E , we instantiate a model G according to
§ 2. We set |F| = 1 and |R| = |D|, and D, Tv
and Tn are automatically extracted from E . Start-
ing from this, we iteratively perform split-merge
sequences (with an IO parameter estimation in be-
tween), and cluster E to disjoint subsets Ei by find-
ing the most-likely derivations that G yields. We
detail this process in the following subsections.

3.1.1 The IO Algorithm
As a solution to sparsity of observations, we mod-
ify the IO algorithm slightly. We adapt the proce-
dures described in (Eisner, 2016) with the excep-
tion that for computing inside and outside prob-
abilities, instead of mapping terminals to nonter-
minals using an exact matching of the right-hand-
sides of the rules (and respectively their assigned
parameters), we use embedding-based similarities.
I.e., for computing inside probabilities, given sym-
bol a as input, instead of considering A →θ as
rewrite rules and updating the parse chart only by
asserting θ in it, we also consider B →θ bs in
which instead of θ we assert α × θs in the IO ta-
ble, where α is the r2 coefficient correlations of
embeddings for a and bs. During the outside pro-
cedure, θs are updated proportionally w.r.t. to αs
used during the inside parameter estimation pro-
cedure.

3.1.2 Split
We alter the splitting procedure from (Klein and
Manning, 2003a; Petrov et al., 2006) for our ap-
plication. In (Klein and Manning, 2003b; Petrov
et al., 2006), during split, a non-terminal symbol
(which represents a random variable in the under-
lying probabilistic model) is split and its related
production rules are duplicated independently of
its parent, or sibling nodes. We can apply such
a context-independent split only to the Rr non-
terminals but the F f...s must split dependently w.r.t.
their sibling nodes that define the frame structure.
Therefore, to split frame x to two frames y and z,
we replace the entire set {S → F xhF

x
rem, F xh →

V x Droot, F xrem → EOS, F xrem → F xg F xrem,
F xg → Rr Dg, and V x → v} with two similar sets
where x gets replaced with y and z, respectively.
The parameters for the new rules are set to half of
the value of the parameters of the rules that they
originated from with the addition (or subtraction)
of a random ε (e.g., 1e-7) to break symmetry.

Moreover, in our application, training the split
grammar on the whole input is ineffective and at

132



a certain point, computationally intractable. The
problem is due to the scope of the split grammar
and the large portion of input strings E that they
span. Splitting a frame’s rules, unlike parameter
fitting for syntactic rules, increases the number of
possible derivations for all E , to the extent that af-
ter a number of split iterations the computation
of the derivations becomes intractable even for a
small E of short length. We address this problem
by using a new strategy for splitting: we not only
split the grammar, but also the input training data.

Before each split, we cluster input strings E to
clusters Ei that G gives (§ 3.1.4) at that point. For
input strings in each cluster Ei, we instantiate a
new Gi and perform parameter fitting and split-
ting independently of other Eis. The correspond-
ing probabilistic Gi is initialized by assigning ran-
dom parameters to its rules and then smoothing
them (§ 3.1.3) by the fitted parameters for G. We
apply the aforementioned process several times,
until the number of independently generated clus-
ters is at least twice as large as |Tv|. At the end of
each split iteration, we collect the elicited Ei clus-
ters (and their respective Gis) for the next merge
process. Given the independence assumption be-
tween roles and frames, pre-terminals that rewrite
roles are split similar to (Petrov et al., 2006).

3.1.3 Smoothing
We apply a notion of smoothing by interpolating
parameters that are obtained in the n−1th iteration
of split-merge with parameters that are randomly
initialized at the beginning of each split-merge it-
eration and, as mentioned earlier in § 3.1.2, when
deriving new Gis from G: For each rule in Gi or
Gn with parameters θ (i.e., the G instantiated for
the next split-merge iteration), we smooth θs using
θ = αθ + (1− α)θn−1, where θn−1 is the already
known and fitted parameter for the corresponding
rule in G. We choose α = 0.1.

3.1.4 Generating Clusters from G

After fitting parameters of G, the frame struc-
ture for an input string is given by its most-likely
viterbi derivation with respect to G. The verb
which is rewritten by F fh is placed to frame-
type/cluster f . Similarly, lexical items that are ar-
gument fillers are assigned to type/cluster r where
r is the structural annotation for pre-terminal Rr

that rewrite them. For example, assuming Fig 1
is the most likely derivation for (1), the verb ‘of-
fer’ is categorized as frame x and its arguments as

roles a, b, and c.

3.1.5 Merge
The model resulting from the split process gen-
erates a relatively large number of ‘homoge-
neous’ clusters that are ‘incomplete’. A subse-
quent merge process unifies these homogeneous-
but-incomplete clusters to achieve a clustering that
is both homogeneous and complete. To this end,
we use heuristics which are based on both the es-
timated loss in likelihood from merging two sym-
bols that span the same input sequence (as pro-
posed previously in Petrov et al. (2006)) as well
as the ‘discriminative similarities’ between the ob-
tained clusters.

Merge by likelihoods does not work: The
heuristics for merge in (Petrov et al., 2006) (i.e.,
minimizing the loss in training likelihood using
‘locally’ estimated inside and outside probabili-
ties) are based on the assumptions that a) pre-
terminals appearing in different places in deriva-
tions are nearly independent, and b) that their ap-
proximation (according to the method proposed
by Petrov et al. (2006)) requires less computa-
tion than computing full derivation trees. How-
ever, neither of these hold in our case: a) most
pre-terminals in our model are dependent on each
other and, b) to compute the loss in likelihood
from a cluster merge requires computation of full
derivation trees (given the interdependence be-
tween pre-terminals that define frame structures).
More importantly, in our application, the outside
probabilities for clusters are always 1.0 and dif-
ferences in the sum of inside probabilities is often
negligible since input strings are spanned more-
or-less by the same set of derivations. For these
reasons (i.e., computation cost and the lack of suf-
ficient statistics), the ‘estimated loss in likelihood’
heuristics is a futile method for guiding the merge
process in our application. We resolve this prob-
lem by leveraging discriminative similarities be-
tween the obtained frame clusters and proposing a
hybrid method.

Our merge approach: In the beginning of a
merge process, we conflate Gis that are obtained
from the previous split procedure to form a G that
spans all input strings. Where applicable, we set
parameters of rules in G to the arithmetic mean
of corresponding ones obtained from the split pro-
cess and normalize them such that sum of the pa-
rameters of rules with the same pre-terminal is 1.0.
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We go through an iterative process: Using the
method proposed in § 3.2 below, the frame in-
stances in the clusters are converted to tensors and
similarities among them are computed. Motivated
by the assumption that split clusters are homoge-
neous, for every pair of clusters cx and cy (x 6= y)
with instances ai ∈ cx and bj ∈ cy, we find
argmaxi,j sim(ai, bj) and argmini,j sim(ai, bj)
(sim is given by Eq. 2 below) and calculate their
harmonic mean as the similarity sc between cx and
cy. Cluster pairs are sorted in a descending order
by sc. Given a threshold δ, for all sc(cx, cy) > δ,
their corresponding production rules (i.e., the sim-
ilar set of rules mentioned in the split procedure)
are merged and their parameters are updated to the
arithmetic mean of their origin rules.

Parameters for this new merged G are updated
through a few IO iterations (in an incremental
fashion (Liang and Klein, 2009)), and finally G
is used to obtain a new clustering. The process
is repeated for this newly obtained clustering until
all the resulting cluster-wise sc similarities are less
than a threshold β.

Computing all derivations for each input string
is time consuming and makes the merge process
computationally expensive, particularly in the first
few iterations. We resolve this issue using a
stratified random sampling and by performing the
aforementioned iterations only on a random sub-
set of input strings in each cluster. Each cluster in
the output of the split process is taken as a stratum
and its size is reduced by 90% by applying a ran-
dom sampling; this random sampling is updated
in each iteration (we use a similar strategy for pa-
rameter estimation, i.e., we update samples in each
estimation iteration). This process reduces the re-
quired time for merge drastically without hurting
the overall outcome of the merge process. It is
worth to mention that after merging clusters cx and
cy, the output does not necessarily contain a clus-
ter cx∪cy. Instead, the resulting clustering reflects
the effect of merging the rules that rewrite cx and
cy in the whole model.

To merge Rr categories, we use the merge
method from (Petrov et al., 2006) based on the ob-
tained likelihoods. After merging frame clusters,
we reduce the number of Rrs by 50%. Since our
method for merging role categories is similar to
(Petrov et al., 2006), we do not describe it here.

3.2 Similarity Between Frame Instances

When necessary (such as during merge), we com-
pute embedding-based similarities between frame
instances similar to methods proposed in (Mitchell
and Lapata, 2008; Clark, 2013). We build a n-
dimensional embedding for each word appear-
ing in our input strings from large web corpora.
Each frame instance is then represented using a
(m+ 1, n)-tensor, in which m is the total number
of argument types/clusters given by our model at
its current stage and n is the dimensionality of the
embeddings that represent words that fill these ar-
guments. To this, we add the embedding for the
verb that lexicalizes the head of the frame, which
gives us the final (m+ 1, n)-tensor.

For two frame-instances represented by tensors
a and b, the similarity for their arguments is

sim-arg(a, b) =
1

k

m∑

i=1

r2(a~vi, b~vi),

in which ~vis are embeddings for the ith argument
filler (

∑n
j=1

~vij 6= 0), r2 is the coefficient of de-

termination, and k =
∑

i[r
2(a~vi, b~vi) 6= 0]. If an

argument is lexicalized by more than one filler, we
replace r2 with the arithmetic mean of r2s com-
puted over each distinct pair of fillers. The overall
sim between a and b is:

sim(a, b) = w1.r
2(a ~vh, b ~vh) + w2.sim-arg(a, b),

(2)
where ~vhs are the embeddings for the lex-
ical heads (i.e., verbs), and w1 and w2

are two hyper-parameters which can be
tuned. For instance, for two hypothetical
structures of Fa:[Head:travel, [Arg1:John,
Arg2:London]] and Fb:[Head:walk, [Arg1:Mary,
Arg3:home]], the similarity between Fa and
Fb is w1r

2( ~travel, ~walk) + w2r
2( ~John, ~Mary),

given that the all these vectors have at least
one nonzero component. During merge we use
w1 = w2 = 0.50.

We build our lexical embeddings of dimension-
ality n = 900 using the hash-based embedding
learning technique proposed in (QasemiZadeh and
Kallmeyer, 2017); before using these embeddings,
we weight them using positive pointwise mutual
information. During evaluation, this combination
of PPMI-weighted hash-based embeddings and
the r2 estimator consistently yielded better results
than using other popular choices such as the co-
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sine of word2vec vectors. We associate this obser-
vation to the imbalanced frequency of the usages
of lexical items in our experiments in the corpora
used to train embeddings (i.e., an English web cor-
pus (Schäfer, 2015) and PTB’s WSJ).

4 Experiments and Results

4.1 Dataset
We derive our data for evaluation from the PTB’s
WSJ sections parsed (using Schuster and Man-
ning, 2016) to the enhanced UD format. We
augment these sentences with semantic role an-
notations obtained from Prague Semantic Depen-
dencies (PSD) (Cinkova et al., 2012) from the
SDP resource (Oepen et al., 2016). Using Eng-
Vallex (Cinková et al., 2014) and SemLink (Bo-
nial et al., 2013), we semi-automatically annotate
verbs with FrameNet frames (Baker et al., 1998).
We choose 1k random sentences and manually
verify the semi-automatic mappings to eventually
build our evaluation dataset of approximately 5k
instances (all). From this data, we use a random
subset of 200 instances (dev) during the develop-
ment and for parameter tuning (see Table 1 for de-
tailed statistics).

Set FT FI V AT AI
all 27 5,324 169 13 10,523
dev 15 200 35 7 393

Table 1: Gold Data: FT, FI, V, AT, and AI denote
the number of frame types, instances, distinct verb
heads, argument types, and argument instances

For these gold instances, we extract input
strings from their UD parses according § 2. Since
we discard verbs without syntactic arguments, use
automatic parses, and do not distinguish argu-
ments from adjuncts, the input strings do not ex-
actly match the gold data argument structures. We
report results only for the portion of the gold data
that appears in the extracted input strings. Table 2
reports the statistics for the induced input strings
and their agreement with the gold data (in terms
of precision and recall).

Input strings are hard to cluster in the sense that
a) all the frames are lexicalized by at least two dif-
ferent verb lemmas, b) many verbs lexicalizes at
least two different types of frames, c) verb lem-
mas that lexicalize a frame have long-tailed dis-
tributions, i.e., a large proportion of instances of
a frame are realized at surface structure by one

Set FT FI RF V GR AI AIG PA RA

all 27 4,984 0.94 167 56 10,893 7,305 0.67 0.76
dev 15 191 0.95 34 24 450 277 0.62 0.76

Table 2: Input strings extracted from the UD
parses: GR, AIG, RF , RA, and PA denote, respec-
tively, the number of distinct grammatical rela-
tions, syntactic arguments that are a semantic role
in the gold data, recall for frame and arguments,
and precision for arguments. The remaining sym-
bols are the same as Table 1.

lemma while in the remaining instances the frame
is evoked by different lemmas, and d) last but not
least, the frame types themselves have long-tailed
distribution. Table 3 shows examples of frames
and verb lemmas that lexicalize them; in the table,
the most frequent lemma for each frame type is
italicized.

4.2 Evaluation Measures

We evaluate our method’s performance on a) clus-
tering input strings to frame types, and b) clus-
tering syntactic arguments to semantic role types.
To this end, we report the harmonic mean of
BCubed precision and recall (BCF) (Bagga and
Baldwin, 1998), and purity (PU), inverse purity
(IPU) and their harmonic mean (FPU) (Steinbach
et al., 2000) as figures of merit. These measures
reflect a notion of similarity between the distribu-
tion of instances in the obtained clusters and the
gold/evaluation data based on certain criteria and
alone may lack sufficient information for a fair un-
derstanding of the system’s performance. While
PU and IPU are easy to interpret (by establishing
an analogy between them and precision and re-
call in classification tasks), they may be deceiving
under certain conditions (as explained by Amigó
et al., 2009, under the notions of homogeneity,
completeness, rag bag, and ‘size vs. quantity’ con-
straints). Reporting BCF alongside FPU ensures
that these pitfalls are not overlooked when our sys-
tem’s output are compared quantitatively with the
baselines.

4.3 Baselines

As baselines, we report the standard all-in-one-
class clustering (ALLIN1) and the one-cluster-
per-instance (1CPERI) baselines, as well as the
random baseline (Rn) in which instances are
randomly partitioned into n clusters (n being
the number of generated clusters in our sys-
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Frame #T #V {Examples of verbs occurrences}
ADORNING 26 10 {fill:8, cover:4, adorn:2 . . . }
PLACING 121 21 {place:62, pack:3, wrap:1. . . }
FILLING 35 12 {fill:14, pack:6, cover:3, wrap:2 . . .}
ACTIVITY START 290 2 {begin:182, start:108}
PROCESS START 188 2 {begin:143, start:45}
CHANGE POSITION ON SACLE 1259 17 {fall=356, rise=271, drop=135, decline=119, . . .}

Table 3: Examples of frames in our evaluation set and verbs that evoke them; #T and #V denote the total
number of instances for the frame and the number of distinct verb lemmas that evoke them, respectively.

tem’s output). Moreover, for frame type clus-
tering, we report the one-cluster-per-lexical-head
baseline (1CPERHEAD). For role clustering,
we report the additional one-cluster-per-syntactic-
category baseline (1CPERGR). Similar to the
most-frequent-sense baseline in word sense in-
duction and disambiguation problems, the latter
1CPERHEAD and 1CPERGR are particularly hard
to beat given the heavy-tailed distribution of lexi-
cal items in frame and role categories.

For both subtasks, an additional baseline from
(Modi et al., 2012) and (Titov and Klementiev,
2012) could be an interesting comparison to our
method with the state of the art in frame head
clustering and unsupervised semantic role label-
ing, particularly given that (Titov and Klementiev,
2012) and respectively (Modi et al., 2012) employ
Gibbs sampling for statistical inference, whereas
we use the IO algorithm. We are, unfortunately,
not able to access codes for Modi et al. (2012)
and the system in Titov and Klementiev (2012) re-
lies on features that are engineered for treebanks
in the format and formalisms set for the CoNLL-
2008 shared-task. As explained by Oepen et al.
(2016), mapping to (and from) formalisms used in
CoNLL-2008 (from–to) those proposed in SDP-
PSD (used in this paper) is a nontrivial task. We
expect that an automatic conversion from our data
to the CoNLL-2008 format as an input for (Titov
and Klementiev, 2012) would not reflect the best
performance of their method. Nonetheless, we re-
port the result from this experiment (marked as
TK-URL) later in this section, not as a baseline,
but to confirm (Oepen et al., 2016).

Lastly, as an extra baseline for frame type clus-
tering, we report performance of a HAC method.
The HAC method is described below (§ 4.3.1).

4.3.1 A Baseline HAC Method

To build a frame clustering using HAC, we begin
by initializing one cluster per instance and itera-

tively merge the pair of clusters with the lowest
distance, using average-link cluster distance. For
two clusters A and B, we define their distance as:

Dis-Cl(A,B) = 1
l(l−1)

∑
fi∈A

∑
fj∈B 1− sim(fi, fj),

in which sim(fi, fj) is given by Eq. 2, and l =
|A| + |B|. We iteratively update the distance ma-
trix and agglomerate clusters until we reach a sin-
gle cluster. During iterations, we keep track of the
merges/linkages which we later use to flatten the
built hierarchy into q clusters. To set our base-
line, by constraining w1 + w2 = 1 in Eq. (2), we
build cluster hierarchies for different w1 and w2

(starting with w1 = 0.0, w2 = 1 − w1 and grad-
ually increasing w1 by 0.1 until w1 = 1.0) and
find w1, w2, and q that yield the ‘best’ clustering
according to the BCF metric (w1 = 0.8, w2 =
0.2, q = 140). For this baseline, the argument
types are defined by their syntactic relation to their
heads, e.g., subj, dobj, and so on.

4.4 Results

Since our method involves stochastic decisions, its
performance varies slightly in each run. Hence,
we report the mean and the standard deviation
of the obtained performances from 4 independent
runs. The reported results are based on the out-
put of the system after 7 split and merge iterations.
After tuning parameters on the dev set, we choose
δ = 0.55 during merge, and in each inner-merge
iteration subtract δ by 0.01 until δ < β = 0.42.

Quantitative Comparison with Baselines Ta-
bles 4 and 5 show the results for clustering input
strings to frame types and semantic roles, respec-
tively. On frame type clustering, our method (de-
noted by L-PCFG) outperforms all the baselines.
FPU and BCF for our system are simultaneously
higher than all the baselines, which verifies that
the output contains a small proportion of “rag bag”
clusters. The system, however, tends to generate
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Method #C PU IPU FPU BCF
ALLIN1 1 22.35 100 36.54 17.43
1CPERI 4984 100 0.54 1.08 1.08

1CPERHEAD 167 94.38 59.59 73.06 63.53
R235 235 24.7 2.03 3.75 1.79
HAC 140 75.07 65.52 69.97 61.74

L-PCFG (Avg.) 230.25 86.2 73.64 79.4 71.29
L-PCFG (Std. Dev.) ±6.24 ±3.07 ±0.96 ±1.17 ±1.49

Table 4: Results for head groupings: #C de-
notes the number of induced clusters by each
method/baseline; the last two rows reports the av-
erage and the standard deviation for the obtained
results using the L-PCFG model.The remaining
abbreviations are introduced in § 4.2 and 4.3.

Method #C PU IPU FPU BCF
ALLIN1 1 47.73 100 64.62 55.43
1CPERI 7257 100 0.18 0.36 0.36

1CPERGR 32 92.89 79.83 85.86 76.71
R24 24 47.73 5.36 9.64 7.79

TK-URL 333 85.7 15.01 25.54 11.71
L-PCFG (Avg.) 24 90.36 79.25 84.44 74.65

L-PCFG (Std. Dev.) ±5.29 ±0.33 ±1.31 ±0.61 ±1.38

Table 5: Results on clustering of syntactic argu-
ments to semantic roles.

many incomplete yet homogeneous clusters (as we
discuss below). With respect to roles, however, the
method’s performance and its output remains very
similar to the syntactic baseline (BCF=97.3).

What is in the clusters? The ability of the sys-
tem to successfully cluster instances varies from
one gold frame category to another one. The
most problematic cases are the frame types AC-
TIVITY START and PROCESS START, as well as
PLACING. While the system put instances of
‘start’ and ‘begin’ verbs in one cluster, it fails to
distinguish between ACTIVITY START and PRO-
CESS START. Regarding the PLACING frame, the
system places verbs that evoke this frame in dif-
ferent clusters; each cluster consists of instances
from one verb lemma. In our opinion, this is due
to the frequent idiomatic usages of these verbs,
e.g., ‘to lay claim’, ‘to place listing’, ‘to position
oneself as’ and so on. This being said, however,
the system is capable of distinguishing between
different readings of polysemous verbs, e.g., in-
stances of the verb ‘pack’ that evoke the FILLING

frame end up in different clusters than those evok-
ing the PLACING frame. Additionally, for a num-
ber of frame types, we observe that the system
can successfully group synonymous (and oppo-
site) verbs that evoke the same frame into one clus-
ter: representative examples are the instances of

the CHANGE POSITION ON A SCALE frame that
are evoked by different verb lemmas such as ‘de-
cline’, ‘drop’, ‘fall’, ‘gain’, ‘jump’, ‘rise’, . . . ,
which all end up in one cluster. The output of the
system also contains a large number of small clus-
ters (consisting of only one or two instances): we
observe that these instances are usually those with
wrong (and incomplete) dependency parses.

5 Related Work

Our work differs from most work on word sense
induction (WSI), e.g. (Goyal and Hovy, 2014; Lau
et al., 2012; Manandhar et al., 2010; Van de Cruys
and Apidianaki, 2011), in that not only do we dis-
cern different senses of a lexical item but also we
group the induced senses into more general mean-
ing categories (i.e., FrameNet’s grouping). Hence,
our model must be able to capture lexical rela-
tionships other than polysemy, e.g., synonymy,
antonymy (opposite verbs), troponymy, etc.. How-
ever, our method can be adapted to WSI, too.
Firstly, we can assume that word senses are ‘in-
compatible’ and thus they necessarily evoke dif-
ferent frames; subsequently, the induced frame
clusters can be seen directly as clusters of word
senses. Otherwise, the proposed method can be
adapted for WSI by altering its initialization, e.g.,
by building one-model-at-a-time for each word
form (i.e., simply altering the input).

Despite similarities between our method and
those proposed previously to address unsupervised
semantic role induction (Carreras and Marquez,
2005; Lang and Lapata, 2010, 2011; Titov and
Klementiev, 2012; Swier and Stevenson, 2004),
our method differs from them in that we at-
tempt to include frame head grouping information
for inducing roles associated to them. In other
words, these methods leave out the problem of
sense/frame grouping in their models.

Our work differs in objective from methods for
unsupervised template induction in information
extraction (IE) (e.g., MUC-style frames in Cham-
bers and Jurafsky (2009, 2011) and its later refine-
ments such as (Chambers, 2013; Cheung et al.,
2013; Balasubramanian et al., 2013), and in a
broader sense attempts towards ontology learn-
ing and population from text (Cimiano et al.,
2005)). Our focus is on lexicalized elementary
syntactic structures, identifying lexical semantic
relationships, and thereby finding salient patterns
in syntax–semantic interface. However, in IE

137



tasks the aim is to build structured summaries
of text. Therefore, the pre-and post-processing
in these induction models are often more com-
plex/different than our method (e.g., they require
anaphora resolution, identifying discourse rela-
tions, etc.). Lastly, we deal with a broader set of
verbs and domains and more general frame defini-
tions than these methods.

As stated earlier, Modi et al. (2012) propose the
most similar work to ours. They adapt (Titov and
Klementiev, 2012) to learn FrameNet-style head
and role groupings. Modi et al. (2012) assume
roles to be frame-specific, while our role clusters
are defined independently of frame groupings (as
expressed in Eq. 1). Last, with respect to research
such as (Pennacchiotti et al., 2008; Green et al.,
2004) in which lexical resources such as Word-
Net are used (in supervised or unsupervised set-
tings) to refine and extend existing frame reposito-
ries such as FrameNet, our model learns and boot-
straps a frame repository from text annotated only
with syntactic structure in an unsupervised way.

6 Conclusion

We proposed an unsupervised method for coarse-
lexical frame induction from dependency parsed
sentences using L-PCFG. We converted lexical-
ized dependency trees of sentences to a set of in-
put strings of fixed, predetermined structure con-
sisting of a verbal head, its arguments and their
syntactic dependencies. We then use a CFG
model (subsequently L-PCFG) to shape/capture
frame structures from these strings. We adapted
EM parameter estimation techniques from PCFG
while relaxing independence assumptions, includ-
ing appropriate methods for splitting and merging
frames and semantic roles and using word embed-
dings for better generalization. In empirical eval-
uations, our model outperforms several baselines.

Acknowledgments

We would like to thank Dr. Curt Anderson and
Dr. Rainer Osswlad for valuable comments on the
paper and analysis of frame clusters. The work
described in this paper is funded by the Deutsche
Forschungsgemeinschaft (DFG) through the ‘Col-
laborative Research Centre 991 (CRC 991): The
Structure of Representations in Language, Cogni-
tion, and Science’.

References
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Abstract

Cross-lingual information extraction (CLIE) is
an important and challenging task, especially
in low resource scenarios. To tackle this chal-
lenge, we propose a training method, called
Halo, which enforces the local region of each
hidden state of a neural model to only gener-
ate target tokens with the same semantic struc-
ture tag. This simple but powerful technique
enables a neural model to learn semantics-
aware representations that are robust to noise,
without introducing any extra parameter, thus
yielding better generalization in both high and
low resource settings.

1 Introduction

Cross-lingual information extraction (CLIE) is the
task of distilling and representing factual informa-
tion in a target language from the textual input in
a source language (Sudo et al., 2004; Zhang et al.,
2017b). For example, Fig. 1 illustrates a pair of
input Chinese sentence and its English predicate-
argument information1, where predicate and argu-
ment are well used semantic structure tags.

It is of great importance to solve the task, as to
provide viable solutions to extracting information
from the text of languages that suffer from no or
little existing information extraction tools. Neu-
ral models have empirically proven successful in
this task (Zhang et al., 2017b,c), but still remain
unsatisfactory in low resource (i.e. small number
of training samples) settings. These neural models
learn to summarize a given source sentence and
target prefix into a hidden state, which aims to
generate the correct next target token after being

∗equal contribution
1The predicate-argument information is usually denoted

by relation tuples. In this work, we adopt the tree-structured
representation generated by PredPatt (White et al., 2016;
Zhang et al., 2017d), which was a lightweight tool available
at https://github.com/hltcoe/PredPatt.

Figure 1: Example of cross-lingual information extraction:
Chinese input text (a) and linearized English PredPatt output
(b), where ‘:p’ and blue stand for predicate while ‘:a’ and
purple denote argument.

passed through an output layer. As each member
in the target vocabulary is essentially either pred-
icate or argument, a random perturbation on the
hidden state should still be able to yield a token
with the same semantic structure tag. This induc-
tive bias motivates an extra term in training objec-
tive, as shown in Fig. 2, which enforces the sur-
roundings of any learned hidden state to generate
tokens with the same semantic structure tag (either
predicate or argument) as the centroid. We call
this technique Halo, because the process of each
hidden state taking up its surroundings is analo-
gous to how the halo is formed around the sun.
The method is believed to help the model gen-
eralize better, by learning more semantics-aware
and noise-insensitive hidden states without intro-
ducing extra parameters.

2 The Problem

We are interested in learning a probabilistic model
that directly maps an input sentence {xi}Ii=1 =
x1x2 . . . xI of the source language S into an out-
put sequence {yt}Tt=1 = y1y2 . . . yT of the tar-
get language T , where S can be any human natu-
ral language (e.g. Chinese) and T is the English
PredPatt (White et al., 2016). In the latter vo-
cabulary, each type is tagged as either predicate
or argument—those with “:p” are predicates while
those with “:a” are arguments.

For any distribution P in our proposed fam-
ily, the log-likelihood ` of the model P given any
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mortars:afiring:pstarted:p ?:p
?:a

output layer

decoder unit

hidden space

Figure 2: Visualization of Halo method. While a neural
model learns to summarizes the current known information
into a hidden state and predict the next target token, the
surroundings of this hidden state in the same space (two-
dimensional in this example) are supervised to generate to-
kens with the same semantic structure tag. For example, at
the last shown step, the centroid of purple area is the summa-
rized hidden state and learns to predict ‘mortars:a’, while a
randomly sampled neighbor is enforced to generate an argu-
ment, although it may not be ‘mortars’ (thus denoted by ‘?’).
Similar remarks apply to the blue regions.

({yt}Tt=1 | {xi}Ii=1) pair is:

T∑

t=1

logP
(
yt | yt−1, . . . , y0, {xi}Ii=1

)
(1)

where y0 is a special beginning of sequence token.
We denote vectors by bold lowercase Roman

letters such as h, and matrices by bold capital Ro-
man letters such as W throughout the paper. Sub-
scripted bold letters denote distinct vectors or ma-
trices (e.g., pt). Scalar quantities, including vec-
tor and matrix elements such as hd and pt,yt , are
written without bold. Capitalized scalars represent
upper limits on lowercase scalars, e.g., 1 ≤ d ≤
D. Function symbols are notated like their return
type. All R → R functions are extended to apply
elementwise to vectors and matrices.

3 The Method

In this section, we first briefly review how the
baseline neural encoder-decoder models work on
this task, and then introduce our novel and well-
suited training method Halo.

3.1 Baseline Neural Models

Previous neural models on this task (Zhang et al.,
2017b,c) all adopt an encoder-decoder architec-
ture with recurrent neural networks, particularly
LSTMs (Hochreiter and Schmidhuber, 1997). At
each step t in decoding, the models summarize the
input {xi}Ii=1 and output prefix y1, . . . , yt−1 into
a hidden state ht ∈ (−1, 1)D, and then project
it with a transformation matrix W ∈ R|V|×D to
a distribution pt over the target English PredPatt

vocabulary V:

pt = ot/(1
>ot) (2a)

ot = expWht ∈ R|V|+ (2b)

where 1 is a |V|-dimensional one vector such that
pt is a valid distribution.

Suppose that the ground truth target token at this
step is yt, the probability of generating yt under
the current model is pt,yt , obtained by accessing
the yt-th element in the vector pt. Then the log-
likelihood is constructed as ` =

∑T
t=1 log pt,yt ,

and the model is trained by maximizing this ob-
jective over all the training pairs.

3.2 Halo

Our method adopts a property of this task—the vo-
cabulary V is partitioned into P , set of predicates
that end with “:p”, and A, set of arguments that
end with “:a”. As a neural model would summa-
rize everything known up to step t into ht, would
a perturbation h′t around ht still generate the same
token yt? This bias seems too strong, but we can
still reasonably assume that h′t would generate a
token with the same semantic structure tag (i.e.
predicate or argument). That is, the prediction
made by h′t should end with “:p” if yt is a pred-
icate, and with “:a” otherwise.

This inductive bias provides us with another
level of supervision. Suppose that at step t, a
neighboring h′t is randomly sampled around ht,
and is then used to generate a distribution p′t in
the same way as equation (2). Then we can get
a distribution q′t over C = {predicate, argument},
by summing all the probabilities of predicates and
those of arguments:

q′t,predicate =
∑

v∈P
p′t,v (3a)

q′t,argument =
∑

v∈A
p′t,v (3b)

This aggregation is shown in Fig. 3. Then the ex-
tra objective is `′ =

∑T
t=1 log q

′
t,ct , where ct =

predicate if the target token yt ∈ P (i.e. ending
with “:p”) and ct = argument otherwise.

Therefore, we get the joint objective to maxi-
mize by adding ` and `′:

`+ `′ =
T∑

t=1

log pt,yt +

T∑

t=1

log q′t,ct (4)
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Figure 3: Visualization of how q (distribution over C) is ob-
tained by aggregating p (distribution over V).

which enables the model to learn more semantics-
aware and noise-insensitive hidden states by en-
forcing the hidden states within a region to share
the same semantic structure tag.2

3.2.1 Sampling Neighbors
Sampling a neighbor around ht is essentially
equivalent to adding noise to it. Note that in a
LSTM decoder that previous work used, ht ∈
(−1, 1)D because ht = ot� tanh(ct) where ot ∈
(0, 1)D and tanh(ct) ∈ (−1, 1)D. Therefore, ex-
tra work is needed to ensure h′t ∈ (−1, 1)D. For
this purpose, we follow the recipe3:

• Sample h′′t ∈ (−1, 1)D by independently
sampling each entry from an uniform distri-
bution over (−1, 1);
• Sample a scalar λt ∈ (0, 1) from a Beta dis-

tribution B(α, β) where α and β are hyper-
parameters to be tuned;
• Compute h′t = ht + λt(h

′′
t − ht) such that

h′t ∈ (−1, 1)D lies on the line segment be-
tween ht and h′′t .

Note that the sampled hidden state h′t is only
used to compute q′t, but not to update the LSTM
hidden state, i.e., ht+1 is independent of h′t.

3.2.2 Roles of Hyperparameters
The Halo technique adds an inductive bias into the
model, and its magnitude is controlled by λt:

• λt ∈ (0, 1) to ensure h′t ∈ (−1, 1)D;
• λt → 0 makes h′t → ht, thus providing no

extra supervision on the model;

2One can also sample multiple, rather than one, neighbors
for one hidden state and then average their log q′t,ct . In our
experimental study, we only try one for computational cost
and found it effective enough.

3Alternatives do exist. For example, one can transform ht

from (−1, 1)D to (−∞,∞)D , add random (e.g. Gaussian)
noise in the latter space and then transform back to (−1, 1)D .
These tricks are valid as long as they find neighbors within the
same space (−1, 1)D as ht is.

• λt → 1 makes h′t uniformly sampled in entire
(−1, 1)D, and causes underfitting just like a
L-2 regularization coefficient goes to infinity.

We sample a valid λt from a Beta distribution
with α > 0 and β > 0, and their magnitude can
be tuned on the development set:

• When α→ 0 and β is finite, or α is finite and
β →∞, we have λt → 0;
• When α → ∞ and β is finite, or α is finite

and β → 0, we have λt → 1;
• Larger α and β yield larger variance of λt,

and setting λt to be a constant is a special
case that α→∞, β →∞ and α/β is fixed.

Besides α and β, the way of partitioning V (i.e.
the definition of C) also serves as a knob for tuning
the bias strength. Although on this task, the pred-
icate and argument tags naturally partition the vo-
cabulary, we are still able to explore other possibil-
ities. For example, an extreme is to partition V into
|V| different singletons, meaning that C = V—
a perturbation around ht should still predict the
same token. But this extreme case does not work
well in our experiments, verifying the importance
of the semantic structure tags on this task.

4 Related Work

Cross-lingual information extraction has drawn
a great deal of attention from researchers.
Some (Sudo et al., 2004; Parton et al., 2009; Ji,
2009; Snover et al., 2011; Ji and Nothman, 2016)
worked in closed domains, i.e. on a predefined
set of events and/or entities, Zhang et al. (2017b)
explored this problem in open domain and their at-
tentional encoder-decoder model significantly out-
performed a baseline system that does translation
and parsing in a pipeline. Zhang et al. (2017c)
further improved the results by inventing a hier-
archical architecture that learns to first predict the
next semantic structure tag and then select a tag-
dependent decoder for token generation. Orthog-
onal to these efforts, Halo aims to help all neural
models on this task, rather than any specific model
architecture.

Halo can be understood as a data augmentation
technique (Chapelle et al., 2001; Van der Maaten
et al., 2013; Srivastava et al., 2014; Szegedy
et al., 2016; Gal and Ghahramani, 2016). Such
tricks have been used in training neural net-
works to achieve better generalization, in appli-
cations like image classification (Simard et al.,
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DATASET NUMBER OF PAIRS VOCABULARY SIZE TOKEN/TYPE

TRAIN DEV TEST SOURCE TARGET

CHINESE 941040 10000 39626 258364 234832 91.94
UZBEK 31581 1373 1373 69255 37914 12.18
TURKISH 20774 903 903 51248 32009 11.97
SOMALI 10702 465 465 29591 18616 12.78

Table 1: Statistics of each dataset.

METHOD CHINESE UZBEK TURKISH SOMALI

BLEU F1 BLEU F1 BLEU F1 BLEU F1
PRED ARG PRED ARG PRED ARG PRED ARG

MODELZ 22.07 30.06 39.06 10.76 12.46 24.08 7.47 6.49 17.76 13.06 13.91 25.38
MODELP 22.10 30.04 39.83 12.50 18.81 25.93 9.04 12.90 21.13 13.22 16.71 26.83
MODELP-Halo 23.18 30.85 41.23 12.95 19.23 27.63 10.21 12.55 22.57 14.26 17.06 27.73

Table 2: BLEU and F1 scores of different models on all these datasets, where PRED stands for predicate and ARG for argument.
Best numbers are highlighted as bold.

2000; Simonyan and Zisserman, 2015; Arpit et al.,
2017; Zhang et al., 2017a) and speech recogni-
tion (Graves et al., 2013; Amodei et al., 2016).
Halo differs from these methods because 1) it
makes use of the task-specific information—
vocabulary is partitioned by semantic structure
tags; and 2) it makes use of the human belief that
the hidden representations of tokens with the same
semantic structure tag should stay close to each
other. Some

5 Experiments

We evaluate our method on several real-world
CLIE datasets measured by BLEU (Papineni
et al., 2002) and F1, as proposed by Zhang et al.
(2017b). For the generated linearized PredPatt
outputs and their references, the former metric4

measures their n-gram similarity, and the latter
measures their token-level overlap. In fact, F1 is
computed separately for predicate and argument,
as F1 PRED and F1 ARG respectively.

5.1 Datasets

Multiple datasets were used to demonstrate the ef-
fectiveness of our proposed method, where one
sample in each dataset is a source language sen-
tence paired with its linearized English PredPatt
output. These datasets were first introduced as
the DARPA LORELEI Language Packs (Strassel
and Tracey, 2016), and then used for this task by
Zhang et al. (2017b,c). As shown in table 1, the
CHINESE dataset has almost one million training
samples and a high token/type ratio, while the oth-

4The MOSES implementation (Koehn et al., 2007) was
used as in all the previous work on this task.

ers are low resourced, meaning they have much
fewer samples and lower token/type ratios.

5.2 Model Implementation

Before applying our Halo technique, we first im-
proved the current state-of-the-art neural model of
Zhang et al. (2017c) by using residual connec-
tions (He et al., 2016) and multiplicative attention
(Luong et al., 2015), which effectively improved
the model performance. We refer to the model of
Zhang et al. (2017c) and our improved version as
ModelZ and ModelP respectively5.

5.3 Experimental Details

In experiments, instead of using the full vocab-
ularies shown in table 1, we set a minimum
count threshold for each dataset, to replace the
rare words by a special out-of-vocabulary symbol.
These thresholds were tuned on dev sets.

The Beta distribution is very flexible. In gen-
eral, its variance is a decreasing function of α+β,
and when α + β is fixed, the mean is an increas-
ing function of α. In our experiments, we fixed
α + β = 20 and only lightly tuned α on dev sets.
Optimal values of α stay close to 1.

5.4 Results

As shown in Table 2, ModelP outperforms Mod-
elZ on all the datasets measured by all the met-
rics, except for F1 PRED on CHINESE dataset.
Our Halo technique consistently boosts the model
performance of MODELP except for F1 PRED on
TURKISH.

5Z stands for Zhang and P for Plus.
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Additionally, experiments were also conducted
on two other low resource datasets AMHARIC and
YORUBA that Zhang et al. (2017c) included, and
α = 0 in Halo was found optimal on the dev sets.
In such cases, this regularization was not helpful
so no comparison need be made on the held-out
test sets.

6 Conclusion and Future Work

We present a simple and effective training tech-
nique Halo for the task of cross-lingual informa-
tion extraction. Our method aims to enforce the
local surroundings of each hidden state of a neu-
ral model to only generate tokens with the same
semantic structure tag, thus enabling the learned
hidden states to be more aware of semantics and
robust to random noise. Our method provides
new state-of-the-art results on several benchmark
cross-lingual information extraction datasets, in-
cluding both high and low resource scenarios.

As future work, we plan to extend this technique
to similar tasks such as POS tagging and Semantic
Role Labeling. One straightforward way of work-
ing on these tasks is to define the vocabularies as
set of ‘word-type:POS-tag’ (so ct = POS tag) and
‘word-type:SR’ (so ct = semantic role), such that
our method is directly applicable. It would also be
interesting to apply Halo widely to other tasks as
a general regularization technique.
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Abstract

Annotating temporal relations (TempRel) be-
tween events described in natural language is
known to be labor intensive, partly because
the total number of TempRels is quadratic in
the number of events. As a result, only a
small number of documents are typically an-
notated, limiting the coverage of various lexi-
cal/semantic phenomena. In order to improve
existing approaches, one possibility is to make
use of the readily available, partially annotated
data (P as in partial) that cover more docu-
ments. However, missing annotations in P are
known to hurt, rather than help, existing sys-
tems. This work is a case study in exploring
various usages of P for TempRel extraction.
Results show that despite missing annotations,
P is still a useful supervision signal for this
task within a constrained bootstrapping learn-
ing framework. The system described in this
system is publicly available.1

1 Introduction

Understanding the temporal information in natu-
ral language text is an important NLP task (Ver-
hagen et al., 2007, 2010; UzZaman et al., 2013;
Minard et al., 2015; Bethard et al., 2016, 2017). A
crucial component is temporal relation (TempRel;
e.g., before or after) extraction (Mani et al., 2006;
Bethard et al., 2007; Do et al., 2012; Chambers
et al., 2014; Mirza and Tonelli, 2016; Ning et al.,
2017, 2018a,b).

The TempRels in a document or a sentence can
be conveniently modeled as a graph, where the
nodes are events, and the edges are labeled by
TempRels. Given all the events in an instance,
TempRel annotation is the process of manually la-
beling all the edges – a highly labor intensive task
due to two reasons. One is that many edges re-
quire extensive reasoning over multiple sentences

1https://cogcomp.org/page/publication_
view/832

and labeling them is time-consuming. Perhaps
more importantly, the other reason is that #edges
is quadratic in #nodes. If labeling an edge takes 30
seconds (already an optimistic estimation), a typi-
cal document with 50 nodes would take more than
10 hours to annotate. Even if existing annotation
schemes make a compromise by only annotating
edges whose nodes are from a same sentence or
adjacent sentences (Cassidy et al., 2014), it still
takes more than 2 hours to fully annotate a typ-
ical document. Consequently, the only fully an-
notated dataset, TB-Dense (Cassidy et al., 2014),
contains only 36 documents, which is rather small
compared with datasets for other NLP tasks.

A small number of documents may indicate that
the annotated data provide a limited coverage of
various lexical and semantic phenomena, since
a document is usually “homogeneous” within it-
self. In contrast to the scarcity of fully annotated
datasets (denoted by F as in full), there are ac-
tually some partially annotated datasets as well
(denoted by P as in partial); for example, Time-
Bank (Pustejovsky et al., 2003) and AQUAINT
(Graff, 2002) cover in total more than 250 docu-
ments. Since annotators are not required to label
all the edges in these datasets, it is less labor inten-
sive to collect P than to collect F . However, ex-
isting TempRel extraction methods only work on
one type of datasets (i.e., either F or P), without
taking advantage of both. No one, as far as we
know, has explored ways to combine both types of
datasets in learning and whether it is helpful.

This work is a case study in exploring various
usages of P in the TempRel extraction task. We
empirically show that P is indeed useful within
a (constrained) bootstrapping type of learning ap-
proach. This case study is interesting from two
perspectives. First, incidental supervision (Roth,
2017). In practice, supervision signals may not al-
ways be perfect: they may be noisy, only partial,
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based on different annotation schemes, or even on
different (but relevant) tasks; incidental supervi-
sion is a general paradigm that aims at making
use of the abundant, naturally occurring data, as
supervision signals. As for the TempRel extrac-
tion task, the existence of many partially annotated
datasets P is a good fit for this paradigm and the
result here can be informative for future investi-
gations involving other incidental supervision sig-
nals. Second, TempRel data collection. The fact
that P is shown to provide useful supervision sig-
nals poses some further questions: What is the op-
timal data collection scheme for TempRel extrac-
tion, fully annotated, partially annotated, or a mix-
ture of both? For partially annotated data, what
is the optimal ratio of annotated edges to unanno-
tated edges? The proposed method in this work
can be readily extended to study these questions
in the future, as we further discuss in Sec. 5.

2 Existing Datasets and Methods

TimeBank (Pustejovsky et al., 2003) is a classic
TempRel dataset, where the annotators were given
a whole article and allowed to label TempRels be-
tween any pairs of events. Annotators in this setup
usually focus only on salient relations but overlook
some others. It has been reported that many event
pairs in TimeBank should have been annotated
with a specific TempRel but the annotators failed
to look at them (Chambers, 2013; Cassidy et al.,
2014; Ning et al., 2017). Consequently, we cate-
gorize TimeBank as a partially annotated dataset
(P). The same argument applies to other datasets
that adopted this setup, such as AQUAINT (Graff,
2002), CaTeRs (Mostafazadeh et al., 2016) and
RED (O’Gorman et al., 2016). Most existing sys-
tems make use of P , including but not limited to,
(Mani et al., 2006; Bramsen et al., 2006; Cham-
bers et al., 2007; Bethard et al., 2007; Verhagen
and Pustejovsky, 2008; Chambers and Jurafsky,
2008; Denis and Muller, 2011; Do et al., 2012);
this applies also to the TempEval workshops sys-
tems, e.g., (Laokulrat et al., 2013; Bethard, 2013;
Chambers, 2013).

To address the missing annotation issue, Cas-
sidy et al. (2014) proposed a dense annotation
scheme, TB-Dense. Edges are presented one-by-
one and the annotator has to choose a label for
it (note that there is a vague label in case the
TempRel is not clear or does not exist). As a re-
sult, edges in TB-Dense are considered as fully
annotated in this paper. The first system on TB-

Dense was proposed in Chambers et al. (2014).
Two recent TempRel extraction systems (Mirza
and Tonelli, 2016; Ning et al., 2017) also re-
ported their performances on TB-Dense (F) and
on TempEval-3 (P) separately. However, there
are no existing systems that jointly train on both.
Given that the annotation guidelines of F and P
are obviously different, it may not be optimal to
simply treat P and F uniformly and train on their
union. This situation necessitates further investi-
gation as we do here.

Before introducing our joint learning approach,
we have a few remarks about our choice of F and
P datasets. First, we note that TB-Dense is actu-
ally not fully annotated in the strict sense because
only edges within a sliding, two-sentence window
are presented. That is, distant event pairs are in-
tentionally ignored by the designers of TB-Dense.
However, since such distant pairs are consistently
ruled out in the training and inference phase in
this paper, it does not change the nature of the
problem being investigated here. At this point,
TB-Dense is the only fully annotated dataset that
can be adopted in this study, despite the aforemen-
tioned limitation.

Second, the partial annotations in datasets like
TimeBank were not selected uniformly at random
from all possible edges. As described earlier, only
salient and non-vague TempRels (which may often
be those easy ones) are labeled in these datasets.
Using TimeBank as P might potentially create
some bias and we will need to keep this in mind
when analyzing the results in Sec. 4. Recent ad-
vances in TempRel data annotation (Ning et al.,
2018c) can be used in the future to collect both F
and P more easily.

3 Joint Learning on F and P
In this work, we study two learning paradigms that
make use of both F and P . In the first, we simply
treat those edges that are annotated in P as edges
in F so that the learning process can be performed
on top of the union of F and P . This is the most
straightforward approach to using F and P jointly
and it is interesting to see if it already helps.

In the second, we use bootstrapping: we use F
as a starting point and learn a TempRel extraction
system on it (denoted by SF ), and then fill those
missing annotations in P based on SF (thus obtain
“fully” annotated P̃); finally, we treat P̃ as F and
learn from both. Algorithm 1 is a meta-algorithm
of the above.
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Algorithm 1: Joint learning from F and P by
bootstrapping

Input: F , P , Learn, Inference
1 SF = Learn(F)
2 Initialize SF+P = SF
3 while convergence criteria not satisfied do
4 P̃ = ∅
5 foreach p ∈ P do
6 ŷ = Inference(p; SF+P )
7 P̃ = P̃ ∪ {(x, ŷ)}
8 SF+P = Learn(F + P̃)

9 return SF+P

In Algorithm 1, we consistently use the sparse
averaged perceptron algorithm as the “Learn”
function. As for “Inference” (Line 6), we fur-
ther investigate two different ways: (i) Look at
every unannotated edge in p ∈ P and use SF+P
to label it; this local method ignores the exist-
ing annotated edges in P and is thus the standard
bootstrapping. (ii) Perform global inference on P
with annotated edges being constraints, which is
a constrained bootstrapping, motivated by the fact
that temporal graphs are structured and annotated
edges have influence on the missing edges: In
Fig. 1, the current annotation for (1, 2) and (2, 3)
is before and vague. We assume that the annota-
tion (2, 3)=vague indicates that the relation cannot
be determined even if the entire graph is consid-
ered. Then with (1, 2)=before and (2, 3)=vague,
we can see that (1, 3) cannot be uniquely de-
termined, but it is restricted to be selected from
{before, vague} rather than the entire label set.
We believe that global inference makes better use
of the information provided by P; in fact, as we
show in Sec. 4, it does perform better than local
inference.

Figure 1: Nodes 1-3 are three time points and let (i, j) be
the edge from node i to node j, where (i, j) ∈{before, af-
ter, equal, vague}. Assume the current annotation is (1, 2) =
before and (2, 3) = vague and (1, 3) is missing. However,
(1, 3) cannot be after because it leads to (2, 3) = after, con-
flicting with their current annotation; similarly, (1, 3) cannot
be equal, either.

A standard way to perform global inference is
to formulate it as an Integer Linear Programming
(ILP) problem(Roth and Yih, 2004) and enforce
transitivity rules as constraints. Let R be the
TempRel label set2, Ir(ij) ∈ {0, 1} be the indi-
cator function of (i, j) = r, and fr(ij) ∈ [0, 1]
be the corresponding soft-max score obtained via
SF+P . Then the ILP objective is formulated as

Î = argmax
I

∑
i<j

∑
r∈R fr(ij)Ir(ij) (1)

s.t. ΣrIr(ij) = 1
(uniqueness)

,

Ir1(ij) + Ir2(jk) − ΣN
m=1Irm

3
(ik) ≤ 1,

(transitivity)

where {rm
3 } is selected based on the general tran-

sitivity proposed in (Ning et al., 2017). With
Eq. (1), different implementations of Line 6 in Al-
gorithm 1 can be described concisely as follows:
(i) Local inference is performed by ignoring “tran-
sitivity constraints”. (ii) Global inference can be
performed by adding annotated edges in P as ad-
ditional constraints. Note that Algorithm 1 is only
for the learning step of TempRel extraction; as
for the inference step of this task, we consistently
adopt the standard method by solving Eq. (1), as
was done by (Bramsen et al., 2006; Chambers and
Jurafsky, 2008; Denis and Muller, 2011; Do et al.,
2012; Ning et al., 2017).

4 Experiments

In this work, we consistently used TB-Dense as
the fully annotated dataset (F) and TBAQ as the
partially annotated dataset (P). The corpus statis-
tics of these two datasets are provided in Table 1.
Note that TBAQ is the union of TimeBank and
AQUAINT and it originally contained 256 docu-
ments, but 36 out of them completely overlapped
with TB-Dense, so we have excluded these when
constructing P . In addition, the number of edges
shown in Table 1 only counts the event-event rela-
tions (i.e., do not consider the event-time relations
therein), which is the focus of this work.

We also adopted the original split of TB-Dense
(22 documents for training, 5 documents for de-
velopment, and 9 documents for test). Learning
parameters were tuned to maximize their corre-
sponding F-metric on the development set. Using
the selected parameters, systems were retrained
with development set incorporated and evaluated

2In this work, we adopt before, after, includes,
be included, simultaneously, and vague.
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Data #Doc #Edges Ratio Type
TB-Dense 36 6.5K 100% F

TBAQ 220 2.7K 12% P
Table 1: Corpus statistics of the fully and partially anno-
tated dataset used in this work. TBAQ: The union of Time-
Bank and AQUAINT, which is the training set provided by
the TempEval3 workshop. #Edges: The number of annotated
edges. Ratio: The proportion of annotated edges.

against the test split of TB-Dense (about 1.4K re-
lations: 0.6K vague, 0.4K before, 0.3K after, and
0.1K for the rest). Results are shown in Table 2,
where all systems were compared in terms of their
performances on “same sentence” edges (both
nodes are from the same sentence), “nearby sen-
tence” edges, all edges, and the temporal aware-
ness metric used by the TempEval3 workshop.

The first part of Table 2 (Systems 1-5) refers to
the baseline method proposed at the beginning of
Sec. 3, i.e., simply treating P as F and training on
their union. PFull is a variant of P by filling its
missing edges by vague. Since it labels too many
vague TempRels, System 2 suffered from a low
recall. In contrast, P does not contain any vague
training examples, so System 3 would only pre-
dict specific TempRels, leading to a low precision.
Given the obvious difference in F and PFull, Sys-
tem 4 expectedly performed worse than System 1.
However, when we see that System 5 was still
worse than System 1, it is surprising because the
annotated edges in P are correct and should have
helped. This unexpected observation suggests that
simply adding the annotated edges from P into F
is not a proper approach to learn from both.

The second part (Systems 6-7) serves as an ab-
lation study showing the effect of bootstrapping
only. PEmpty is another variant of P we get by re-
moving all the annotated edges (that is, only nodes
are kept). Thus, they did not get any information
from the annotated edges in P and any improve-
ment came from bootstrapping alone. Specifically,
System 6 is the standard bootstrapping and Sys-
tem 7 is the constrained bootstrapping.

Built on top of Systems 6-7, Systems 8-9 fur-
ther took advantage of the annotations of P , which
resulted in additional improvements. Compared
to System 1 (trained on F only) and System 5
(simply adding P into F), the proposed System 9
achieved much better performance, which is also
statistically significant with p<0.005 (McNemar’s
test). While System 7 can be regarded as a repro-
duction of Ning et al. (2017), the original paper
of Ning et al. (2017) achieved an overall score of
P=43.0, R=46.4, F=44.7 and an awareness score

of P=42.6, R=44.0, and F=43.3, and the proposed
System 9 is also better than Ning et al. (2017) on
all metrics.3

5 Discussion

While incorporating transitivity constraints in in-
ference is widely used, Ning et al. (2017) pro-
posed to incorporate these constraints in the learn-
ing phase as well. One of the algorithms pro-
posed in Ning et al. (2017) is based on Chang
et al. (2012)’s constraint-driven learning (CoDL),
which is the same as our intermediate System 7 in
Table 2; the fact that System 7 is better than Sys-
tem 1 can thus be considered as a reproduction of
Ning et al. (2017). Despite the technical similar-
ity, this work is motivated differently and is set to
achieve a different goal: Ning et al. (2017) tried to
enforce the transitivity structure, while the current
work attempts to use imperfect signals (e.g., par-
tially annotated) taken from additional data, and
learn in the incidental supervision framework.

The P used in this work is TBAQ, where only
12% of the edges are annotated. In practice, every
annotation comes at a cost, either time or the ex-
penses paid to annotators, and as more edges are
annotated, the marginal “benefit” of one edge is
going down (an extreme case is that an edge is of
no value if it can be inferred from existing edges).
Therefore, a more general question is to find out
the optimal ratio of graph annotations.

Moreover, partial annotation is only one type of
annotation imperfection. If the annotation is noisy,
we can alter the hard constraints derived from P
and use soft regularization terms; if the annotation
is for a different but relevant task, we can formu-
late corresponding constraints to connect that dif-
ferent task to the task at hand. Being able to learn
from these “indirect” signals is appealing because
indirect signals are usually order of magnitudes
larger than datasets dedicated to a single task.

6 Conclusion

Temporal relation (TempRel) extraction is impor-
tant but TempRel annotation is labor intensive.
While fully annotated datasets (F) are relatively
small, there exist more datasets with partial an-
notations (P). This work provides the first inves-
tigation of learning from both types of datasets,
and this preliminary study already shows promise.

3We obtained the original event-event TempRel predic-
tions of Ning et al. (2017) from https://cogcomp.
org/page/publication_view/822.
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No. Training Same Sentence Nearby Sentence Overall Awareness
Data Bootstrap P R F P R F P R F P R F

1 F - 47.1 49.7 48.4 40.2 37.9 39.0 42.1 41.0 41.5 40.0 40.7 40.3
2 PFull - 37.0 33.1 35.0 34.4 19.6 24.9 37.7 23.6 29.0 36.9 24.0 29.1
3 P - 34.1 52.5 41.3 26.1 48.1 33.8 30.2 52.1 38.2 28.6 49.9 36.4
4 F+PFull - 38.5 32.2 35.1 40.1 38.1 39.1 40.8 35.3 37.8 37.1 36.2 36.6
5 F+P - 43.7 43.9 43.8 39.1 38.3 38.7 41.8 40.7 41.2 38.6 41.4 40.0
6 F+PEmpty Local 41.7 50.3 45.6 39.5 48.1 43.4 41.8 50.4 45.7 40.9 47.5 43.9
7 F+PEmpty Global 44.7 55.5 49.5 40.1 48.7 44 42.0 51.4 46.2 41.1 48.3 44.4
8 F+P Local 43.6 50 46.6 43 46.9 44.8 43.7 47.8 45.6 42 45.6 43.7
9 F+P Global 44.9 56.1 49.9 43.4 52.3 47.5 44.7 54.1 49.0 44.1 50.8 47.2

Table 2: Performance of various usages of the partially annotated data in training. F : Fully annotated data. P: Partially
annotated data. PFull: P with missing annotations filled by vague. PEmpty: P with all annotations removed. Bootstrap:
referring to specific implementations of Line 6 in Algorithm 1, i.e., local or global. Same/nearby sentence: edges whose
nodes appear in the same/nearby sentences in text. Overall: all edges. Awareness: the temporal awareness metric used in the
TempEval3 workshop, measuring how useful the predicted graphs are (UzZaman et al., 2013). System 7 can also be considered
as a reproduction of Ning et al. (2017) (see the discussion in Sec. 5 for details).

Two bootstrapping algorithms (standard and con-
strained) are analyzed and the benefit of P , al-
though with missing annotations, is shown on a
benchmark dataset. This work may be a good
starting point for further investigations of inciden-
tal supervision and data collection schemes of the
TempRel extraction task.
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Abstract

Neural word embeddings models (such as
those built with word2vec) are known to have
stability problems: when retraining a model
with the exact same hyperparameters, words
neighborhoods may change. We propose a
method to estimate such variation, based on
the overlap of neighbors of a given word in
two models trained with identical hyperparam-
eters. We show that this inherent variation is
not negligible, and that it does not affect every
word in the same way. We examine the influ-
ence of several features that are intrinsic to a
word, corpus or embedding model and provide
a methodology that can predict the variability
(and as such, reliability) of a word representa-
tion in a semantic vector space.

1 Introduction

Word embeddings are dense representations of the
meaning of words that are efficient and easy to use.
Embeddings training methods such as word2vec
(Mikolov et al., 2013), are based on neural net-
works methods that imply random processes (ini-
tialization of the network, sampling, etc.). As
such, they display stability problems (Hellrich and
Hahn, 2016) meaning that retraining a model with
the exact same hyperparameters will give different
word representations, with a word possibly having
different nearest neighbors from one model to the
other.

Benchmarks test sets such as WordSim-353
(Finkelstein et al., 2002) are commonly used to
evaluate word embeddings since they provide a
fast and easy way to quickly evaluate a model
(Nayak et al., 2016). However, the instability of
word embeddings is not detected by these test sets
since only selected pairs of words are evaluated.
A model showing instability could get very sim-
ilar performance results when evaluated on such
benchmarks.

Hyperparameters selected when training word
embeddings impact the semantic representation of
a word. Among these hyperparameters we find
some hyperparameters internal to the system such
as the architecture used, the size of the context
window or the dimensions of the vectors as well as
some external hyperparameters such as the corpus
used for training (Asr et al., 2016; Baroni et al.,
2014; Chiu et al., 2016; Li et al., 2017; Mela-
mud et al., 2016; Roberts, 2016). In this work,
we adopt a corpus linguistics approach in a simi-
lar way to Antoniak and Mimno (2018), Hamilton
et al. (2016) and Hellrich and Hahn (2016) mean-
ing that observing the semantic representation of
a word consists in observing the nearest neighbors
of this word. Corpus tools such as Sketch Engine
(Kilgarriff et al., 2014) use embeddings trained on
several corpora1 to provide users with most similar
words as a lexical semantic information on a tar-
get word. In order to make accurate observations,
it thus seems important to understand the stability
of these embeddings.

In this paper, we measure the variation that ex-
ists between several models trained with the same
hyperparameters in terms of nearest neighbors for
all words in a corpus. A word having the same
nearest neighbors across several models is consid-
ered stable.

Based on a set of selected features, we also at-
tempt to predict the stability of a word. Such a pre-
diction is interesting to understand what features
have an impact on a word representation variabil-
ity. It could also be used to certify the reliabil-
ity of the given semantic representation of a word
without having to retrain several models to make
sure the representation is accurate. This will be a
useful method to give more reliability to observa-
tions made in corpus linguistics using word em-

1https://embeddings.sketchengine.co.
uk/static/index.html
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beddings. It can also help choosing the right hy-
perparameters or refine a model (e.g. by removing
selected semantic classes).

We examine the influence of several features
that are intrinsic to a word, a corpus or a model:
part of speech (henceforth POS), degree of pol-
ysemy, frequency of a word, distribution of the
contexts of a word, position and environment of
a vector in the semantic space. We train a mul-
tilinear regression model using these features and
predict up to 48% of the variance. This experiment
was conducted on 3 different corpora with similar
results. We first explain how we measure the vari-
ation of a model. We then present the models used
in this work and we finally describe our predictive
model.

2 Experiment Setup

To measure the variation for a word between two
embedding models, we used an approach simi-
lar to Sahlgren (2006) by measuring the nearest
neighbors overlap for words common to the two
models. More precisely the variation score of a
word varnn across two models M1 and M2 is mea-
sured as:

varnnN
M1,M2

(w) = 1−
|nnN

M1
(w) ∩ nnN

M2
(w)|

N

nnN
M(w) represents the N words having the clos-

est cosine similarity score with word w in a distri-
butional model M. In the experiments presented
here we selected N = 25. To chose the value
of N, we selected two models and computed the
variation with different values of N across the en-
tire vocabulary (1, 5, 10, 25, 50 and 100). We
then computed the correlation coefficient between
scores for all the N values and found that the high-
est average correlation value was for N = 25. The
variation was computed only for open classes (ad-
verbs, adjectives, verbs and nouns).

This variation measure presents both advan-
tages and inconvenients. The fact that this mea-
sure is cost-effective and intuitive makes it very
convenient to use. It is also strongly related to
the way we observe word embeddings in a corpus-
linguistics approach (i.e. by observing a few near-
est neighbors). However we are aware that this
measure assess only a part of what has changed
from one model to the other based on the num-
ber of neighbors observed. This measure may also
be sensible to complex effects and phenomena in

high-dimensional vector spaces such as hubness,
with some words being more “popular” nearest
neighbors than others (Radovanović et al., 2010).
Although we could indeed identify such hubs in
our vector spaces, they were limited to a small
cluster of words (such as surnames for the BNC)
and did not interfere with our measure of stability
for all other areas of the lexicon.

The compared models were trained using the
standard word2vec2 with the default hyperparam-
eters (architecture Skip-Gram with negative sam-
pling rate of 5, window size set to 5, vectors di-
mensions set to 100, negative sampling rate set to
10-3 and number of iterations set to 5). Addition-
ally, min-count was set to 100.

Models were trained on 3 different corpora:
ACL (NLP scientific articles from the ACL an-
thology3), BNC (written part of the British Na-
tional Corpus4) and PLOS (biology scientific arti-
cles from the PLOS archive collections5). All cor-
pora are the same size (about 100 million words)
but they are from different types (the BNC is a
generic corpus while PLOS and ACL are spe-
cialized corpora) and different domains. Corpora
were lemmatized and POS-tagged using the Talis-
mane toolkit (Urieli, 2013). Every word is associ-
ated to its POS for all subsequent experiments.

For each corpus, we trained 5 models using
the exact same hyperparameters mentioned above;
they only differ because of the inherent random-
ness of word2vec’s technique. We then made 10
pairwise comparisons of models per corpus, com-
puting the variation score for every word.

Corpus Voc. size Mean Std. dev. Std. dev.
variation (models) (words)

ACL 22 292 0.16 0.04 0.08
BNC 27 434 0.17 0.04 0.08
PLOS 31 529 0.18 0.05 0.09

Table 1: Mean variation score and standard deviations
for each corpus (5 models trained per corpus).

3 Models Variation

Table 1 reports the results of the comparisons. For
each corpus we indicate the mean variation score,
i.e. the variation averaged over all words and the

2https://code.google.com/archive/p/
word2vec/

3Bird et al. (2008)
4http://www.natcorp.ox.ac.uk/
5https://www.plos.org/

text-and-data-mining
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10 pairwise comparisons. The variation is very
similar from one corpus to the other. Standard de-
viation is low (average of 0.04) across the 10 pairs
of models, meaning that the variation is equally
distributed among the comparisons made for each
corpus. The standard deviation across words is
much higher (average of 0.08), which indicates
that there are important differences in variation
from one word to the other within the same cat-
egory of models.

Variation scores for a given word can be zero
(all 25 nearest neighbors are identical, although
their order can vary) or as high as 0.68 (only a third
of the nearest neighbors are found in both models).
Based on the average variation score across the 5
models, we had a closer look at words varying the
most and the least in each corpus. We identified
semantic clusters that remained stable across mod-
els. E.g., in the BNC that was the case for tempo-
ral expressions (am, pm, noon). For all 3 corpora
we identified closed classes of co-hyponyms, e.g.
family members in the BNC (wife, grandmother,
sister...), linguistic preprocessing in ACL (pars-
ing, lemmatizing, tokenizing...) and antibiotics
in PLOS (puromycin, blasticidin, cefotaxime...).
For ACL and PLOS we also noticed that words
belonging to the transdisciplinary scientific lex-
icon remained stable (conjunctive adverbs such
as nevertheless, moreover, furthermore and scien-
tific processes such as hypothethize, reason, de-
scribe). Among words displaying high variation
we found a large number of tagging errors and
proper nouns. We also identified some common
features for other words displaying a high varia-
tion. E.g. highly polysemic words (sign in ACL,
make in the BNC) and generic adjectives, i.e. ad-
jectives than can modifiy almost any noun (special
in ACL, current in PLOS and whole in the BNC),
tend to vary more.

As there seems to be some common features of
words that show a similar level of stability, we de-
cided to try to predict the variation score.

4 Predicting the Variation

The predictive statistical models we trained are
based on a set of features calculated for each word
in a given distributional model. The target value
is the average variation score measured across the
5 models (and 10 pairwise comparisons), so that
the statistical model focuses on predicting the sta-
bility of an embedding based on a single distribu-

tional model, without having to actually train sev-
eral models with the same hyperparameters. Of
course, we also wanted to identify more precisely
the features of stable and unstable word embed-
dings.

4.1 Selected Features

We measured the following features that are intrin-
sic to the word, corpus or model:

• pos: part of speech (nouns, adjectives, ad-
verbs, verbs, proper nouns);
• polysemy: degree of polysemy of the word,

according to an external resource;
• frequency: frequency of the word in the cor-

pus;
• entropy: dispersion of the contexts of a word;
• norm: L2-norm of the vector of the word in

the semantic space;
• NN-sim: cosine similarity of the word nearest

neighbor.

POS is a straightforward feature, given by the
tagger used to preprocess the corpora. As we
have seen above, words in some categories such
as proper nouns seemed to show higher variation
than others.

To compute the degree of polysemy of a word,
we used ENGLAWI, a lexical resource built
from the english Wiktionary entries (Sajous and
Hathout, 2015). The degree of polysemy corre-
sponds to the number of definitions a word has in
this resource. If a word does not exist in the re-
source, we assigned it a degree of polysemy of 1.
As word embeddings aggregate all the senses of a
word in a single vectors, it can be expected that
polysemous words will show more variation.

Frequency of a word in a corpus is of course
a very important feature when assessing embed-
dings (Sahlgren and Lenci, 2016). It is known that
words of low or high frequencies get lower results
on different tasks using embeddings.

The dispersion of the contexts of a word is mea-
sured by the normalized entropy of a word’s collo-
cates computed on a symmetrical rectangular win-
dow of 5 for open classes words only. A higher
value indicate a high variability in the contexts,
which should also be correlated to variation.

We chose the L2-norm of a word vector in the
model as a feature since Trost and Klakow (2017)
found that the L2-norm of common words do not
follow the general distribution of the model.
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The last feature is the cosine similarity value of
the word nearest neighbor in the semantic space.
It is logically expected that close neighbors of a
word will have a tendency to remain stable across
models.

Corpus Mean adjusted R2 (std. dev.)
ACL 0.39 (0.0007)
BNC 0.43 (0.0102)
PLOS 0.48 (0.0006)

Table 2: Mean adjusted R2 score for predicting the
variation of a word on ACL, BNC and PLOS.

We performed a multiple linear regression with
pairwise interactions. We have 5 multilinear re-
gression models per corpus (one per distributional
model), but they all target the average variation
score of a word as the predicted value. We evalu-
ated the validity of each model using the adjusted
R2 value.

4.2 Models and Results

We can see in Table 2 that we are able to predict
up to 48% of the variance, with slight differences
across the three corpora. Although far from an
efficient prediction, these values indicate that we
nevertheless captured important features that can
explain the stability of embeddings.

In order to understand the impact of the differ-
ent features selected to train the regression models,
we followed a feature ablation approach similar to
Lapesa and Evert (2017). For each word embed-
ding model, we trained one multilinear model us-
ing all features. We then trained 6 other models
by removing one feature at a time, and computed
the difference (loss) of the adjusted R2 compared
to the full 6-features model. This difference can
be seen as the relative importance of the ablated
feature.

Figure 1 shows the impact of each feature used
for training. We can see a similar global pattern
for models trained on the 3 corpora with two fea-
tures displaying more importance than others. The
cosine similarity of the nearest neighbor has the
most important impact. As shown in Figure 1 it
explains around 20% of the variance. This was ex-
pected given the way we measure variation. How-
ever, it accounts for less than half of the predictive
model’s power, meaning that there are other im-
portant effects involved. The POS also has a high
impact on the model trained. Other features have

less impact on the regression models trained. This
is the case of the entropy and the polysemy for all
3 corpora. The norm and frequency have a slightly
different impact depending on the corpus.

To get a better understanding of the effects of
each feature on the variation of a word, we ana-
lyzed the effect of features using partial effects.

We observed similar effects of the features for
all 3 corpora. As we stated before, the cosine simi-
larity score of the nearest neighbor of a word is the
most important feature when predicting its vari-
ability. We found that words having a higher near-
est neighbor similarity score displayed less vari-
ation. On the contrary, when the similarity score
was lower, the variation was higher. It seems logi-
cal that a very close neighbor remains stable from
one model to the other. However this is not a sys-
tematic behavior. Some words having very close
neighbors display a high variability.

For POS, we confirm that proper nouns have a
higher variation than other categories, along with
nouns on a smaller scale. No differences could be
found among other categories.

The norm of the vector is negatively corre-
lated to variation: word with vectors distant from
the origin show less variation. This effect was
confirmed but less clear for the ACL models.
This phenomenon has to be further inquired as is
the overall geometry of word embeddings vector
space. E.g., Mimno and Thompson (2017) have
shown that embeddings trained using word2vec
Skip-Gram are not evenly dispersed through the
semantic space.

Figure 1: Feature ablation for multilinear regression
models trained for ACL, BNC and PLOS.
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The effect of the frequency over the predictabil-
ity of the variation is not linear. Words having very
low or very high frequency are more affected by
variation than words in the mid-frequency range.
This partly infirms the common knowledge that
embeddings of more frequent words are of better
quality. We actually found a number of frequent
words displaying instability words in each corpus
(e.g. gene and protein in PLOS, language in ACL
and make in BNC etc.).

The degree of polysemy of a word also has a
slight effect on the predictability of the variation of
a word. The more polysemic a word is, the more
likely its variation score is to be high.

As for the entropy, we observed for ACL and
the BNC, that words having higher entropy with
their contexts display more variation.

Concerning these two last features (polysemy
and entropy) experiments confirm that distribu-
tional semantics has more difficulty in represent-
ing the meaning of words that appear in a variety
of contexts.

5 Conclusion

In this paper, we wanted to get a better understand-
ing of the intrinsic stability of neural-based word
embeddings models. We agree with Antoniak and
Mimno (2018) when saying that word embeddings
should be used with care when used as tools for
corpus linguistics, as any phenomenon observed
in such models could be simply due to random.

We proposed a method that measures the vari-
ation of a word, along with a technique to predict
the variation of a word by using simple features.
We have seen that not all features have the same
importance when predicting the variability, promi-
nent features being the cosine similarity score of
the nearest neighbor of a word and its POS. The
other features we considered, while having a lesser
predictive power, helped to shed some light on
which areas of the lexicon are more or less af-
fected by the variation. This means that we can
hope to assess which words (in a given corpus) can
be more reliably represented by embeddings, and
which one should be analyzed with more caution.

Beyond the practical insterest of this prediction,
this work is a step towards a better understanding
of the conditions in which distributional semantics
capture and represent the meaning of words. We
already observed that some words or meanings are
more challenging than others. In this way we as-

sume that stability attest the quality of a semantic
representation.

In this work, the embeddings models used were
trained with default hyperparameters. In the fu-
ture, we want to know if hyperparameters used
when training word embeddings have an impact
on the variation. We also want to make sure that
the identified features explaining the variation will
be the same when varying the hyperparameters. In
the long run, this could lead to an alternative to
benchmark test sets when selecting the hyperpa-
rameter values.
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Abstract

Supervised distributional methods are applied
successfully in lexical entailment, but recent
work questioned whether these methods ac-
tually learn a relation between two words.
Specifically, Levy et al. (2015) claimed that
linear classifiers learn only separate properties
of each word. We suggest a cheap and easy
way to boost the performance of these meth-
ods by integrating multiplicative features into
commonly used representations. We provide
an extensive evaluation with different classi-
fiers and evaluation setups, and suggest a suit-
able evaluation setup for the task, eliminating
biases existing in previous ones.

1 Introduction

Lexical entailment is concerned with identifying
the semantic relation, if any, holding between two
words, as in (pigeon, hyponym, animal). The pop-
ularity of the task stems from its potential rele-
vance to various NLP applications, such as ques-
tion answering and recognizing textual entailment
(Dagan et al., 2013) that often rely on lexical se-
mantic resources with limited coverage like Word-
net (Miller, 1995). Relation classifiers can be used
either within applications or as an intermediate
step in the construction of lexical resources which
is often expensive and time-consuming.

Most methods for lexical entailment are distri-
butional, i.e., the semantic relation holding be-
tween x and y is recognized based on their
distributional vector representations. While the
first methods were unsupervised and used high-
dimensional sparse vectors (Weeds and Weir,
2003; Kotlerman et al., 2010; Santus et al., 2014),
in recent years, supervised methods became popu-
lar (Baroni et al., 2012; Roller et al., 2014; Weeds
et al., 2014). These methods are mostly based
on word embeddings (Mikolov et al., 2013b; Pen-
nington et al., 2014a) utilizing various vector com-

binations that are designed to capture relational in-
formation between two words.

While most previous work reported success us-
ing supervised methods, some questions remain
unanswered: First, several works suggested that
supervised distributional methods are incapable of
inferring the relationship between two words, but
rather rely on independent properties of each word
(Levy et al., 2015; Roller and Erk, 2016; Shwartz
et al., 2016), making them sensitive to training
data; Second, it remains unclear what is the most
appropriate representation and classifier; previ-
ous studies reported inconsistent results with Con-
cat〈 ~vx⊕ ~vy〉 (Baroni et al., 2012) and Diff〈~vy− ~vx〉
(Roller et al., 2014; Weeds et al., 2014; Fu et al.,
2014), using various classifiers.

In this paper, we investigate the effectiveness of
multiplicative features, namely, the element-wise
multiplication Mult〈 ~vx� ~vy〉, and the squared dif-
ference Sqdiff〈(~vy − ~vx) � (~vy − ~vx)〉. These
features, similar to the cosine similarity and the
Euclidean distance, might capture a different no-
tion of interaction information about the relation-
ship holding between two words. We directly inte-
grate them into some commonly used representa-
tions. For instance, we consider the concatenation
Diff⊕Mult 〈(~vy− ~vx)⊕( ~vx� ~vy)〉 that might cap-
ture both the typicality of each word in the relation
(e.g., if y is a typical hypernym) and the similarity
between the words.

We experiment with multiple supervised distri-
butional methods and analyze which representa-
tions perform well in various evaluation setups.
Our analysis confirms that integrating multiplica-
tive features into standard representations can sub-
stantially boost the performance of linear classi-
fiers. While the contribution over non-linear clas-
sifiers is sometimes marginal, they are expensive
to train, and linear classifiers can achieve the same
effect “cheaply” by integrating multiplicative fea-
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tures. The contribution of multiplicative features
is mostly prominent in strict evaluation settings,
i.e., lexical split (Levy et al., 2015) and out-of-
domain evaluation that disable the models’ abil-
ity to achieve good performance by memorizing
words seen during training. We find that Concat
⊕Mult performs consistently well, and suggest it
as a strong baseline for future research.

2 Related Work

Available Representations In supervised distri-
butional methods, a pair of words (x, y) is rep-
resented as some combination of the word em-
beddings of x and y, most commonly Concat
〈~vx ⊕ ~vy〉 (Baroni et al., 2012) or Diff 〈~vy − ~vx〉
(Weeds et al., 2014; Fu et al., 2014).

Limitations Recent work questioned whether
supervised distributional methods actually learn
the relation between x and y or only separate prop-
erties of each word. Levy et al. (2015) claimed
that they tend to perform “lexical memorization”,
i.e., memorizing that some words are prototypical
to certain relations (e.g., that y = animal is a hy-
pernym, regardless of x). Roller and Erk (2016)
found that under certain conditions, these methods
actively learn to infer hypernyms based on sep-
arate occurrences of x and y in Hearst patterns
(Hearst, 1992). In either case, they only learn
whether x and y independently match their cor-
responding slots in the relation, a limitation which
makes them sensitive to the training data (Shwartz
et al., 2017; Sanchez and Riedel, 2017).

Non-linearity Levy et al. (2015) claimed that
the linear nature of most supervised methods lim-
its their ability to capture the relation between
words. They suggested that using support vector
machine (SVM) with non-linear kernels slightly
mitigates this issue, and proposed KSIM, a custom
kernel with multiplicative integration.

Multiplicative Features The element-wise mul-
tiplication has been studied by Weeds et al. (2014),
but models that operate exclusively on it were not
competitive to Concat and Diff on most tasks.
Roller et al. (2014) found that the squared differ-
ence, in combination with Diff, is useful for hyper-
nymy detection. Nevertheless, little to no work has
focused on investigating combinations of repre-
sentations obtained by concatenating various base
representations for the more general task of lexical
entailment.

Base representations Combinations
Only-x〈 ~vx〉 Diff⊕Mult
Only-y〈~vy〉 Diff⊕ Sqdiff

Diff〈~vy − ~vx〉 Sum⊕Mult
Sum〈 ~vx + ~vy〉 Sum⊕ Sqdiff

Concat〈 ~vx ⊕ ~vy〉 Concat⊕Mult
Mult〈 ~vx � ~vy〉 Concat⊕ Sqdiff

Sqdiff〈(~vy − ~vx)� (~vy − ~vx)〉

Table 1: Word pair representations.

3 Methodology

We classify each word pair (x, y) to a specific
semantic relation that holds for them, from a set
of pre-defined relations (i.e., multiclass classifica-
tion), based on their distributional representations.

3.1 Word Pair Representations

Given a word pair (x, y) and their embeddings
~vx, ~vy, we consider various compositions as fea-
ture vectors for classifiers. Table 1 displays base
representations and combination representations,
achieved by concatenating two base representa-
tions.

3.2 Word Vectors

We used 300-dimensional pre-trained word em-
beddings, namely, GloVe (Pennington et al.,
2014b) containing 1.9M word vectors trained on a
corpus of web data from Common Crawl (42B to-
kens),1 and Word2vec (Mikolov et al., 2013a,c)
containing 3M word vectors trained on a part of
Google News dataset (100B tokens).2 Out-of-
vocabulary words were initialized randomly.

3.3 Classifiers

Following previous work (Levy et al., 2015; Roller
and Erk, 2016), we trained different types of clas-
sifiers for each word-pair representation outlined
in Section 3.1, namely, logistic regression with
L2 regularization (LR), SVM with a linear kernel
(LIN), and SVM with a Gaussian kernel (RBF). In
addition, we trained multi-layer perceptrons with
a single hidden layer (MLP). We compare our mod-
els against the KSIM model found to be successful
in previous work (Levy et al., 2015; Kruszewski
et al., 2015). We do not include Roller and Erk
(2016)’s model since it focuses only on hyper-
nymy. Hyper-parameters are tuned using grid
search, and we report the test performance of the

1
http://nlp.stanford.edu/projects/glove/

2
http://code.google.com/p/word2vec/
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Dataset Relations #Instances #Domains
BLESS attri (attribute), coord (co-hyponym), event, hyper (hypernymy), mero (meronymy), random 26,554 17
K&H+N hypo (hypernymy), mero (meronymy), sibl (co-hyponym), false (random) 63,718 3
ROOT09 hyper (hypernymy), coord (co-hyponym), random 12,762 –

EVALution
HasProperty (attribute), synonym, HasA (possession),

7,378 –
MadeOf (meronymy), IsA (hypernymy), antonym, PartOf (meronymy)

Table 2: Metadata on the datasets. Relations are mapped to corresponding WordNet relations, if available.

hyper-parameters that performed best on the vali-
dation set. Below are more details about the train-
ing procedure:

• For LR, the inverse of regularization strength
is selected from {2−1, 21, 23, 25}.
• For LIN, the penalty parameter C of the error

term is selected from {2−5, 2−3, 2−1, 21}.
• For RBF, C and γ values are selected from
{21, 23, 25, 27} and {2−7, 2−5, 2−3, 2−1}, re-
spectively.
• For MLP, the hidden layer size is either 50 or

100, and the learning rate is fixed at 10−3. We
use early stopping based on the performance
on the validation set. The maximum number
of training epochs is 100.
• For KSIM, C and α values are selected from
{2−7, 2−5, . . . , 27} and {0.0, 0.1, . . . , 1.0},
respectively.

3.4 Datasets
We evaluated the methods on four common se-
mantic relation datasets: BLESS (Baroni and Lenci,
2011), K&H+N (Necsulescu et al., 2015), ROOT09

(Santus et al., 2016), and EVALution (Santus et al.,
2015). Table 2 provides metadata on the datasets.
Most datasets contain word pairs instantiating dif-
ferent, explicitly typed semantic relations, plus a
number of unrelated word pairs (random). In-
stances in BLESS and K&H+N are divided into a
number of topical domains.3

3.5 Evaluation Setup
We consider the following evaluation setups:

Random (RAND) We randomly split each
dataset into 70% train, 5% validation and 25% test.

Lexical Split (LEX) In line with recent work
(Shwartz et al., 2016), we split each dataset into
train, validation and test sets so that each con-
tains a distinct vocabulary. This differs from Levy
et al. (2015) who dedicated a subset of the train

3We discarded two relations in EVALution with too few
instances and did not include its domain information since
each word pair can belong to multiple domains at once.

set for evaluation, allowing the model to memo-
rize when tuning hyper-parameters. We tried to
keep the same ratio 70 : 5 : 25 as in the random
setup.

Out-of-domain (OOD) To test whether the
methods capture a generic notion of each semantic
relation, we test them on a domain that the clas-
sifiers have not seen during training. This setup
is more realistic than the random and lexical split
setups, in which the classifiers can benefit from
memorizing verbatim words (random) or regions
in the vector space (lexical split) that fit a specific
slot of each relation.

Specifically, on BLESS and K&H+N, one domain is
held out for testing whilst the classifiers are trained
and validated on the remaining domains. This pro-
cess is repeated using each domain as the test set,
and each time, a randomly selected domain among
the remaining domains is left out for validation.
The average results are reported.

4 Experiments

Table 3 summarizes the best performing base rep-
resentations and combinations on the test sets
across the various datasets and evaluation setups.4

The results across the datasets vary substantially
in some cases due to the differences between the
datasets’ relations, class balance, and the source
from which they were created. For instance, K&H+N
is imbalanced between the number of instances
across relations and domains. ROOT09 was de-
signed to mitigate the lexical memorization issue
by adding negative switched hyponym-hypernym
pairs to the dataset, making it an inherently more
difficult dataset. EVALution contains a richer set
of semantic relations. Overall, the addition of
multiplicative features improves upon the perfor-
mance of the base representations.

Classifiers Multiplicative features substantially
boost the performance of linear classifiers. How-
ever, the gain from adding multiplicative features

4Due to the space limitation, we only show the results ob-
tained with Glove. The trend is similar across the word em-
beddings.
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Setup Dataset Linear classifiers (LR, LIN) Non-linear classifiers (RBF, MLP)
KSIM

~vy Base Combination ~vy Base Combination

RAND

BLESS 84.4
LR
Concat

83.8
LR
Concat ⊕ Mult

89.5 (+5.7) 89.3
RBF
Concat

94.0
RBF
Concat ⊕ Mult

94.3 (+0.3) 70.2

K&H-N 89.1
LR
Concat

95.4
LR
Concat ⊕ SqDiff

96.1 (+0.7) 96.4
RBF
Concat

98.6
RBF
Concat ⊕ Mult

98.6 (0.0) 82.4

ROOT09 68.5
LIN
Sum

65.9
LIN
Sum ⊕ Mult

84.6 (+18.7) 66.1
RBF
Sum

87.3
RBF
Sum ⊕ SqDiff

88.8 (+1.5) 72.3

EVALution 49.7
LIN
Concat

56.7
LIN
Concat ⊕ Mult

56.8 (+0.1) 52.1
RBF
Concat

61.1
RBF
Concat ⊕ Mult

60.6 (-0.5) 50.5

LEX

BLESS 69.9
LIN
Concat

70.6
LIN
Concat ⊕ Mult

74.5 (+3.9) 69.8
MLP
Concat

63.0
MLP
Concat ⊕ Mult

73.8 (+10.8) 65.8

K&H-N 78.3
LIN
Sum

74.0
LIN
Sum ⊕ SqDiff

76.1 (+2.1) 83.2
RBF
Sum

82.0
RBF
Sum ⊕ Mult

81.7 (-0.3) 77.5

ROOT09 66.7
LR
Concat

66.0
LR
Concat ⊕ Mult

77.9 (+11.9) 64.5
RBF
Concat

76.8
RBF
Concat ⊕ Mult

81.6 (+4.8) 66.7

EVALution 35.0
LR
Concat

37.9
LR
Concat ⊕ Mult

40.2 (+2.3) 35.5
RBF
Concat

43.1
RBF
Concat ⊕ Mult

44.9 (+1.8) 35.9

OOD

BLESS 70.9
LIN
Concat

69.9
LIN
Concat ⊕ Mult

77.0 (+7.1) 69.9
RBF
Diff

78.7
RBF
Diff ⊕ Mult

81.5 (+2.8) 57.8

K&H-N 38.5
LIN
Concat

38.6
LIN
Concat ⊕ Mult

39.7 (+1.1) 48.6
MLP
Sum

44.7
MLP
Sum ⊕ Mult

47.9 (+3.2) 48.9

Table 3: Best test performance (F1) across different datasets and evaluation setups, using Glove. The number in
brackets indicates the performance gap between the best performing combination and base representation setups.

Vector/ RAND OOD

Classifier ~vy Diff Diff ⊕ Mult Sum Sum ⊕ Mult Concat Concat ⊕ Mult ~vy Diff Diff ⊕ Mult Sum Sum ⊕ Mult Concat Concat ⊕ Mult

G
lo

V
e

LR 84.4 81.5 87.6 (+6.1) 81.5 87.0 (+5.5) 83.8 89.5 (+5.7) 70.9 64.5 74.7 (+10.2) 59.2 68.9 (+9.7) 69.5 76.5 (+7.0)

LIN 84.1 81.5 87.7 (+6.2) 81.3 87.2 (+5.9) 83.8 89.2 (+5.4) 70.7 64.6 74.8 (+10.2) 59.3 69.4 (+10.1) 69.9 77.0 (+7.1)

RBF 89.3 93.8 94.1 (+0.3) 94.4 94.2 (-0.2) 94.0 94.3 (+0.3) 67.8 78.7 81.5 (+2.8) 65.3 66.4 (+1.1) 69.5 75.7 (+6.2)

MLP 84.4 87.4 89.2 (+1.8) 87.2 89.9 (+2.7) 90.5 90.5 (0.0) 69.9 67.4 77.7 (+10.3) 57.3 66.1 (+8.8) 71.5 77.3 (+5.8)

W
or

d2
ve

c

LR 83.5 81.0 85.4 (+4.4) 80.0 84.6 (+4.6) 83.6 87.1 (+3.5) 71.2 62.4 69.0 (+6.6) 59.0 65.3 (+6.3) 71.8 76.1 (+4.3)

LIN 83.3 80.8 84.6 (+3.8) 80.4 84.5 (+4.1) 83.3 86.5 (+3.2) 71.5 62.8 69.1 (+6.3) 59.8 65.2 (+5.4) 72.1 76.0 (+3.9)

RBF 89.1 93.7 93.7 (0.0) 93.7 93.8 (+0.1) 93.6 93.8 (+0.2) 69.2 75.6 76.0 (+0.4) 64.7 66.3 (+1.6) 71.4 75.3 (+3.9)

MLP 81.6 81.0 84.6 (+3.6) 79.6 85.2 (+5.6) 81.3 84.7 (+3.4) 70.2 63.4 69.3 (+5.9) 56.2 60.0 (+3.8) 70.5 74.6 (+4.1)

Table 4: Test performance (F1) on BLESS in the RAND and OOD setups, using Glove and Word2vec.

is smaller when non-linear classifiers are used,
since they partially capture such notion of inter-
action (Levy et al., 2015). Within the same repre-
sentation, there is a clear preference to non-linear
classifiers over linear classifiers.

Evaluation Setup The Only-y representation
indicates how well a model can perform without
considering the relation between x and y (Levy
et al., 2015). Indeed, in RAND, this method per-
forms similarly to the others, except on ROOT09,
which by design disables lexical memorization.
As expected, a general decrease in performance is
observed in LEX and OOD, stemming from the
methods’ inability to benefit from lexical memo-
rization. In these setups, there is a more signifi-
cant gain from using multiplicative features when
non-linear classifiers are used.

Word Pair Representations Among the base
representations Concat often performed best,
while Mult seemed to be the preferred multiplica-
tive addition. Concat ⊕ Mult performed consis-

tently well, intuitively because Concat captures
the typicality of each word in the relation (e.g.,
if y is a typical hypernym) and Mult captures the
similarity between the words (where Concat alone
may suggest that animal is a hypernym of apple).
To take a closer look at the gain from adding Mult,
Table 4 shows the performance of the various base
representations and combinations with Mult using
different classifiers on BLESS.5

5 Analysis of Multiplicative Features

We focus the rest of the discussion on the OOD
setup, as we believe it is the most challenging
setup, forcing methods to consider the relation be-
tween x and y. We found that in this setup, all
methods performed poorly on K&H+N, likely due
to its imbalanced domain and relation distribution.
Examining the per-relation F1 scores, we see that
many methods classify all pairs to one relation.
Even KSIM, the best performing method in this

5We also tried ~vx with multiplicative features but they per-
formed worse.
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x relation y similarity Concat Concat ⊕Mult
cloak-n random good-j 0.195 attribute random
cloak-n random hurl-v 0.161 event random
cloak-n random stop-v 0.186 event random
coat-n event wear-v 0.544 random event
cloak-n mero silk-n 0.381 random mero
dress-n attri feminine-j 0.479 random attri

Table 5: Example pairs which were incorrectly classified by Concat while being correctly classified by Concat ⊕
Mult in BLESS, along with their cosine similarity scores.

setup, classifies pairs as either hyper or random,
effectively only determining if they are related or
not. We therefore focus our analysis on BLESS.

To get a better intuition of the contribution of
multiplicative features, Table 5 exemplifies pairs
that were incorrectly classified by Concat (RBF)
while correctly classified by Concat ⊕ Mult
(RBF), along with their cosine similarity scores. It
seems that Mult indeed captures the similarity be-
tween x and y. While Concat sometimes relies
on properties of a single word, e.g. classifying an
adjective y to the attribute relation and a verb y to
the event relation, adding Mult changes the clas-
sification of such pairs with low similarity scores
to random. Conversely, pairs with high similarity
scores which were falsely classified as random by
Concat are assigned specific relations by
Concat ⊕Mult.

Interestingly, we found that across domains,
there is an almost consistent order of relations with
respect to mean intra-pair cosine similarity:

coord meronym attribute event hypernym random
0.426 0.323 0.304 0.296 0.279 0.141

Table 6: Mean pairwise cosine similarity in BLESS.

Since the difference between random (0.141)
and other relations (0.279-0.426) was the most
significant, it seems that multiplicative features
help distinguishing between related and unrelated
pairs. This similarity is possibly also used to dis-
tinguish between other relations.

6 Conclusion

We have suggested a cheap way to boost the
performance of supervised distributional methods
for lexical entailment by integrating multiplica-
tive features into standard word-pair representa-
tions. Our results confirm that the multiplicative
features boost the performance of linear classi-
fiers, and in strict evaluation setups, also of non-
linear classifiers. We performed an extensive eval-
uation with different classifiers and evaluation se-

tups, and suggest the out-of-domain evaluation
as the most suitable for the task. Directions for
future work include investigating other composi-
tions, and designing a neural model that can auto-
matically learn such features.
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Abstract

We propose a practical model for named en-
tity recognition (NER) that combines word
and character-level information with a specific
learned representation of the prefixes and suf-
fixes of the word. We apply this approach
to multilingual and multi-domain NER and
show that it achieves state of the art results
on the CoNLL 2002 Spanish and Dutch and
CoNLL 2003 German NER datasets, consis-
tently achieving 1.5-2.3 percent over the state
of the art without relying on any dictionary fea-
tures. Additionally, we show improvement on
SemEval 2013 task 9.1 DrugNER, achieving
state of the art results on the MedLine dataset
and the second best results overall (-1.3% from
state of the art). We also establish a new bench-
mark on the I2B2 2010 Clinical NER dataset
with 84.70 F-score.

1 Introduction

Named entity recognition (NER), or identifying
the specific named entities (eg. person, location,
organization etc) in a text, is a precursor to other in-
formation extraction tasks such as event extraction.
The oldest and perhaps most common approach to
NER is based on dictionary lookups, and indeed,
when the resources are available, this is very useful
(e.g., Uzuner et al., 2011). However, hand-crafting
these lexicons is time-consuming and expensive
and so these resources are often either unavailable
or sparse for many domains and languages.

Neural network (NN) approaches to NER, on the
other hand, do not necessitate these resources, and
additionally do not require complex feature engi-
neering, which can also be very costly and may not
port well from domain to domain and language to
language. Commonly, these NN architectures for
NER include a learned representation of individual
words as well as an encoding of the word’s char-
acters. However, neither of these representations

makes explicit use of the semantics of sub-word
units, i.e., morphemes.

Here we propose a simple neural network archi-
tecture that learns a custom representation for af-
fixes, allowing for a richer semantic representation
of words and allowing the model to better approxi-
mate the meaning of words not seen during train-
ing1. While a full morphological analysis might
bring further benefits, to ease re-implementation
we take advantage of the Zipfian distribution of lan-
guage and focus here on a simple approximation of
morphemes as high-frequency prefixes and suffixes.
Our approach thus requires no language-specific
affix lexicon or morphological tools.

Our contributions are:

1. We propose a simple yet robust extension of
current neural NER approaches that allows
us to learn a representation for prefixes and
suffixes of words. We employ an inexpensive
and language-independent method to approxi-
mate affixes of a given language using n-gram
frequencies. This extension is able to be ap-
plied directly to new languages and domains
without any additional resource requirements
and it allows for a more compositional, and
hence richer, representation of words.

2. We demonstrate the utility of including a ded-
icated representation for affixes. Our model
shows as much as a 2.3% F1 improvement
over an recurrent neural network model with
only words and characters, demonstrating that
what our model learns about affixes is comple-
mentary to a recurrent layer over characters.
We find filtering to high-frequency affixes is
essential, as simply using all word-boundary
character trigrams degrades performance in
some cases.

1All code required for reproducibility is available at:
https://github.com/vikas95/Pref_Suff_Span_NN
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3. We establish a new state-of-the-art for Span-
ish, Dutch, and German NER, and MedLine
drug NER. Additionally, we achieve near
state-of-the-art performance in English NER
and DrugBank drug NER, despite using no
external dictionaries.

2 Related Work

Recent neural network (RNN) state of the art tech-
niques for NER have proposed a basic two-layered
RNN architecture, first over characters of a word
and second over the words of a sentence (Ma and
Hovy, 2016; Lample et al., 2016). Many variants
of such approaches have been introduced, e.g., to
model multilingual NER (Gillick et al., 2016) or
to incorporate transfer-learning (Yang et al., 2016).
Such approaches have typically relied on just the
words and characters, though Chiu and Nichols
(2016) showed that incorporating dictionary and
orthography-based features in such neural networks
improves English NER. In other domains such as
DrugNER, dictionary features are extensively used
for NER (Segura Bedmar et al., 2013; Liu et al.,
2015), but relying on these resources limits the
languages and domains in which an approach can
operate, hence we propose a model that does not
use external dictionary resources.

Morphological features were highly effective
in named entity recognizers before neural net-
works became the new state-of-the-art. For ex-
ample, prefix and suffix features were used by sev-
eral of the original systems submitted to CoNLL
2002 (Sang, 2002; Cucerzan and Yarowsky, 2002)
and 2003 (Tjong Kim Sang and De Meulder, 2003)
as well as by systems for NER in biomedical
texts (Saha et al., 2009). We have used prefix and
suffix features by filtering our trigrams based on
frequency, which better approximate the true af-
fixes of the language. We show in Section 5 that
our filtered set of trigram affixes performs better
than simply adding all beginning and ending tri-
grams. Bian et al. (2014) incorporated both affix
and syllable information into their learned word
representations. The Fasttext word embeddings
(Bojanowski et al., 2017) represent each word as a
bag of n-grams and thus incorporate sub-word in-
formation. Here, we provide explicit representation
for only the high-frequency n-grams and learn a
task-specific semantic representation of them. We
show in Section 5 that including all n-grams re-
duces performance.

Other sub-word units, such as phonemes (from
Epitran2 - a tool for transliterating orthographic text
as International Phonetic Alphabet), have also been
found to be useful for NER (Bharadwaj et al., 2016).
Tkachenko and Simanovsky (2012) explored contri-
butions of various features, including affixes, on the
CoNLL 2003 dataset. Additionally, morpheme dic-
tionaries have been effective in developing features
for NER tasks in languages like Japanese (Sasano
and Kurohashi, 2008), Turkish (Yeniterzi, 2011),
Chinese (Gao et al., 2005), and Arabic (Maloney
and Niv, 1998). However, such morphological fea-
tures have not yet been integrated into the new
neural network models for NER.

3 Approach

We consider affixes at the beginnings and ends of
words as sub-word features for NER. Our base
model is similar to Lample et al. (2016) where we
apply an long short term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) layer over the char-
acters of a word and then concatenate the output
with a word embedding to create a word repre-
sentation that combines both character-level and
word-level information. Then, another layer of
LSTM is applied over these word representations
to make word-by-word predictions at the sentence
level. Our proposed model augments this Lample
et al. (2016) architecture with a learned represen-
tation of the n-gram prefixes and suffixes of each
word.

3.1 Collecting Approximate Affixes

We consider all n-gram prefixes and suffixes of
words in our training corpus, and select only
those whose frequency is above a threshold, T ,
as frequent prefixes and suffixes should be more
likely to behave like true morphemes of a lan-
guage.To determine the n-gram size, n, and the
frequency threshold, T , we experimented with
various combinations of n = 2, 3, 4 and T =
10, 15, 20, 25, 50, 75, 100, 150, 200 by filtering af-
fixes accordingly and evaluating our model (de-
scribed below) on the CoNLL 2002 and CoNLL
2003 validation data. The best and consistent pa-
rameter setting over all 4 languages was n = 3
(three character affixes) and T = 50 (affixes that
occurred at least 50 times in the training data). We
have used n = 3 and T = 10 for DrugNER after
getting best performance with this threshold on val-

2https://pypi.org/project/epitran/0.4/
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Figure 1: Architecture of our approach. We concatenate a learned representation for our approximated affixes
(shown in brown) to a Bi-LSTM encoding of the characters (in blue) and the learned representation of the word
itself (in green). This is then passed through another Bi-LSTM and CRF to produce the named entity tags.

idation data and we have used T = 20 for I2B2
NER dataset.

3.2 Model and Hyper-parameters

Our proposed model, shown in Figure 1, has sepa-
rate embeddings for characters, prefixes, suffixes,
and words. First, a character embedding maps each
of the characters of a word to a dense vector. Then
a bidirectional-LSTM (Bi-LSTM) layer is passed
over the character embeddings to produce a single
vector for each word. The output of this Bi-LSTM
layer is concatenated with embeddings for the pre-
fix, suffix, and the word itself, and this concatena-
tion is the final representation of the word. Then
the representations of each word in the sentence are
passed through another Bi-LSTM layer, followed
by a conditional random field (CRF) layer, to pro-
duce the begin-inside-outside (BIO) named entity
tags.

We randomly initialized character, prefix and
suffix affix embeddings. We used Fasttext 300-
dimension word embeddings (Bojanowski et al.,
2017) for Spanish, Dutch CoNLL 2002 and Ger-
man language CoNLL 2003. We experimented
with 300-dimension Fasttext embeddings and 100-
dimension Glove embeddings for CoNLL 2003 En-
glish data and saw no appreciable differences (±
0.2%). Thus, we report scores with 100-dimension
Glove embeddings due to the reduced training time
and fewer parameters. We used 300 dimension
Pubmed word embeddings (Pyysalo et al., 2013)
for DrugNER and I2B2 clinical NER. Across all
evaluations in the Section 4, we use the same hyper-
parameter settings: Character embedding size = 50;
prefix embedding size = 30; suffix embedding size
= 30; hidden size for LSTM layer over characters =
25; hidden size for LSTM layer over [prefix, suffix,

word, LSTM(characters)] = 50; maximum number
of epochs = 200; early stopping = 30 (i.e., if no
improvement in 30 epochs, stop); dropout value =
0.55, applied after concatenating character LSTM
representation, word embedding and affix embed-
ding; learning rate (LR) = 0.15; LR decay rate=
0.99; optimizer = SGD; and batch size = 100 (for
all datasets except Dutch = 80).

4 Experiments

We evaluate our model across multiple languages
and domains.

4.1 Multilingual Datasets

To evaluate on the CoNLL 2002 and 2003 test sets,
we trained our model on the combined training +
validation data with the general hyper-parameter
set from Section 3.2. Since on the validation data,
the majority of our models terminated their training
between 100 and 150 epochs, we report two models
trained on the combined training + validation data:
one after 100 epochs, and one after 150 epochs.

We evaluated our model with all the languages
in CoNLL 2002 and 2003, as reported in Table 1.
Our model achieved state of the art performance on
Spanish CoNLL 2002 (Sang, 2002), outperform-
ing Yang et al. (2016) by 1.49%, on Dutch CoNLL
2002, outperforming Yang et al. (2016) by 2.35%,
and on German CoNLL 2003, outperforming Lam-
ple et al. (2016) by 0.25%. Our reimplementation
of Lample et al. (2016) using Fasttext word em-
bedding (Dutch) could also achieve state of the art
results on Dutch CoNLL 2002 dataset. This demon-
strates the utility of our affix approach, despite its
simplicity.
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Dict ES NL EN DE

Gillick et al. (2016) – Byte-to-Span (BTS) No 82.95 82.84 86.50 76.22
Yang et al. (2016) No 85.77 85.19 91.26 -
Luo et al. (2015) Yes - - 91.20 -
Chiu and Nichols (2016) Yes - - 91.62 (±0.33) -
Ma and Hovy (2016) No - - 91.21 -
Lample et al. (2016) No 85.75 81.74 90.94 78.76

Our base model (100 Epochs) No 85.34 85.27 90.24 78.44
Our model (with Affixes) (100 Epochs) No 86.92 87.50 90.69 78.56
Our model (with Affixes) (150 Epochs) No 87.26 87.54 90.86 79.01

Table 1: Performance of our model (with and without affixes), using general set of hyper-parameters and previous
work on four datasets: CoNLL 2002 Spanish (ES), CoNLL 2002 Dutch (NL), CoNLL 2003 English (EN), and
CoNLL 2003 German (DE). Dict indicates whether or not the approach makes use of dictionary lookups.

Model ML (80.10% ) DB (19.90% ) Both datasets
Dict P R F1 P R F1 P R F1

Rocktäschel et al. (2013) Yes 60.7 55.8 58.10 88.10 87.5 87.80 73.40 69.80 71.50
Liu et al. (2015) (baseline) No - - - - - - 78.41 67.78 72.71
Liu et al. (2015) (MedLine emb.) No - - - - - - 82.70 69.68 75.63
Our model (with affixes) No 74 64 69 89 86 87 81 74 77
Liu et al. (2015) (state of the art) Yes 78.77 60.21 68.25 90.60 88.82 89.70 84.75 72.89 78.37

Table 2: DrugNER results with official evaluation script on test dataset consisting of MedLine (ML) (80.10% of
the total test data) and DrugBank (DB) test data (19.90 % of the total test data). We report precision (P), recall (R),
and F1-score.

4.2 Clinical and Drug NER
To prove the effectiveness of our proposed model
in multiple domains, we also evaluated our model
on the SemEval 2013 task 9.1 DrugNER dataset
(Segura Bedmar et al., 2013) and the I2B2 clinical
NER dataset (Uzuner et al., 2011) .

We first converted these datasets into CoNLL
BIO format and then evaluated the performance
with CoNLL script. We have also evaluated
DrugNER performance with the official evaluation
script (Segura Bedmar et al., 2013)3 after convert-
ing it to the required format. These results are given
in Table 2. The SemEval 2013 task 9.1 DrugNER
dataset is composed of two parts: the MedLine test
data which consists of 520 sentences and 382 enti-
ties, and the DrugBank test data which consists of
145 sentences and 303 entities. We outperform Liu
et al. (2015) by 0.75% and Rocktäschel et al. (2013)
by 10.90% on MedLine test dataset. On the overall
dataset, we outperform Liu et al.’s dictionary-free

3The official evaluation script available on the SemEval
2013 website outputs only whole numbers, despite the shared
task reporting results to 2 decimal places.

model and Rocktäschel et al. by at least 6.50 per-
cent. Again, this shows the benefit from allowing
the model to learn a representation of affixes as well
as of words and characters. Overall, we achieved
the second best result after Liu et al. (2015) but
get state of the art results on MedLine test dataset
which is 80.10% of the total test data.

For fair comparison with previous work (Unanue
et al., 2017) which has re-implemented Lample
et al. (2016) model, we tested our model on BIO
converted dataset used by Unanue et al. (2017).
The results are summarized in table 3.

On the I2B2 NER dataset (Uzuner et al., 2011;
Unanue et al., 2017) in the BIO format, we evalu-
ated our approach using the CoNLL 2003 evalua-
tion script. Our final model achieves 84.70 F-score,
a gain of 3.68% as compared to the base model
without affixes (81.02%) and a gain of 0.67 % over
the model of Unanue et al. (2017). For fair compar-
ison with Unanue et al. (2017), we provide results
on the I2B2 NER dataset in BIO format evaluated
with the CoNLL 2003 evaluation script in Table 4.
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Model drug brand group drug n ML drug brand group drug n DB Both

Unanue et al. (2017) 75.57 28.57 64.37 37.19 60.66 91.83 87.27 84.67 0 88.38 -
BASE 72 41.67 75.86 4.88 60.86 89.92 79.12 86.13 0 86.52 72.31
BASE+Affix(10) 79.25 44.44 85.39 32.73 69.71 92.09 86.60 87.41 20 88.93 78.39

Table 3: DrugNER results on test data using CoNLL evaluation script. ML indicates the results for MedLine test
data and DB indicates results for DrugBank test data. We have reported F1 scores for each entity type in MedLine,
DrugBank and overall dataset (Both). The last column (Both) provides performance on the the combined dataset.

Model Problem Test Treatment
P R F1 P R F1 P R F1

Unanue et al. (2017) 81.29 83.62 82.44 84.74 85.01 84.87 83.36 83.55 83.46
Base Model 82.45 77.88 80.10 87.24 77.96 82.34 85.53 76.97 81.02
Base+Affix(20) 84.35 84.27 84.31 87.37 84.34 85.82 85.73 82.58 84.13

Table 4: Performance on I2B2 2010 NER (Uzuner et al., 2011) test data 5 using CoNLL evaluation script. We
have reported precision (P), recall (R), and F1-score.

5 Analysis

To better understand the performance of our model,
we conducted several analyses on the English
CoNLL 2003 dataset.

To determine if the performance gains were truly
due to the affix embeddings, and not simply due to
having more model parameters, we re-ran our base
model (without affixes), increasing the character
embeddings from 25 to 55 to match the increase of
30 of our affix embeddings. This model’s F-score
(90.28%) was similar to the original base model
(90.24%), and was more than a half a point below
our model with affixes (90.86%).

To determine the contribution of filtering our
affixes based on frequency (as compared to sim-
ply using all word-boundary n-grams) we ran our
model with the full set of affixes found in train-
ing. The performance without filtering (89.87%
F1) was even lower than the base model without
affixes (90.24% F1), which demonstrates that fil-
tering based on frequency is beneficial for affix
selection.

6 Conclusion
Our results across multiple languages and do-
mains show that sub-word features such as pre-
fixes and suffixes are complementary to character
and word-level information. Our straight-forward
and language-independent approach shows perfor-
mance gains compared to other neural systems for
NER, achieving a new state of the art on Spanish,
Dutch, and German NER as well as the MedLine
portion of DrugNER, despite our lack of dictionary
resources. Additionally, we also achieve 3.67% im-
provement in the I2B2 clinical NER dataset which

points towards potential applications in biomedi-
cal NER. While our model proposes a very simple
idea of using filtered affixes as an approximation
of morphemes, we suggest there are further gains
to be had with better methods for deriving true
morphemes (e.g., the supervised neural model of
Luong et al., 2013). We leave this exploration to
future work.
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Abstract
Fine-grained entity typing is the task of as-
signing fine-grained semantic types to entity
mentions. We propose a neural architecture
which learns a distributional semantic repre-
sentation that leverages a greater amount of se-
mantic context – both document and sentence
level information – than prior work. We find
that additional context improves performance,
with further improvements gained by utiliz-
ing adaptive classification thresholds. Experi-
ments show that our approach without reliance
on hand-crafted features achieves the state-of-
the-art results on three benchmark datasets.

1 Introduction

Named entity typing is the task of detecting the
type (e.g., person, location, or organization) of
a named entity in natural language text. Entity
type information has shown to be useful in natural
language tasks such as question answering (Lee
et al., 2006), knowledge-base population (Carl-
son et al., 2010; Mitchell et al., 2015), and co-
reference resolution (Recasens et al., 2013). Mo-
tivated by its application to downstream tasks, re-
cent work on entity typing has moved beyond stan-
dard coarse types towards finer-grained semantic
types with richer ontologies (Lee et al., 2006; Ling
and Weld, 2012; Yosef et al., 2012; Gillick et al.,
2014; Del Corro et al., 2015). Rather than as-
suming an entity can be uniquely categorized into
a single type, the task has been approached as a
multi-label classification problem: e.g., in “... be-
came a top seller ... Monopoly is played in 114
countries. ...” (Figure 1), “Monopoly” is consid-
ered both a game as well as a product.

The state-of-the-art approach (Shimaoka et al.,
2017) for fine-grained entity typing employs an
attentive neural architecture to learn representa-
tions of the entity mention as well as its con-
text. These representations are then combined

Entity
Encoder

Sentence-level 
Context Encoder

Document-level 
Context Encoder

sentence-level context
document-level context

Attention

Feature representation

Type embeddings
… Logistic Regression

Adaptive Thresholds

 [ /game, /product ]Output types:

Featurizer

“… became a top seller …                    is played in 114 countries. …”Monopoly

Figure 1: Neural architecture for predicting the types
of entity mention “Monopoly” in the text “... became a
top seller ... Monopoly is played in 114 countries. ...”.
Part of document-level context is omitted.

with hand-crafted features (e.g., lexical and syn-
tactic features), and fed into a linear classifier with
a fixed threshold. While this approach outper-
forms previous approaches which only use sparse
binary features (Ling and Weld, 2012; Gillick
et al., 2014) or distributed representations (Yo-
gatama et al., 2015), it has a few drawbacks: (1)
the representations of left and right contexts are
learnt independently, ignoring their mutual con-
nection; (2) the attention on context is computed
solely upon the context, considering no alignment
to the entity; (3) document-level contexts which
could be useful in classification are not exploited;
and (4) hand-crafted features heavily rely on sys-
tem or human annotations.

To overcome these drawbacks, we propose a
neural architecture (Figure 1) which learns more
context-aware representations by using a better at-
tention mechanism and taking advantage of se-
mantic discourse information available in both the
document as well as sentence-level contexts. Fur-
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ther, we find that adaptive classification thresh-
olds leads to further improvements. Experiments
demonstrate that our approach, without any re-
liance on hand-crafted features, outperforms prior
work on three benchmark datasets.

2 Model

Fine-grained entity typing is considered a multi-
label classification problem: Each entity e in the
text x is assigned a set of types T ∗ drawn from the
fine-grained type set T . The goal of this task is to
predict, given entity e and its context x, the assign-
ment of types to the entity. This assignment can
be represented by a binary vector y ∈ {1, 0}|T |
where |T | is the size of T . yt = 1 iff the entity is
assigned type t ∈ T .

2.1 General Model

Given a type embedding vector wt and a featurizer
ϕ that takes entity e and its context x, we employ
the logistic regression (as shown in Figure 1) to
model the probability of e assigned t (i.e., yt = 1)

P (yt = 1) =
1

1 + exp (−wᵀ
t ϕ(e, x))

, (1)

and we seek to learn a type embedding matrix
W = [w1, . . . , w|T |] and a featurizer ϕ such that

T ∗ = argmax
T

∏

t∈T
P (yt = 1) ·

∏

t/∈T
P (yt = 0).

(2)
At inference, the predicted type set T̂ assigned

to entity e is carried out by

T̂ =
{
t ∈ T : P (yt = 1) ≥ rt

}
, (3)

with rt the threshold for predicting e has type t.

2.2 Featurizer

As shown in Figure 1, featurizer ϕ in our model
contains three encoders which encode entity e and
its context x into feature vectors, and we consider
both sentence-level context xs and document-level
context xd in contrast to prior work which only
takes sentence-level context (Gillick et al., 2014;
Shimaoka et al., 2017). 1

1Document-level context has also been exploited in
Yaghoobzadeh and Schütze (2015); Yang et al. (2016); Karn
et al. (2017); Gupta et al. (2017).

The output of featurizer ϕ is the concatenation
of these feature vectors:

ϕ(e, x) =




f(e)

gs(xs, e)

gd(xd)


 . (4)

We define the computation of these feature vectors
in the followings.
Entity Encoder: The entity encoder f computes
the average of all the embeddings of tokens in en-
tity e.
Sentence-level Context Encoder: The encoder gs
for sentence-level context xs employs a single bi-
directional RNN to encode xs. Formally, let the
tokens in xs be x1s, . . . , x

n
s . The hidden state hi

for token xis is a concatenation of a left-to-right
hidden state

−→
hi and a right-to-left hidden state

←−
hi ,

hi =

[−→
h i

←−
h i

]
=

[−→
f (xis,

−→
h i−1)

←−
f (xis,

←−
h i+1)

]
, (5)

where
−→
f and

←−
f are L-layer stacked LSTMs

units (Hochreiter and Schmidhuber, 1997). This
is different from Shimaoka et al. (2017) who use
two separate bi-directional RNNs for context on
each side of the entity mention.
Attention: The feature representation for xs is a
weighted sum of the hidden states: gs(xs, e) =∑n

i=1 aihi, where ai is the attention to hidden
state hi. We employ the dot-product attention (Lu-
ong et al., 2015). It computes attention based on
the alignment between the entity and its context:

ai =
exp (hᵀiWaf(e))∑n
j=1 exp (h

ᵀ
jWaf(e))

, (6)

where Wa is the weight matrix. The dot-product
attention differs from the self attention (Shimaoka
et al., 2017) which only considers the context.
Document-level Context Encoder: The encoder
gd for document-level context xd is a multi-layer
perceptron:

gd(xd) = relu(Wd1 tanh(Wd2DM(xd))), (7)

where DM is a pretrained distributed memory
model (Le and Mikolov, 2014) which converts the
document-level context into a distributed repre-
sentation. Wd1 and Wd2 are weight matrices.
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2.3 Adaptive Thresholds

In prior work, a fixed threshold (rt = 0.5) is
used for classification of all types (Ling and Weld,
2012; Shimaoka et al., 2017). We instead assign
a different threshold to each type that is optimized
to maximize the overall strict F1 on the dev set.
We show the definition of strict F1 in Section 3.1.

3 Experiments

We conduct experiments on three publicly avail-
able datasets.2 Table 1 shows the statistics of these
datasets.
OntoNotes: Gillick et al. (2014) sampled sen-
tences from OntoNotes (Weischedel et al., 2011)
and annotated entities in these sentences using 89
types. We use the same train/dev/test splits in Shi-
maoka et al. (2017). Document-level contexts are
retrieved from the original OntoNotes corpus.
BBN: Weischedel and Brunstein (2005) annotated
entities in Wall Street Journal using 93 types. We
use the train/test splits in Ren et al. (2016b) and
randomly hold out 2,000 pairs for dev. Document
contexts are retrieved from the original corpus.
FIGER: Ling and Weld (2012) sampled sentences
from 780k Wikipedia articles and 434 news re-
ports to form the train and test data respectively,
and annotated entities using 113 types. The splits
we use are the same in Shimaoka et al. (2017).

Train Dev Test Types

OntoNotes 251,039 2,202 8,963 89
BBN 84,078 2,000 13,766 93
FIGER 2,000,000 10,000 563 113

Table 1: Statistics of the datasets.

3.1 Metrics

We adopt the metrics used in Ling and Weld
(2012) where results are evaluated via strict, loose
macro, loose micro F1 scores. For the i-th in-
stance, let the predicted type set be T̂i, and the
reference type set Ti. The precision (P ) and re-
call (R) for each metric are computed as follow.
Strict:

P = R =
1

N

N∑

i=1

δ(T̂i = Ti)

2 We made the source code and data publicly available at
https://github.com/sheng-z/figet.

Loose Macro:

P =
1

N

N∑

i=1

|T̂i ∩ Ti|
|T̂i|

R =
1

N

N∑

i=1

|T̂i ∩ Ti|
|Ti|

Loose Micro:

P =

∑N
i=1 |T̂i ∩ Ti|∑N

i=1 |T̂i|

R =

∑N
i=1 |T̂i ∩ Ti|∑N

i=1 |Ti|

3.2 Hyperparameters
We use open-source GloVe vectors (Pennington
et al., 2014) trained on Common Crawl 840B
with 300 dimensions to initialize word embed-
dings used in all encoders. All weight parame-
ters are sampled from U(−0.01, 0.01). The en-
coder for sentence-level context is a 2-layer bi-
directional RNN with 200 hidden units. The DM
output size is 50. Sizes of Wa, Wd1 and Wd2 are
200×300, 70×50, and 50×70 respectively. Adam
optimizer (Kingma and Ba, 2014) and mini-batch
gradient is used for optimization. Batch size is
200. Dropout (rate=0.5) is applied to three feature
functions. To avoid overfitting, we choose models
which yield the best strict F1 on dev sets.

3.3 Results
We compare experimental results of our approach
with previous approaches3, and study contribu-
tion of our base model architecture, document-
level contexts and adaptive thresholds via ablation.
To ensure our findings are reliable, we run each
experiment twice and report the average perfor-
mance.

Overall, our approach significantly increases
the state-of-the-art macro F1 on both OntoNotes
and BBN datasets.

On OntoNotes (Table 3), our approach im-
proves the state of the art across all three met-
rics. Note that (1) without adaptive thresholds or
document-level contexts, our approach still out-
performs other approaches on macro F1 and micro
F1; (2) adding hand-crafted features (Shimaoka
et al., 2017) does not improve the performance.

3For PLE (Ren et al., 2016b), we were unable to replicate
the performance benefits reported in their work, so we report
the results after running their codebase.
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ID Sentence Gold Prediction

A
... Canada’s declining crude output, combined with ... will
help intensify U.S. reliance on oil from overseas. ...

/other
/other
/other/health
/other/health/treatment

B
Bozell joins Backer Spielvogel Bates and Ogilvy Group as

U.S. agencies with interests in Korean agencies.
/organization
/organization/company

/organization
/organization/company

Table 2: Examples showing the improvement brought by document-level contexts and dot-product attention.
Entities are shown in the green box. The gray boxes visualize attention weights (darkness) on context tokens.

Approach Strict Macro Micro

BINARY(Gillick et al., 2014) N/A N/A 70.01
KWSABIE(Yogatama et al., 2015) N/A N/A 72.98

PLE(Ren et al., 2016b) 51.61 67.39 62.38
Ma et al. (2016) 49.30 68.23 61.27
AFET(Ren et al., 2016a) 55.10 71.10 64.70
FNET(Abhishek et al., 2017) 52.20 68.50 63.30
NEURAL(Shimaoka et al., 2017) 51.74 70.98 64.91

w/o Hand-crafted features 47.15 65.53 58.25

OUR APPROACH 55.52 73.33 67.61
w/o Adaptive thresholds 53.49 73.11 66.78
w/o Document-level contexts 53.17 72.14 66.51
w/ Hand-crafted features 54.40 73.13 66.89

Table 3: Results on the OntoNotes dataset.

This indicates the benefits of our proposed model
architecture for learning fine-grained entity typ-
ing, which is discussed in detail in Section 3.4;
and (3) BINARY and KWASIBIE were trained on
a different dataset, so their results are not directly
comparable.

Approach Strict Macro Micro

PLE(Ren et al., 2016b) 49.44 68.75 64.54
Ma et al. (2016) 70.43 75.78 76.50
AFET(Ren et al., 2016a) 67.00 72.70 73.50
FNET(Abhishek et al., 2017) 60.40 74.10 75.70

OUR APPROACH 60.87 77.75 76.94
w/o Adaptive thresholds 58.47 75.84 75.03
w/o Document-level contexts 58.12 75.65 75.11

Table 4: Results on the BBN dataset.

On BBN (Table 4), while Ma et al. (2016)’s la-
bel embedding algorithm holds the best strict F1,
our approach notably improves both macro F1 and
micro F1.4 The performance drops to a competi-
tive level with other approaches if adaptive thresh-
olds or document-level contexts are removed.

On FIGER (Table 5) where no document-level
context is currently available, our proposed ap-

4 Integrating label embedding into our proposed approach
is an avenue for future work.

Approach Strict Macro Micro

KWSABIE(Yogatama et al., 2015) N/A N/A 72.25
Attentive(Shimaoka et al., 2016) 58.97 77.96 74.94
FNET(Abhishek et al., 2017) 65.80 81.20 77.40

Ling and Weld (2012) 52.30 69.90 69.30
PLE(Ren et al., 2016b) 49.44 68.75 64.54
Ma et al. (2016) 53.54 68.06 66.53
AFET(Ren et al., 2016a) 53.30 69.30 66.40
NEURAL(Shimaoka et al., 2017) 59.68 78.97 75.36

w/o Hand-crafted features 54.53 74.76 71.58

OUR APPROACH 60.23 78.67 75.52
w/o Adaptive thresholds 60.05 78.50 75.39
w/ Hand-crafted features 60.11 78.54 75.33

Table 5: Results on the FIGER dataset.

proach still achieves the state-of-the-art strict and
micro F1. If compared with the ablation vari-
ant of the NEURAL approach, i.e., w/o hand-crafted
features, our approach gains significant improve-
ment. We notice that removing adaptive thresh-
olds only causes a small performance drop; this
is likely because the train and test splits of FIGER
are from different sources, and adaptive thresholds
are not generalized well enough to the test data.
KWASIBIE, Attentive and FNET were trained on a
different dataset, so their results are not directly
comparable.

3.4 Analysis

Table 2 shows examples illustrating the benefits
brought by our proposed approach. Example A il-
lustrates that sentence-level context sometimes is
not informative enough, and attention, though al-
ready placed on the head verbs, can be misleading.
Including document-level context (i.e., “Canada’s
declining crude output” in this case) helps pre-
clude wrong predictions (i.e., /other/health and
/other/health/treatment). Example B shows that
the semantic patterns learnt by our attention mech-
anism help make the correct prediction. As we
observe in Table 3 and Table 5, adding hand-
crafted features to our approach does not im-
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prove the results. One possible explanation is that
hand-crafted features are mostly about syntactic-
head or topic information, and such information
are already covered by our attention mechanism
and document-level contexts as shown in Table 2.
Compared to hand-crafted features that heavily
rely on system or human annotations, attention
mechanism requires significantly less supervision,
and document-level or paragraph-level contexts
are much easier to get.

Through experiments, we observe no improve-
ment by encoding type hierarchical informa-
tion (Shimaoka et al., 2017).5 To explain this, we
compute cosine similarity between each pair of
fine-grained types based on the type embeddings
learned by our model, i.e., wt in Eq. (1). Table 6
shows several types and their closest types: these
types do not always share coarse-grained types
with their closest types, but they often co-occur
in the same context.

Type Closest Types

/other/event/accident /location/transit/railway
/location/transit/bridge

/person/artist/music /organization/music
/person/artist/director

/other/product/mobile phone /location/transit/railway
/other/product/computer

/other/event/sports event /location/transit/railway
/other/event

/other/product/car /organization/transit
/other/product

Table 6: Type similarity.

4 Conclusion

We propose a new approach for fine-grained en-
tity typing. The contributions are: (1) we pro-
pose a neural architecture which learns a distribu-
tional semantic representation that leverage both
document and sentence level information, (2) we
find that context increased with document-level in-
formation improves performance, and (3) we uti-
lize adaptive classification thresholds to further
boost the performance. Experiments show our
approach achieves new state-of-the-art results on
three benchmarks.

5The type embedding matrix W for the logistic regres-
sion is replaced by the product of a learnt weight matrix V
and the constant sparse binary matrix S which encodes type
hierarchical information.
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Abstract

We propose a hypothesis only baseline for di-
agnosing Natural Language Inference (NLI).
Especially when an NLI dataset assumes infer-
ence is occurring based purely on the relation-
ship between a context and a hypothesis, it fol-
lows that assessing entailment relations while
ignoring the provided context is a degenerate
solution. Yet, through experiments on ten dis-
tinct NLI datasets, we find that this approach,
which we refer to as a hypothesis-only model,
is able to significantly outperform a majority-
class baseline across a number of NLI datasets.
Our analysis suggests that statistical irregular-
ities may allow a model to perform NLI in
some datasets beyond what should be achiev-
able without access to the context.

1 Introduction

Though datasets for the task of Natural Language
Inference (NLI) may vary in just about every as-
pect (size, construction, genre, label classes), they
generally share a common structure: each instance
consists of two fragments of natural language text
(a context, also known as a premise, and a hypoth-
esis), and a label indicating the entailment relation
between the two fragments (e.g., ENTAILMENT,
NEUTRAL, CONTRADICTION). Computationally,
the task of NLI is to predict an entailment rela-
tion label (output) given a premise-hypothesis pair
(input), i.e., to determine whether the truth of the
hypothesis follows from the truth of the premise
(Dagan et al., 2006, 2013).

When these NLI datasets are constructed to
facilitate the training and evaluation of natural
language understanding (NLU) systems (Nangia
et al., 2017), it is tempting to claim that systems
achieving high accuracy on such datasets have
successfully “understood” natural language or at
least a logical relationship between a premise and
hypothesis. While this paper does not attempt to

(a) (b)

Figure 1: (1a) shows a typical NLI model that en-
codes the premise and hypothesis sentences into a vec-
tor space to classify the sentence pair. (1b) shows
our hypothesis-only baseline method that ignores the
premise and only encodes the hypothesis sentence.

prescribe the sufficient conditions of such a claim,
we argue for an obvious necessary, or at least de-
sired condition: that interesting natural language
inference should depend on both premise and hy-
pothesis. In other words, a baseline system with
access only to hypotheses (Figure 1b) can be said
to perform NLI only in the sense that it is un-
derstanding language based on prior background
knowledge. If this background knowledge is about
the world, this may be justifiable as an aspect of
natural language understanding, if not in keep-
ing with the spirit of NLI. But if the “background
knowledge” consists of learned statistical irregu-
larities in the data, this may not be ideal. Here
we explore the question: do NLI datasets contain
statistical irregularities that allow hypothesis-only
models to outperform the datasets specific prior?

We present the results of a hypothesis-only
baseline across ten NLI-style datasets and advo-
cate for its inclusion in future dataset reports.
We find that this baseline can perform above the
majority-class prior across most of the ten exam-
ined datasets. We examine whether: (1) hypothe-
ses contain statistical irregularities within each
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entailment class that are “giveaways” to a well-
trained hypothesis-only model, (2) the way in
which an NLI dataset is constructed is related to
how prone it is to this particular weakness, and (3)
the majority baselines might not be as indicative of
“the difficulty of the task” (Bowman et al., 2015)
as previously thought.

We are not the first to consider the inherent dif-
ficulty of NLI datasets. For example, MacCartney
(2009) used a simple bag-of-words model to eval-
uate early iterations of Recognizing Textual En-
tailment (RTE) challenge sets.1 Concerns have
been raised previously about the hypotheses in
the Stanford Natural Language Inference (SNLI)
dataset specifically, such as by Rudinger et al.
(2017) and in unpublished work.2 Here, we sur-
vey of large number of existing NLI datasets un-
der the lens of a hypothesis-only model.3 Con-
currently, Tsuchiya (2018) and Gururangan et al.
(2018) similarly trained an NLI classifier with ac-
cess limited to hypotheses and discovered similar
results on three of the ten datasets that we study.

2 Motivation

Our approach is inspired by recent studies that
show how biases in an NLU dataset allow mod-
els to perform well on the task without under-
standing the meaning of the text. In the Story
Cloze task (Mostafazadeh et al., 2016, 2017), a
model is presented with a short four-sentence nar-
rative and asked to complete it by choosing one
of two suggested concluding sentences. While the
task is presented as a new common-sense reason-
ing framework, Schwartz et al. (2017b) achieved
state-of-the-art performance by ignoring the narra-
tive and training a linear classifier with features re-
lated to the writing style of the two potential end-
ings, rather than their content. It has also been
shown that features focusing on sentence length,
sentiment, and negation are sufficient for achiev-
ing high accuracy on this dataset (Schwartz et al.,
2017a; Cai et al., 2017; Bugert et al., 2017).

NLI is often viewed as an integral part of NLU.
Condoravdi et al. (2003) argue that it is a neces-
sary metric for evaluating an NLU system, since it

1MacCartney (2009), Ch. 2.2: “the RTE1 test suite is the
hardest, while the RTE2 test suite is roughly 4% easier, and
the RTE3 test suite is roughly 9% easier.”

2A course project constituting independent discovery
of our observations on SNLI: https://leonidk.com/
pdfs/cs224u.pdf

3 Our code and data can be found at https://
github.com/azpoliak/hypothesis-only-NLI.

forces a model to perform many distinct types of
reasoning. Goldberg (2017) suggests that “solving
[NLI] perfectly entails human level understand-
ing of language”, and Nangia et al. (2017) ar-
gue that “in order for a system to perform well
at natural language inference, it needs to handle
nearly the full complexity of natural language un-
derstanding.” However, if biases in NLI datasets,
especially those that do not reflect commonsense
knowledge, allow models to achieve high levels
of performance without needing to reason about
hypotheses based on corresponding contexts, our
current datasets may fall short of these goals.

3 Methodology

We modify Conneau et al. (2017)’s InferSent
method to train a neural model to classify just
the hypotheses. We choose InferSent because
it performed competitively with the best-scoring
systems on the Stanford Natural Language In-
ference (SNLI) dataset (Bowman et al., 2015),
while being representative of the types of neu-
ral architectures commonly used for NLI tasks.
InferSent uses a BiLSTM encoder, and con-
structs a sentence representation by max-pooling
over its hidden states. This sentence representa-
tion of a hypothesis is used as input to a MLP clas-
sifier to predict the NLI tag.

We preprocess each recast dataset using the
NLTK tokenizer (Loper and Bird, 2002). Follow-
ing Conneau et al. (2017), we map the resulting to-
kens to 300-dimensional GloVe vectors (Penning-
ton et al., 2014) trained on 840 billion tokens from
the Common Crawl, using the GloVe OOV vec-
tor for unknown words. We optimize via SGD,
with an initial learning rate of 0.1, and decay rate
of 0.99. We allow at most 20 epochs of training
with optional early stopping according to the fol-
lowing policy: when the accuracy on the develop-
ment set decreases, we divide the learning rate by
5 and stop training when learning rate is < 10−5.

4 Datasets

We collect ten NLI datasets and categorize them
into three distinct groups based on the methods
by which they were constructed. Table 1 summa-
rizes the different NLI datasets that our investiga-
tion considers.
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Creation Protocol Dataset Size Classes Example Hypothesis

Recast
DPR 3.4K 2 People raise dogs because dogs are afraid of thieves

SPR 150K 2 The judge was aware of the dismissing

FN+ 150K 2 the irish are actually principling to come home

Judged

ADD-1 5K 2 A small child staring at a young horse and a pony

SCITAIL 25K 2 Humans typically have 23 pairs of chromosomes

SICK 10K 3 Pasta is being put into a dish by a woman

MPE 10K 3 A man smoking a cigarette

JOCI 30K 3 The flooring is a horizontal surface

Elicited
SNLI 550K 3 An animal is jumping to catch an object

MNLI 425K 3 Kyoto has a kabuki troupe and so does Osaka

Table 1: Basic statistics about the NLI datasets we consider. ‘Size’ refers to the total number of labeled premise-
hypothesis pairs in each dataset (for datasets with > 100K examples, numbers are rounded down to the nearest
25K). The ‘Creation Protocol’ column indicates how the dataset was created. The ‘Class’ column reports the
number of class labels/tags. The last column shows an example hypothesis from each dataset.

4.1 Human Elicited

In cases where humans were given a context and
asked to generate a corresponding hypothesis and
label, we consider these datasets to be elicited. Al-
though we consider only two such datasets, they
are the largest datasets included in our study and
are currently popular amongst researchers. The
elicited NLI datasets we look at are:

Stanford Natural Language Inference (SNLI)
To create SNLI, Bowman et al. (2015) showed
crowdsourced workers a premise sentence
(sourced from Flickr image captions), and asked
them to generate a corresponding hypothesis sen-
tence for each of the three labels (ENTAILMENT,
NEUTRAL, CONTRADICTION). SNLI is known to
contain stereotypical biases based on gender, race,
and ethnic stereotypes (Rudinger et al., 2017).
Furthermore, Zhang et al. (2017) commented
that this “elicitation protocols can lead to biased
responses unlikely to contain a wide range of
possible common-sense inferences.”

Multi-NLI Multi-NLI is a recent expansion of
SNLI aimed to add greater diversity to the existing
dataset (Williams et al., 2017). Premises in Multi-
NLI can originate from fictional stories, personal
letters, telephone speech, and a 9/11 report.

4.2 Human Judged

Alternatively, if hypotheses and premises were au-
tomatically paired but labeled by a human, we
consider the dataset to be judged. Our human-
judged data sets are:

Sentences Involving Compositional Knowledge
(SICK) To evaluate how well compositional dis-
tributional semantic models handle “challenging
phenomena”, Marelli et al. (2014) introduced
SICK, which used rules to expand or normalize
existing premises to create more difficult exam-
ples. Workers were asked to label the relatedness
of these resulting pairs, and these labels were then
converted into the same three-way label space as
SNLI and Multi-NLI.

Add-one RTE This mixed-genre dataset tests
whether NLI systems can understand adjective-
noun compounds (Pavlick and Callison-Burch,
2016). Premise sentences were extracted from
Annotated Gigaword (Napoles et al., 2012), im-
age captions (Young et al., 2014), the Internet
Argument Corpus (Walker et al., 2012), and fic-
tional stories from the GutenTag dataset (Mac Kim
and Cassidy, 2015). To create hypotheses, ad-
jectives were removed or inserted before nouns
in a premise, and crowd-sourced workers were
asked to provide reliable labels (ENTAILED, NOT-
ENTAILED).

SciTail Recently released, SciTail is an NLI
dataset created from 4th grade science ques-
tions and multiple-choice answers (Khot et al.,
2018). Hypotheses are assertions converted
from question-answer pairs found in SciQ (Welbl
et al., 2017). Hypotheses are automati-
cally paired with premise sentences from do-
main specific texts (Clark et al., 2016), and
labeled (ENTAILMENT, NEUTRAL) by crowd-
sourced workers. Notably, the construction

182



method allows for the same sentence to appear as
a hypothesis for more than one premise.

Multiple Premise Entailment (MPE) Unlike
the other datasets we consider, the premises in
MPE (Lai et al., 2017) are not single sentences,
but four different captions that describe the same
image in the FLICKR30K dataset (Plummer et al.,
2015). Hypotheses were generated by simplifying
either a fifth caption that describes the same image
or a caption corresponding to a different image,
and given the standard 3-way tags. Each hypothe-
sis has at most a 50% overlap with the words in its
corresponding premise. Since the hypotheses are
still just one sentence, our hypothesis-only base-
line can easily be applied to MPE.

Johns Hopkins Ordinal Common-Sense Infer-
ence (JOCI) JOCI labels context-hypothesis in-
stances on an ordinal scale from impossible (1) to
very likely (5) (Zhang et al., 2017). In JOCI, con-
text (premise) sentences were taken from existing
NLU datasets: SNLI, ROC Stories (Mostafazadeh
et al., 2016), and COPA (Roemmele et al., 2011).
Hypotheses were created automatically by sys-
tems trained to generate entailed facts from a
premise.4 Crowd-sourced workers labeled the
likelihood of the hypothesis following from the
premise on an ordinal scale. We convert these into
a 3-way NLI tags where 1 maps to CONTRADIC-
TION, 2-4 maps to NEUTRAL, and 5 maps to EN-
TAILMENT. Converting the annotations into a 3-
way classification problem allows us to limit the
range of the number of NLI label classes in our
investigation.

4.3 Automatically Recast
If an NLI dataset was automatically generated
from existing datasets for other NLP tasks, and
sentence pairs were constructed and labeled with
minimal human intervention, we refer to such a
dataset as recast. We use the recast datasets from
White et al. (2017):

Semantic Proto-Roles (SPR) Inspired by Dowty
(1991)’s thematic role theory, Reisinger et al.
(2015) introduced the Semantic Proto-Role (SPR)
labeling task, which can be viewed as decompos-
ing semantic roles into finer-grained properties,
such as whether a predicate’s argument was likely
aware of the given predicated situation. 2-way

4We only consider the hypotheses generated by either a
seq2seq model or from external world knowledge.

labeled NLI sentence pairs were generated from
SPR annotations by creating general templates.

Definite Pronoun Resolution (DPR) The DPR
dataset targets an NLI model’s ability to perform
anaphora resolution (Rahman and Ng, 2012). In
the original dataset, sentences contain two enti-
ties and one pronoun, and the task is to link the
pronoun to its referent. In the recast version,
the premises are the original sentences and the
hypotheses are the same sentences with the pro-
noun replaced with its correct (ENTAILED) and in-
correct (NOT-ENTAILED) referent. For example,
People raise dogs because they are obedient and
People raise dogs because dogs are obedient is
such a context-hypothesis pair. We note that this
mechanism would appear to maximally benefit a
hypothesis-only approach, as the hypothesis se-
mantically subsumes the context.

FrameNet Plus (FN+) Using paraphrases from
PPDB (Ganitkevitch et al., 2013), Rastogi and
Van Durme (2014) automatically replaced words
with their paraphrases. Subsequently, Pavlick
et al. (2015) asked crowd-source workers to judge
how well a sentence with a paraphrase preserved
the original sentence’s meanings. In this NLI
dataset that targets a model’s ability to perform
paraphrastic inference, premise sentences are the
original sentences, the hypotheses are the edited
versions, and the crowd-source judgments are con-
verted to 2-way NLI-labels. For not-entailed ex-
amples, White et al. (2017) replaced a single to-
ken in a context sentence with a word that crowd-
source workers labeled as not being a paraphrase
of the token in the given context. In turn, we might
suppose that positive entailments (1-b) are keep-
ing in the spirit of NLI, but not-entailed examples
might not because there are adequacy (1-c) and
fluency (1-d) issues.5

(1) a. That is the way the system works
b. That is the way the framework works
c. That is the road the system works
d. That is the way the system creations

5 Results

Our goal is to determine whether a hypothesis-
only model outperforms the majority baseline and
investigate what may cause significant gains. In

5In these examples, (1-a) is the corresponding context.
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DEV TEST
Dataset Hyp-Only MAJ |∆| ∆% Hyp-Only MAJ |∆| ∆% Baseline SOTA

Recast

DPR 50.21 50.21 0.00 0.00 49.95 49.95 0.00 0.00 49.5 49.5
SPR 86.21 65.27 +20.94 +32.08 86.57 65.44 +21.13 +32.29 80.6 80.6
FN+ 62.43 56.79 +5.64 +9.31 61.11 57.48 +3.63 +6.32 80.5 80.5

Human Judged
ADD-1 75.10 75.10 0.00 0.00 85.27 85.27 0.00 0.00 92.2 92.2
SciTail 66.56 50.38 +16.18 +32.12 66.56 60.04 +6.52 +10.86 70.6 77.3
SICK 56.76 56.76 0.00 0.00 56.87 56.87 0.00 0.00 56.87 84.6
MPE 40.20 40.20 0.00 0.00 42.40 42.40 0.00 0.00 41.7 56.3
JOCI 61.64 57.74 +3.90 +6.75 62.61 57.26 +5.35 +9.34 – –

Human Elicited
SNLI 69.17 33.82 +35.35 +104.52 69.00 34.28 +34.72 +101.28 78.2 89.3

MNLI-1 55.52 35.45 +20.07 +56.61 – 35.6 – – 72.3 80.60
MNLI-2 55.18 35.22 +19.96 +56.67 – 36.5 – – 72.1 83.21

Table 2: NLI accuracies on each dataset. Columns ‘Hyp-Only’ and ‘MAJ’ indicates the accuracy of the hypothesis-
only model and the majority baseline. |∆| and ∆% indicate the absolute difference in percentage points and the
percentage increase between the Hyp-Only and MAJ. Blue numbers indicate that the hypothesis-model outper-
forms MAJ. In the right-most section, ‘Baseline’ indicates the original baseline on the test when the dataset was
released and ‘SOTA’ indicates current state-of-the-art results. MNLI-1 is the matched version and MNLI-2 is the
mismatched for MNLI. The names of datasets are italicized if containing ≤ 10K labeled examples.

such cases a hypothesis-only model should be
used as a stronger baseline instead of the ma-
jority class baseline. For all experiments except
for JOCI, we use each NLI dataset’s standard
train, dev, and test splits.6 Table 2 compares the
hypothesis-only model’s accuracy with the major-
ity baseline on each dataset’s dev and test set.7

Criticism of the Majority Baseline Across six
of the ten datasets, our hypothesis-only model
significantly outperforms the majority-baseline,
even outperforming the best reported results on
one dataset, recast SPR. This indicates that there
exists a significant degree of exploitable signal that
may help NLI models perform well on their cor-
responding test set without considering NLI con-
texts. From Table 2, it is unclear whether the con-
struction method is responsible for these improve-
ments. The largest relative gains are on human-
elicited models where the hypothesis-only model
more than doubles the majority baseline.

However, there are no obvious unifying trends
across these datasets: Among the judged and re-
cast datasets, where humans do not generate the
NLI hypothesis, we observe lower performance
margins between majority and hypothesis-only
models compared to the elicited data sets. How-
ever, the baseline performances of these models
are noticeably larger than on SNLI and Multi-NLI.

6JOCI was not released with such splits so we randomly
split the dataset into such a partition with 80:10:10 ratios.

7We only report results on the Multi-NLI development set
since the test labels are only accessible on Kaggle.

The drop between SNLI and Multi-NLI suggests
that by including multiple genres, an NLI dataset
may contain less biases. However, adding addi-
tional genres might not be enough to mitigate bi-
ases as the hypothesis-only model still drastically
outperforms the majority-baseline. Therefore, we
believe that models tested on SNLI and Multi-NLI
should include a baseline version of the model that
only accesses hypotheses.

We do not observe general trends across the
datasets based on their construction methodology.
On three of the five human judged datasets, the
hypothesis-only model defaults to labeling each
instance with the majority class tag. We find the
same behavior in one recast dataset (DPR). How-
ever, across both these categories we find smaller
relative improvements than on SNLI and Multi-
NLI. These results suggest the existence of ex-
ploitable signal in the datasets that is unrelated to
NLI contexts. Our focus now shifts to identifying
precisely what these signals might be and under-
standing why they may appear in NLI hypotheses.

6 Statistical Irregularities

We are interested in determining what character-
istics in the datasets may be responsible for the
hypothesis-only model often outperforming the
majority baseline. Here, we investigate the impor-
tance of specific words, grammaticality, and lexi-
cal semantics.
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Figure 2: Plots showing the number of sentences per each label (Y-axis) that contain at least one word w such that
p(l|w) >= x for at least one label l. Colors indicate different labels. Intuitively, for a sliding definition of what
value of p(l|w) might constitute a “give-away” the Y-axis shows the proportion of sentences that can be trivially
answered for each class.

6.1 Can Labels be Inferred from Single
Words?

Since words in hypotheses have a distribution over
the class of labels, we can determine the condi-
tional probability of a label l given the word w by

p(l|w) =
count(w, l)

count(w)
(1)

If p(l|w) is highly skewed across labels, there ex-
ists the potential for a predictive bias. Conse-
quently, such words may be “give-aways” that al-
low the hypothesis model to correctly predict an
NLI label without considering the context.

If a single occurrence of a highly label-specific
word would allow a sentence to be deterministi-
cally classified, how many sentences in a dataset
are prone to being trivially labeled? The plots in
Figure 2 answer this question for SNLI and DPR.
The Y -value where X = 1.0 captures the number
of such sentences. Other values of X < 1.0 can
also have strong correlative effects, but a priori the
relationship between the value of X and the cov-
erage of trivially answerable instances in the data
is unclear. We illustrate this relationship for vary-
ing values of p(l|w). When X = 0, all words are
considered highly-correlated with a specific class
label, and thus the entire data set would be treated
as trivially answerable.

In DPR, which has two class labels, because the
uncertainty of a label is highest when p(l|w) =
0.5, the sharp drop as X deviates from this value
indicates a weaker effect, where there are pro-
portionally fewer sentences which contain highly
label-specific words with respect to SNLI. As

SNLI uses 3-way classification we see a gradual
decline from 0.33.

6.2 What are “Give-away” Words?

Now that we analyzed the extent to which highly
label-correlated words may exist across sentences
in a given label, we would like to understand what
these words are and why they exist.

Figure 3 reports some of the words with the
highest p(l|w) for SNLI, a human elicited dataset,
and MPE, a human judged dataset, on which our
hypothesis model performed identically to the ma-
jority baseline. Because many of the most discrim-
inative words are low frequency, we report only
words which occur at least five times. We rank the
words according to their overall frequency, since
this statistic is perhaps more indicative of a word
w’s effect on overall performance compared to
p(l|w) alone.

The score p(l|w) of the words shown for SNLI
deviate strongly, regardless of the label. In con-
trast, in MPE, scores are much closer to a uniform
distribution of p(l|w) across labels. Intuitively, the
stronger the word’s deviation, the stronger the po-
tential for it to be a “give-away” word. A high
word frequency indicates a greater potential of the
word to affect the overall accuracy on NLI.

Qualitative Examples Turning our attention to
the qualities of the words themselves, we can eas-
ily identify trends among the words used in con-
tradictory hypotheses in SNLI. In our top-10 list,
for example, three words refer to the act of sleep-
ing. Upon inspecting corresponding context sen-
tences, we find that many contexts, which are
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Word Score Freq

instrument 0.90 20
touching 0.83 12

least 0.90 10
Humans 0.88 8

transportation 0.86 7
speaking 0.86 7

screen 0.86 7
arts 0.86 7

activity 0.86 7
opposing 1.00 5

(a) entailment

SNLI
Word Score Freq

tall 0.93 44
competition 0.88 24

because 0.83 23
birthday 0.85 20

mom 0.82 17
win 0.88 16
got 0.81 16
trip 0.93 15
tries 0.87 15

owner 0.87 15

(b) neutral

Word Score Freq

sleeping 0.88 108
driving 0.81 53
Nobody 1.00 52

alone 0.90 50
cat 0.84 49

asleep 0.91 43
no 0.84 31

empty 0.93 28
eats 0.83 24

sleeps 0.95 20

(c) contradiction

Word Score Freq

an 0.57 21
gathered 0.58 12

girl 0.50 12
trick 0.55 11
Dogs 0.55 11

watches 0.60 10
field 0.60 10

singing 0.50 10
outside 0.67 9

something 0.62 8

(d) entailment

MPE
Word Score Freq

smiling 0.56 16
An 0.60 10
for 0.56 9

front 0.75 8
camera 0.62 8
waiting 0.50 8
posing 0.50 8
Kids 0.57 7
smile 0.83 6
wall 0.50 6

(e) neutral

Word Score Freq

sitting 0.51 88
woman 0.55 80

men 0.56 34
Some 0.62 26
doing 0.59 22

Children 0.50 22
boy 0.67 21

having 0.65 20
sit 0.60 15

children 0.53 15

(f) contradiction

Figure 3: Lists of the most highly-correlated words in each dataset for given labels, thresholded to the top 10 and
ranked according to frequency.

sourced from Flickr, naturally deal with activi-
ties. This leads us to believe that as a common
strategy, crowd-source workers often do not gen-
erate contradictory hypotheses that require fine-
grained semantic reasoning, as a majority of such
activities can be easily negated by removing an
agent’s agency, i.e. describing the agent as sleep-
ing. A second trend we notice is that universal
negation constitutes four of the remaining seven
terms in this list, and may also be used to simi-
lar effect.8 The human-elicited protocol does not
guide, nor incentivize crowd-source workers to
come up with less obvious examples. If not prop-
erly controlled, elicited datasets may be prone to
many label-specific terms. The existence of label-
specific terms in human-elicited NLI datasets does
not invalidate the datasets nor is surprising. Stud-

8These are “Nobody”, “alone”, “no”, and “empty”.

ies in eliciting norming data are prone to repeated
responses across subjects (McRae et al., 2005)
(see discussion in §2 of (Zhang et al., 2017)).

6.3 On the Role of Grammaticality

Like MPE, FN+ contains few high frequency
words with high p(l|w). However, unlike on
MPE, our hypothesis-only model outperforms the
majority-only baseline. If these gains do not arise
from “give-away” words, then what is the statisti-
cal irregularity responsible for this discriminative
power?

Upon further inspection, we notice an interest-
ing imbalance in how our model performs for each
of the two classes. The hypothesis-only model
performs similarly to the majority baseline for en-
tailed examples, while improving by over 34%
those which are not entailed, as shown in Table 3.

As shown by White et al. (2017) and noticed
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label Hyp-Only MAJ ∆%
entailed 44.18 43.20 +2.27

not-entailed 76.31 56.79 +34.37

Table 3: Accuracies on FN+ for each class label.

by Poliak et al. (2018), FN+ contains more gram-
matical errors than the other recast datasets. We
explore whether grammaticality could be the sta-
tistical irregularity exploited in this case. We
manually sample a total of 200 FN+ sentences
and categorize them based on their gold label and
our model’s prediction. Out of 50 sentences that
the model correctly labeled as ENTAILED, 88%
of them were grammatical. On the other-hand,
of the 50 hypotheses incorrectly labeled as EN-
TAILED, only 38% of them were grammatical.
Similarly, when the model correctly labeled 50
NOT-ENTAILED hypotheses, only 20% were gram-
matical, and 68% when labeled incorrectly. This
suggests that a hypothesis-only model may be able
to discover the correlation between grammatical-
ity and NLI labels on this dataset.

6.4 Lexical Semantics

A survey of gains (Table 4) in the SPR dataset sug-
gest a number of its property-driven hypotheses,
such as X was sentient in [the event], can be accu-
rately guessed based on lexical semantics (back-
ground knowledge learned from training) of the
argument. For example, the hypothesis-only base-
line correctly predicts the truth of hypotheses in
the dev set such as: Experts were sentient ... or
Mr. Falls was sentient ..., and the falsity of The
campaign was sentient, while failing on referring
expressions like Some or Each side. A model ex-
ploiting regularities of the real world would seem
to be a different category of dataset bias: while
not strictly wrong from the perspective of NLU,
one should be aware of what the hypothesis-only
baseline is capable of, to recognize those cases
where access to the context is required and there-
fore more interesting under NLI.

6.5 Open Questions

There may remain statistical irregularities, which
we leave for future work to explore. For ex-
ample, are there correlation between sentence
length and label class in these data sets? Is there
a particular construction method that minimizes
the amount of “give-away” words present in the
dataset? And lastly, our study is another in a
line of research which looks for irregularities at

Proto-Role H-model MAJ ∆%

aware 88.70 59.94 +47.99
used in 77.30 52.72 +46.63

volitional 87.45 64.96 +34.62
physically existed 87.97 65.38 +34.56

caused 82.11 63.08 +30.18
sentient 94.35 76.26 +23.73

existed before 80.23 65.90 +21.75
changed 72.18 64.85 +11.29

chang. state 71.76 64.85 +10.65
existed after 79.29 72.91 +8.75

existed during 90.06 85.67 +5.13
location 93.83 91.21 +2.87

physical contact 89.33 86.92 +2.77
chang. possession 94.87 94.46 +0.44

moved 93.51 93.20 +0.34
stationary during 96.44 96.34 +0.11

Table 4: NLI accuracies on the SPR development data;
each property appears in 956 hypotheses.

the word level (MacCartney et al., 2008; Mac-
Cartney, 2009). Beyond bag-of-words, are there
multi-word expressions or syntactic phenomena
that might encode label biases?

7 Related Work

Non-semantic information to help NLI In NLI
datasets, non-semantic linguistic features have
been used to improve NLI models. Vanderwende
and Dolan (2006) and Blake (2007) demonstrate
how sentence structure alone can provide a high
signal for NLI. Instead of using external sources
of knowledge, which was a common trend at the
time, Blake (2007) improved results on RTE by
combining syntactic features. More recently, Bar-
Haim et al. (2015) introduce an inference formal-
ism based on syntactic-parse trees.

World Knowledge and NLI As mentioned ear-
lier, hypothesis-only models that perform with-
out exploiting statistical irregularities may be per-
forming NLI only in the sense that it is understand-
ing language based on prior background knowl-
edge. Here, we take the approach that interest-
ing NLI should depend on both premise and hy-
potheses. Prior work in NLI reflect this approach.
For example, Glickman and Dagan (2005) argue
that “the notion of textual entailment is relevant
only” for hypothesis that are not world facts, e.g.
“Paris is the capital of France.” Glickman et al.
(2005a,b), introduce a probabilistic framework for
NLI where the premise entails a hypothesis if, and
only if, the probability of the hypothesis being true
increases as a result of the premise.
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NLI’s resurgence Starting in the mid-2000’s,
multiple community-wide shared tasks focused on
NLI, then commonly referred to as RTE, i.e, rec-
ognizing textual entailment. Starting with Da-
gan et al. (2006), there have been eight itera-
tions of the PASCAL RTE challenge with the
most recent being Dzikovska et al. (2013).9 NLI
datasets were relatively small, ranging from thou-
sands to tens of thousands of labeled sentence
pairs. In turn, NLI models often used alignment-
based techniques (MacCartney et al., 2008) or
manually engineered features (Androutsopoulos
and Malakasiotis, 2010). Bowman et al. (2015)
sparked a renewed interested in NLI, particularly
among deep-learning researchers. By developing
and releasing a large NLI dataset containing over
550K examples, Bowman et al. (2015) enabled
the community to successfully apply deep learn-
ing models to the NLI problem.

8 Conclusion

We introduced a stronger baseline for ten NLI
datasets. Our baseline reduces the task from label-
ing the relationship between two sentences to clas-
sifying a single hypothesis sentence. Our experi-
ments demonstrated that in six of the ten datasets,
always predicting the majority-class label is not a
strong baseline, as it is significantly outperformed
by the hypothesis-only model. Our analysis sug-
gests that statistical irregularities, including word
choice and grammaticality, may reduce the dif-
ficulty of the task on popular NLI datasets by
not fully testing how well a model can determine
whether the truth of a hypothesis follows from the
truth of a corresponding premise.

We hope our findings will encourage the devel-
opment of new NLI datasets which exhibit less
exploitable irregularities, and that encourage the
development of richer models of inference. As
a baseline, new NLI models should be compared
against a corresponding version that only accesses
hypotheses. In future work, we plan to apply a
similar hypothesis-only baseline to multi-modal
tasks that attempt to challenge a system to under-
stand and classify the relationship between two in-
puts, e.g. Visual QA (Antol et al., 2015).

9Technically Bentivogli et al. (2011) was the last chal-
lenge under PASCAL’s aegis but Dzikovska et al. (2013) was
branded as the 8th RTE challenge.
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Abstract

We study the problem of measuring the qual-
ity of automatically-generated stories. We fo-
cus on the setting in which a few sentences of
a story are provided and the task is to generate
the next sentence (“continuation”) in the story.
We seek to identify what makes a story con-
tinuation interesting, relevant, and have high
overall quality. We crowdsource annotations
along these three criteria for the outputs of
story continuation systems, design features,
and train models to predict the annotations.
Our trained scorer can be used as a rich feature
function for story generation, a reward func-
tion for systems that use reinforcement learn-
ing to learn to generate stories, and as a partial
evaluation metric for story generation.

1 Introduction

We study the problem of automatic story gen-
eration in the climate of neural network natu-
ral language generation methods. Story genera-
tion (Mani, 2012; Gervás, 2012) has a long his-
tory, beginning with rule-based systems in the
1970s (Klein et al., 1973; Meehan, 1977). Most
story generation research has focused on mod-
eling the plot, characters, and primary action of
the story, using simplistic methods for producing
the actual linguistic form of the stories (Turner,
1993; Riedl and Young, 2010). More recent work
learns from data how to generate stories holisti-
cally without a clear separation between content
selection and surface realization (McIntyre and
Lapata, 2009), with a few recent methods based
on recurrent neural networks (Roemmele and Gor-
don, 2015; Huang et al., 2016).

We follow the latter style and focus on a setting
in which a few sentences of a story are provided
(the context) and the task is to generate the next
sentence in the story (the continuation). Our goal

is to produce continuations that are both interest-
ing and relevant given the context.

Neural networks are increasingly employed
for natural language generation, most often with
encoder-decoder architectures based on recurrent
neural networks (Cho et al., 2014; Sutskever et al.,
2014). However, while neural methods are effec-
tive for generation of individual sentences condi-
tioned on some context, they struggle with coher-
ence when used to generate longer texts (Kiddon
et al., 2016). In addition, it is challenging to apply
neural models in less constrained generation tasks
with many valid solutions, such as open-domain
dialogue and story continuation.

The story continuation task is difficult to formu-
late and evaluate because there can be a wide va-
riety of reasonable continuations for typical story
contexts. This is also the case in open-domain dia-
logue systems, in which common evaluation met-
rics like BLEU (Papineni et al., 2002) are only
weakly correlated with human judgments (Liu
et al., 2016). Another problem with metrics like
BLEU is the dependence on a gold standard. In
story generation and open-domain dialogue, there
can be several equally good continuations for any
given context which suggests that the quality of
a continuation should be computable without re-
liance on a gold standard.

In this paper, we study the question of iden-
tifying the characteristics of a good continuation
for a given context. We begin by building sev-
eral story generation systems that generate a con-
tinuation from a context. We develop simple
systems based on recurrent neural networks and
similarity-based retrieval and train them on the
ROC story dataset (Mostafazadeh et al., 2016). We
use crowdsourcing to collect annotations of the
quality of the continuations without revealing the
gold standard. We ask annotators to judge continu-
ations along three distinct criteria: overall quality,
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relevance, and interestingness. We collect mul-
tiple annotations for 4586 context/continuation
pairs. These annotations permit us to compare
methods for story generation and to study the re-
lationships among the criteria. We analyze our an-
notated dataset by developing features of the con-
text and continuation and measuring their correla-
tion with each criterion.

We combine these features with neural net-
works to build models that predict the human
scores, thus attempting to automate the process
of human quality judgment. We find that our
predicted scores correlate well with human judg-
ments, especially when using our full feature set.
Our scorer can be used as a rich feature function
for story generation or a reward function for sys-
tems that use reinforcement learning to learn to
generate stories. It can also be used as a partial
evaluation metric for story generation.1 Examples
of contexts, generated continuations, and quality
predictions from our scorer are shown in Table 3.
The annotated data and trained scorer are available
at the authors’ websites.

2 Related Work

Research in automatic story generation has a long
history, with early efforts driven primarily by
hand-written rules (Klein et al., 1973; Meehan,
1977; Dehn, 1981; Lebowitz, 1985; Turner, 1993),
often drawing from theoretical analysis of sto-
ries (Propp, 1968; Schank and Abelson, 1975;
Thorndyke, 1977; Wilensky, 1983). Later meth-
ods were based on various methods of planning
from artificial intelligence (Theune et al., 2003;
Oinonen et al., 2006; Riedl and Young, 2010)
or commonsense knowledge resources (Liu and
Singh, 2002; Winston, 2014). A detailed summary
of this earlier work is beyond our scope; for sur-
veys, please see Mani (2012), Gervás (2012), or
Gatt and Krahmer (2017).

More recent work in story generation has fo-
cused on data-driven methods (McIntyre and La-
pata, 2009, 2010; McIntyre, 2011; Elson, 2012;
Daza et al., 2016; Roemmele, 2016). The gener-
ation problem is often constrained via anchoring
to some other input, such as a topic or list of key-
words (McIntyre and Lapata, 2009), a sequence
of images (Huang et al., 2016), a set of loosely-

1However, since our scorer does not use a gold standard,
it is possible to “game” the metric by directly optimizing the
predicted score, so if used as an evaluation metric, it should
still be validated with a small-scale manual evaluation.

connected sentences (Jain et al., 2017), or settings
in which a user and agent take turns adding sen-
tences to a story (Swanson and Gordon, 2012;
Roemmele and Gordon, 2015; Roemmele, 2016).

Our annotation criteria—relevance, interesting-
ness, and overall quality—are inspired by those
from prior work. McIntyre and Lapata (2009) sim-
ilarly obtain annotations for story interestingness.
They capture coherence in generated stories by us-
ing an automatic method based on sentence shuf-
fling. We discuss the relationship between rele-
vance and coherence below in Section 3.2.

Roemmele et al. (2017) use automated linguis-
tic analysis to evaluate story generation systems.
They explore the various factors that affect the
quality of a story by measuring feature values for
different story generation systems, but they do not
obtain any quality annotations as we do here.

Since there is little work in automatic evalua-
tion of story generation, we can turn to the related
task of open-domain dialogue. Evaluation of dia-
logue systems often uses perplexity or metrics like
BLEU (Papineni et al., 2002), but Liu et al. (2016)
show that most common evaluation metrics for di-
alog systems are correlated very weakly with hu-
man judgments. Lowe et al. (2017) develop an au-
tomatic metric for dialog evaluation by training a
model to predict crowdsourced quality judgments.
While this idea is very similar to our work, one
key difference is that their annotators were shown
both system outputs and the gold standard for each
context. We fear this can bias the annotations by
turning them into a measure of similarity to the
gold standard, so we do not show the gold stan-
dard to annotators.

Wang et al. (2017) use crowdsourcing (upvotes
on Quora) to obtain quality judgments for short
stories and train models to predict them. One dif-
ference is that we obtain annotations for three dis-
tinct criteria, while they only use upvotes. An-
other difference is that we collect annotations for
both manually-written continuations and a range
of system-generated continuations, with the goal
of using our annotations to train a scorer that can
be used within training.

3 Data Collection

Our goal is to collect annotations of the quality of
a sentence in a story given its preceding sentences.
We use the term context to refer to the preced-
ing sentences and continuation to refer to the next
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sentence being generated and evaluated. We now
describe how we obtain 〈context, continuation〉
pairs from automatic and human-written stories
for crowdsourcing quality judgments.

We use the ROC story corpus (Mostafazadeh
et al., 2016), which contains 5-sentence stories
about everyday events. We use the initial data re-
lease of 45,502 stories. The first 45,002 stories
form our training set (TRAIN) for story generation
models and the last 500 stories form our develop-
ment set (DEV) for tuning hyperparameters while
training story generation models. For collecting
annotations, we compile a dataset of 4586 context-
continuation pairs, drawing contexts from DEV as
well as the 1871-story validation set from the ROC
Story Cloze task (Mostafazadeh et al., 2016).

For contexts, we use 3- and 4-sentence prefixes
from the stories in this set of 4586. We use both 3
and 4 sentence contexts as we do not want our an-
notated dataset to include only story endings (for
the 4-sentence contexts, the original 5th sentence
is the ending of the story) but also more general in-
stances of story continuation. We did not use 1 or
2 sentence contexts because we consider the space
of possible continuations for these short contexts
to be too unconstrained and thus it would be diffi-
cult for both systems and annotators.

We generated continuations for each context us-
ing a variety of systems (described in Section 3.1)
as well as simply taking the human-written contin-
uation from the original story. We then obtained
annotations for the continuation with its context
via crowdsourcing, described in Section 3.2.

3.1 Story Continuation Systems

In order to generate a dataset with a range of
qualities, we consider six ways of generating the
continuation of the story, four based on neu-
ral sequence-to-sequence models and two using
human-written sentences. To lessen the possibil-
ity of annotators seeing the same context multiple
times, which could bias the annotations, we used
at most two methods out of six for generating the
continuation for a particular context.

3.1.1 Sequence-to-Sequence Models
We used a standard sequence-to-sequence
(SEQ2SEQ) neural network model (Sutskever
et al., 2014) to generate continuations given
contexts. We trained the models on TRAIN and
tuned on DEV. We generated 180,008 〈context,
continuation〉 pairs from TRAIN, where the contin-

uation is always a single sentence and the context
consists of all previous sentences in the story.
We trained a 3-layer bidirectional SEQ2SEQ

model, with each layer having hidden vector
dimensionality 1024. The size of the vocabulary
was 31,220. We used scheduled sampling (Bengio
et al., 2015), using the previous ground truth word
in the decoder with probability 0.5t, where t is the
index of the mini-batch processed during training.
We trained the model for 20,000 epochs with a
batch size of 100. We began training the model
on consecutive sentence pairs (so the context was
only a single sentence), then shifted to training on
full story contexts.

We considered four different methods for the
decoding function of our SEQ2SEQ model:

• SEQ2SEQ-GREEDY: return the highest-scoring
output under greedy (argmax) decoding.

• SEQ2SEQ-DIV: return the kth-best output us-
ing a diverse beam search (Vijayakumar et al.,
2016) with beam size k = 10.

• SEQ2SEQ-SAMPLE: sample words from the
distribution over output words at each step us-
ing a temperature parameter τ = 0.4.

• SEQ2SEQ-REVERSE: reverse input sequence
(at test time only) and use greedy decoding.

Each decoding rule contributes one eighth of
the total data generated for annotation, so the
SEQ2SEQ models account for one half of the
〈context, continuation〉 pairs to be annotated.

3.1.2 Human Generated Outputs
For human generated continuations, we use two
methods. The first is simply the gold standard con-
tinuation from the ROC stories dataset, which we
call HUMAN. The second finds the most similar
context in the ROC training corpus, then returns
the continuation for that context. To compute sim-
ilarity between contexts, we use the sum of two
similarity scores: BLEU score (Papineni et al.,
2002) and the overall sentence similarity described
by Li et al. (2006). Since this method is similar
to an information retrieval-based story generation
system, we refer to it as RETRIEVAL. HUMAN and
RETRIEVAL each contribute a fourth of the total
data generated for annotation.

3.2 Crowdsourcing Annotations
We used Amazon Mechanical Turk to collect an-
notations of continuations paired with their con-
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texts. We collected annotations for 4586 context-
continuation pairs, collecting the following three
criteria for each pair:

• Overall quality (O): a subjective judgment by
the annotator of the quality of the continuation,
i.e., roughly how much the annotator thinks the
continuation adds to the story.

• Relevance (R): a measure of how relevant the
continuation is to the context. This addresses
the question of whether the continuation fits
within the world of the story.

• Interestingness (I): a measure of the amount of
new (but still relevant) information added to the
story. We use this to measure whether the con-
tinuation makes the story more interesting.

Our criteria follow McIntyre and Lapata (2009)
who used interestingness and coherence as two
quality criteria for story generation. Our notion
of relevance is closely related to coherence; when
thinking of judging a continuation, we believed
that it would be more natural for annotators to
judge the relevance of the continuation to its con-
text, rather than judging the coherence of the re-
sulting story. That is, coherence is a property of a
discourse, while relevance is a property of a con-
tinuation (in relation to the context).

Our overall quality score was intended to cap-
ture any remaining factors that determine human
quality judgment. In preliminary annotation ex-
periments, we found that the overall score tended
to capture a notion of fluency/grammaticality,
hence we decided not to annotate this criterion
separately. We asked annotators to forgive minor
ungrammaticalities in the continuations and rate
them as long as they could be understood. If an-
notators could not understand the continuation, we
asked them to assign a score of 0 for all criteria.

We asked the workers to rate the continuations
on a scale of 1 to 10, with 10 being the high-
est score. We obtained annotations from two dis-
tinct annotators for each pair and for each crite-
rion, adding up to a total of 4586×2×3 = 27516
judgments. We asked annotators to annotate all
three criteria for a given pair simultaneously in
one HIT.2 We required workers to be located in
the United States, to have a HIT approval rating

2In a preliminary study, we experimented with asking for
each criterion separately to avoid accidental correlation of the
criteria, but found that it greatly reduced cumulative cognitive
load for each annotator to do all three together.

Criterion Mean Std. IA MAD IA SDAD
Overall 5.2 2.5 2.1 1.6
Relevance 5.2 3.0 2.3 1.8
Interestingness 4.6 2.5 2.1 1.9

Table 1: Means and standard deviations for each cri-
terion, as well as inter-annotator (IA) mean absolute
differences (MAD) and standard deviations of absolute
differences (SDAD).

greater than 97%, and to have had at least 500
HITs approved. We paid $0.08 per HIT. Since
task duration can be difficult to estimate from
HIT times (due to workers becoming distracted or
working on multiple HITs simultaneously), we re-
port the top 5 modes of the time duration data in
seconds. For pairs with 3 sentences in the context,
the most frequent durations are 11, 15, 14, 17, and
21 seconds. For 4 sentences, the most frequent du-
rations are 18, 20, 19, 21, and 23 seconds.

We required each worker to annotate no more
than 150 continuations so as not to bias the data
collected. After collecting all annotations, we ad-
justed the scores to account for how harshly or le-
niently each worker scored the sentences on av-
erage. We did this by normalizing each score by
the absolute value of the difference between the
worker’s mean score and the average mean score
of all workers for each criterion. We only normal-
ized scores of workers who annotated more than
10 pairs in order to ensure reliable worker means.
We then averaged the two adjusted sets of scores
for each pair to get a single set of scores.

4 Dataset Analysis

Table 1 shows means and standard deviations for
the three criteria. The means are similar across the
three, though interestingness has the lowest, which
aligns with our expectations of the ROC stories.
For measuring inter-annotator agreement, we con-
sider the mean absolute difference (MAD) of the
two judgments for each pair.3 Table 1 shows the
MADs for each criterion and the corresponding
standard deviations (SDAD). Overall quality and
interestingness showed slightly lower MADs than
relevance, though all three criteria are similar.

The average scores for each data source are
shown in Table 2. The ranking of the systems is

3Cohen’s Kappa is not appropriate for our data because,
while we obtained two annotations for each pair, they were
not always from the same pair of annotators. In this case,
an annotator-agnostic metric like MAD (and its associated
standard deviation) is a better measure of agreement.
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System # O R I
SEQ2SEQ-GREEDY 596 4.18 4.09 3.81
SEQ2SEQ-DIV 584 3.36 3.50 3.00
SEQ2SEQ-SAMPLE 578 3.69 3.70 3.42
SEQ2SEQ-REVERSE 577 4.61 4.39 4.02
RETRIEVAL 1086 5.68 4.93 5.15
HUMAN 1165 7.22 8.05 6.33

Table 2: Average criteria scores for each system (O =
overall, R = relevance, I = interestingness).

consistent across criteria. Human-written contin-
uations are best under all three criteria. The HU-
MAN relevance average is higher than interesting-
ness. This matches our intuitions about the ROC
corpus: the stories were written to capture com-
monsense knowledge about everyday events rather
than to be particularly surprising or interesting sto-
ries in their own right. Nonetheless, we do find
that the HUMAN continuations have higher inter-
estingness scores than all automatic systems.

The RETRIEVAL system actually outperforms
all SEQ2SEQ systems on all criteria, though the
gap is smallest on relevance. We found that the
SEQ2SEQ systems often produced continuations
that fit topically within the world suggested by
the context, though they were often generic or
merely topically relevant without necessarily mov-
ing the story forward. We found S2S-GREEDY

produced outputs that were grammatical and rele-
vant but tended to be more mundane whereas S2S-
REVERSE tended to produce slightly more inter-
esting outputs that were still grammatical and rel-
evant on average. The sampling and diverse beam
search outputs were frequently ungrammatical and
therefore suffer under all criteria.

We show sample outputs from the different sys-
tems in Table 3. We also show predicted criteria
scores from our final automatic scoring model (see
Section 6 for details). We show predicted rather
than annotated scores here because for a given
context, we did not obtain annotations for all con-
tinuations for that context. We can see some of the
characteristics of the different models and under-
stand how their outputs differ. The RETRIEVAL

outputs are sometimes more interesting than the
HUMAN outputs, though they often mention new
entities that were not contained in the context, or
they may be merely topically related to the context
without necessarily resulting in a coherent story.
This affects interestingness as well, as a continua-
tion must first be relevant in order to be interesting.

4.1 Relationships Among Criteria
Table 4 shows correlations among the criteria for
different sets of outputs. RETRIEVAL outputs
show a lower correlation between overall score
and interestingness than HUMAN outputs. This is
likely because the RETRIEVAL outputs with high
interestingness scores frequently contained more
surprising content such as new character names
or new actions/events that were not found in the
context. Therefore, a high interestingness score
was not as strongly correlated with overall qual-
ity as with HUMAN outputs, for which interesting
continuations were less likely to contain erroneous
new material.

HUMAN continuations have a lower correlation
between relevance and interestingness than the
RETRIEVAL or SEQ2SEQ models. This is likely
because nearly all HUMAN outputs are relevant, so
their interestingness does not depend on their rel-
evance. For SEQ2SEQ, the continuations can only
be interesting if they are first somewhat relevant to
the context; nonsensical output was rarely anno-
tated as interesting. Thus the SEQ2SEQ relevance
and interestingness scores have a higher correla-
tion than for HUMAN or RETRIEVAL.

The lower rows show correlations for different
levels of overall quality. For stories whose over-
all quality is greater than 7.5, the correlations be-
tween the overall score and the other two criteria is
higher than when the overall quality is lower. The
correlation between relevance and interestingness
is not as high (0.34). The stories at this quality
level are already at least somewhat relevant and
understandable, hence like HUMAN outputs, the
interestingness score is not as dependent on the
relevance score. For stories with overall quality
below 2.5, the stories are often not understandable
so annotators assigned low scores to all three cri-
teria, leading to higher correlation among them.

4.2 Features
We also analyze our dataset by designing features
of the 〈context, continuation〉 pair and measuring
their correlation with each criterion.

4.2.1 Shallow Features
We consider simple features designed to capture
surface-level characteristics of the continuation:

• Length: number of tokens in the continuation.

• Relative length: the length of the continuation
divided by the length of the context.
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Context 1: Tripp wanted to learn how to put a topspin on his serve . He was a more advanced tennis player . He sought out
a tennis pro to help him . He finally perfected his topspin .
System Continuation O R I
S2S-GREEDY He won the game . 4.12 4.99 3.45
S2S-DIV Now he had the game. 4.25 5.04 3.60
S2S-SAMPLE Now , he is able to play his . 4.48 4.88 3.94
S2S-REVERSE He took a few minutes . 4.92 5.77 4.22
RETRIEVAL Lyn now has a great backhand . 6.05 7.14 5.34
HUMAN His game improved even more. 5.05 6.16 4.36
Context 2: Neil had just entered the country of Oman . He found the desert land to be enchanting . The women dressed
beautifully and the men were friendly . Neil felt very comfortable in Oman .
S2S-GREEDY Neil decided to try the best man. 5.47 6.13 4.74
S2S-DIV They were days and decided 4.66 5.65 3.96
S2S-SAMPLE Neil Neil the trip trip of the trip of the trip 4.95 5.66 4.72
S2S-REVERSE He took a tour of the city. 3.97 4.83 3.64
RETRIEVAL Neil saw that South Koreans were a very kind people ! 6.26 6.94 5.66
HUMAN He wished he could stay forever! 6.24 7.22 5.58
Context 3: Ed and Emma were twins and wanted to have matching Halloween costumes . But they couldn ’t agree on a
costume ! Ed wanted to be a superhero and Emma wanted to be a mermaid .
S2S-GREEDY He took out and could make to work . 4.60 5.11 4.11
S2S-DIV So , s ’ and they would learn . 4.71 5.41 4.18
S2S-SAMPLE They decided went their great time and they their family . s house . 4.86 5.50 4.58
S2S-REVERSE They decided to try to their local home . 4.74 5.21 4.22
RETRIEVAL Then their mom offered a solution to please them both . 5.59 6.11 5.05
HUMAN Then their mom said she could make costumes that ’d please them both . 6.17 6.71 5.69

Table 3: Sample system outputs for different contexts. Final three columns show predicted scores from our trained
scorer (see Section 6 for details).

Corr(O,R) Corr(O,I) Corr(R,I)
HUMAN 0.70 0.63 0.44
RETRIEVAL 0.68 0.52 0.47
HUMAN + RET. 0.76 0.61 0.53
SEQ2SEQ-ALL 0.72 0.70 0.59
Overall > 7.5 0.46 0.47 0.34
5 < Overall < 7.5 0.44 0.31 0.24
2.5 < Overall < 5 0.38 0.35 0.38
Overall < 2.5 0.41 0.41 0.38
Overall > 2.5 0.76 0.69 0.59

Table 4: Pearson correlations between criteria for dif-
ferent subsets of the annotated data.

• Language model: perplexity from a 4-gram
language model with modified Kneser-Ney
smoothing estimated using KenLM (Heafield,
2011) from the Personal Story corpus (Gordon
and Swanson, 2009), which includes about 1.6
million personal stories from weblogs.

• IDF: the average of the inverse document fre-
quencies (IDFs) across all tokens in the contin-
uation. The IDFs are computed using Wikipedia
sentences as “documents”.

4.2.2 PMI Features
We use features based on pointwise mutual infor-
mation (PMI) of word pairs in the context and con-
tinuation. We take inspiration from methods de-
veloped for the Choice of Plausible Alternatives
(COPA) task (Roemmele et al., 2011), in which
a premise is provided with two alternatives. Gor-

don et al. (2011) obtained strong results by using
PMIs to compute a score that measures the causal
relatedness between a premise and its potential al-
ternatives. For a 〈context, continuation〉 pair, we
compute the following score (Gordon et al., 2011):

spmi =

∑
u∈context

∑
v∈continuation PMI(u, v)

NcontextNcontination

where Ncontext and Ncontinuation are the numbers of
tokens in the context and continuation. We cre-
ate 6 versions of the above score, combining three
window sizes (10, 25, and 50) with both stan-
dard PMI and positive PMI (PPMI). To compute
PMI/PPMI, we use the Personal Story corpus.4

For efficiency and robustness, we only compute
PMI/PPMI of a word pair if the pair appears more
than 10 times in the corpus using the particular
window size.

4.2.3 Entity Mention Features
We compute several features to capture how
relevant the continuation is to the input. In

4We use Wikipedia for IDFs and the Personal Story cor-
pus for PMIs. IDF is a simpler statistic which is presumed to
be similar across a range of large corpora for most words; we
use Wikipedia because it has broad coverage in terms of vo-
cabulary. PMIs require computing word pair statistics and are
therefore expected to be more data-dependent, so we chose
the Personal Story corpus due to its effectiveness for related
tasks (Gordon et al., 2011).
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Feature O R I
Length 0.007 0.055 0.071
Relative length 0.018 0.020 0.060
Language model 0.025 0.034 0.058
IDF 0.418 0.316 0.408
PPMI (w = 10) 0.265 0.321 0.224
PPMI (w = 25) 0.289 0.341 0.249
PPMI (w = 50) 0.299 0.351 0.259
Has old mentions 0.050 0.151 0.023
Number of old mentions 0.057 0.146 0.049
Has new mentions -0.048 -0.115 -0.026
Number of new mentions -0.052 -0.119 -0.029
Has new names -0.005 -0.129 0.017
Number of new names -0.005 -0.130 0.017
Is HUMAN? 0.56 0.62 0.50
Is HUMAN ∪ RETRIEVAL? 0.60 0.49 0.56

Table 5: Spearman correlations between features and
annotations. The final two rows are “oracle” binary
features that return 1 for continuations from those sets.

order to compute these features we use the
part-of-speech tagging, named entity recognition
(NER), and coreference resolution tools in Stan-
ford CoreNLP (Manning et al., 2014):

• Has old mentions: a binary feature that returns
1 if the continuation has “old mentions,” i.e.,
mentions that are part of a coreference chain
that began in the context.

• Number of old mentions: the number of old
mentions in the continuation.

• Has new mentions: a binary feature that returns
1 if the continuation has “new mentions,” i.e.,
mentions that are not part of any coreference
chain that began in the context.

• Number of new mentions: the number of new
mentions in the continuation.

• Has new names: if the continuation has new
mentions, this binary feature returns 1 if any of
the new mentions is a name, i.e., if the mention
is a person named entity from the NER system.

• Number of new names: the number of new
names in the continuation.

4.3 Comparing Features
Table 5 shows Spearman correlations between our
features and the criteria.5 The length features have
small positive correlations with all three criteria,
showing highest correlation with interestingness.
Language model perplexity shows weak correla-
tion for all three measures, with its highest cor-

5These use the combined training and validation sets; we
describe splitting the data below in Section 6.

relation for interestingness. The SEQ2SEQ mod-
els output very common words which lets them
have relatively low perplexities even with occa-
sional disfluencies, while the human-written out-
puts contain more rare words.

The IDF feature shows highest correlation with
overall and interestingness, and lower correlation
with relevance. This is intuitive since the IDF
feature will be largest when many rare words are
used, which is expected to correlate with inter-
estingness more than relevance. We suspect IDF
correlates so well with overall because SEQ2SEQ

models typically generate common words, so this
feature may partially separate the SEQ2SEQ from
HUMAN/RETRIEVAL.

Unlike IDF, the PPMI scores (with window
sizes w shown in parentheses) show highest cor-
relations with relevance. This is intuitive, since
PPMI will be highest when topical coherence is
present in the discourse. Higher correlations are
found when using larger window sizes.6

The old mentions features have the highest cor-
relation with relevance, as expected. A contin-
uation that continues coreference chains is more
likely to be relevant. The new mention/name fea-
tures have negative correlations with relevance,
which is also intuitive: introducing new characters
makes the continuation less relevant.

To explore the question of separability be-
tween machine and human-written continuations,
we measured correlations of “oracle” features that
simply return 1 if the output was generated by hu-
mans and 0 if it was generated by a system. Such
features are highly correlated with all three crite-
ria as seen in the final two rows of Table 5. This
suggests that human annotators strongly preferred
human generated stories over our models’ out-
puts. Some features may correlate with the anno-
tated criteria if they separate human- and machine-
generated continuations (e.g., IDF).

5 Methods for Score Prediction

We now consider ways to build models to predict
our criteria. We define neural networks that take as
input representations of the context/continuation
pair 〈b, c〉 and our features and output a continu-
ous value for each predicted criterion.

We experiment with two ways of representing
the input based on the embeddings of b and c,

6We omit full results for brevity, but the PPMI features
showed slightly higher correlations than PMI features.

198



which we denote vb and vc respectively. The
first (“cont”) uses only the continuation embed-
ding without any representation of the context or
the similarity between the context and continua-
tion: xcont = 〈vc〉. The second (“sim+cont”)
also contains the elementwise multiplication of
the context and continuation embeddings concate-
nated with the absolute difference: xsim+cont =
〈vb � vc, |vb − vc|,vc〉.

To compute representations v, we use the av-
erage of character n-gram embeddings (Huang
et al., 2013; Wieting et al., 2016), fixing the out-
put dimensionality to 300. We found this to out-
perform other methods. In particular, the next
best method used gated recurrent averaging net-
works (GRANs; Wieting and Gimpel, 2017), fol-
lowed by long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997), and
followed finally by word averaging.

The input, whether xcont or xsim+cont, is fed to
one fully-connected hidden layer with 300 units,
followed by a rectified linear unit (ReLU) activa-
tion. Our manually computed features (Length,
IDF, PMI, and Mention) are concatenated prior to
this layer. The output layer follows and uses a lin-
ear activation.

We use mean absolute error as our loss function
during training. We train to predict the three crite-
ria jointly, so the loss is actually the sum of mean
absolute errors over the three criteria. We found
this form of multi-task learning to significantly
outperform training separate models for each cri-
terion. When tuning, we tune based on the aver-
age Spearman correlation across the three criteria
on our validation set. We train all models for 25
epochs using Adam (Kingma and Ba, 2014) with
a learning rate of 0.001.

6 Experiments

After averaging the two annotator scores to get
our dataset of 4586 context/continuation pairs, we
split the data randomly into 600 pairs for valida-
tion, 600 for testing, and used the rest (3386) for
training. For our evaluation metric, we use Spear-
man correlation between the scorer’s predictions
and the annotated scores.

6.1 Feature Ablation

Table 6 shows results as features are either re-
moved from the full set or added to the featureless
model, all when using the “cont” input schema.

O R I
All features 57.3 53.4 49.6
- PMI 56.3 50.4 48.6
- IDF 56.6 53.6 46.0
- Mention 54.8 50.3 48.6
- Length 56.1 55.9 45.3
No features 51.9 44.9 43.8
+ PMI 54.5 50.9 44.9
+ IDF 54.3 46.7 46.3
+ Mention 53.8 48.8 46.0
+ Length 51.9 43.1 44.9
+ IDF, Length 54.6 46.5 47.3

Table 6: Ablation experiments with several feature sets
(Spearman correlations on the validation set).

validation test
model features O R I O R I

none 51.9 44.9 43.8 53.3 46.0 50.5
cont IDF, Len. 54.6 46.5 47.3 51.6 40.6 50.2

all 57.3 53.4 49.6 57.1 54.3 52.8

sim+ none 51.6 43.7 44.3 52.2 45.0 48.4

cont IDF, Len. 54.2 45.6 47.7 56.0 46.8 53.0
all 55.1 54.8 47.4 58.7 55.8 52.9

Table 7: Correlations (Spearman’s ρ× 100) on valida-
tion and test sets for best models with three feature sets.

Each row corresponds to one feature ablation or
addition, except for the final row which corre-
sponds to adding two feature sets that are efficient
to compute: IDF and Length. The Mention and
PMI features are the most useful for relevance,
which matches the pattern of correlations in Ta-
ble 5, while IDF and Length features are most
helpful for interestingness. All feature sets con-
tribute in predicting overall quality, with the Men-
tion features showing the largest drop in correla-
tion when they are ablated.

6.2 Final Results

Table 7 shows our final results on the validation
and test sets. The highest correlations on the
test set are achieved by using the sim+cont model
with all features. While interestingness can be
predicted reasonably well with just IDF and the
Length features, the prediction of relevance is im-
proved greatly with the full feature set.

Using our strongest models, we computed the
average predicted criterion scores for each story
generation system on the test set. Overall, the pre-
dicted rankings are strongly correlated with the
rankings yielded by the aggregated annotations
shown in Table 2, especially in terms of distin-
guishing human-written and machine-generated
continuations.

While the PMI features are very helpful for pre-
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dicting relevance, they do have demanding space
requirements due to the sheer number of word
pairs with nonzero counts in large corpora. We at-
tempted to replace the PMI features by similar fea-
tures based on word embedding similarity, follow-
ing the argument that skip-gram embeddings with
negative sampling form an approximate factoriza-
tion of a PMI score matrix (Levy and Goldberg,
2014). However, we were unable to find the same
performance by doing so; the PMI scores were still
superior.

For the automatic scores shown in Table 3, we
used the sim+cont model with IDF and Length
features. Since this model does not require PMIs
or NLP analyzers, it is likely to be the one used
most in practice by other researchers within train-
ing/tuning settings. We release this trained scorer
as well as our annotated data to the research com-
munity.

7 Conclusion

We conducted a manual evaluation of neural
sequence-to-sequence and retrieval-based story
continuation systems along three criteria: overall
quality, relevance, and interestingness. We ana-
lyzed the annotations and identified features that
correlate with each criterion. These annotations
also provide a new story understanding task: pre-
dicting the quality scores of generated continua-
tions. We took initial steps toward solving this
task by developing an automatic scorer that uses
features, compositional architectures, and multi-
task training. Our trained continuation scorer can
be used as a rich feature function for story gen-
eration or a reward function for systems that use
reinforcement learning to learn to generate stories.
The annotated data and trained scorer are available
at the authors’ websites.
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Abstract

Existing methods of hypernymy detection
mainly rely on statistics over a big corpus, ei-
ther mining some co-occurring patterns like
“animals such as cats” or embedding words
of interest into context-aware vectors. These
approaches are therefore limited by the avail-
ability of a large enough corpus that can
cover all terms of interest and provide suffi-
cient contextual information to represent their
meaning. In this work, we propose a new
paradigm, HYPERDEF, for hypernymy de-
tection – expressing word meaning by en-
coding word definitions, along with context
driven representation. This has two main
benefits: (i) Definitional sentences express
(sense-specific) corpus-independent meanings
of words, hence definition-driven approaches
enable strong generalization – once trained,
the model is expected to work well in open-
domain testbeds; (ii) Global context from a
large corpus and definitions provide comple-
mentary information for words. Consequently,
our model, HYPERDEF, once trained on task-
agnostic data, gets state-of-the-art results in
multiple benchmarks1.

1 Introduction

Language understanding applications like textual
entailment (Dagan et al., 2013), question answer-
ing (Saxena et al., 2007) and relation extraction
(Mintz et al., 2009), benefit from the identification
of lexical entailment relations. Lexical inference
encompasses several semantic relations, with hy-
pernymy being one of the prevalent (Roller et al.,
2014; Shwartz et al., 2016), an i.e., “Is-A” relation
that holds for a pair of terms2 (x, y) for specific
terms’ senses.

Two families of approaches have been studied
for identifying term hypernymy. (i) Pattern match-

1cogcomp.org/page/publication_view/836
2This paper uses “term” to refer to any words or phrases.

ing exploits patterns such as “animals such as cats”
to indicate a hypernymy relation from “cat” to “an-
imal” (Hearst, 1992; Snow et al., 2004). How-
ever, it requires the co-occurrence of the two terms
in the same sentence, which limits the recall of
this method; (ii) Term representation learning de-
pends on a vector embedding of each term, where
each entry in the vector expresses an explicit con-
text feature (Baroni et al., 2012a; Roller and Erk,
2016; Shwartz et al., 2017) or a latent semantic
(Fu et al., 2014; Vulic and Mrksic, 2017; Glavas
and Ponzetto, 2017).

Both approaches hinge on acquiring context-
aware term meaning in a large corpus. The gen-
eralization of these corpus-based representation
learning paradigms, however, is limited due to the
domain specificity of the training data. For ex-
ample, an IT corpus hardly mentions “apple” as
a fruit. Furthermore, the surrounding context of
a term may not convey subtle differences in term
meaning – “he” and “she” have highly similar con-
text that may not reveal the important difference
between them. Moreover, rare words are poorly
expressed by their sparse global context and, more
generally, these methods would not generalize to
the low resource language setting.

Humans can easily determine the hypernymy
relation between terms even for words they have
not been exposed to a lot, given a definition of it in
terms of other words. For example, one can imag-
ine a “teaching” scenario that consists of defining
a term, potentially followed by a few examples of
the term usage in text.

Motivated by these considerations and the goal
of eventually develop an approach that could gen-
eralize to unseen words and even to the low re-
source languages scenario, we introduce the fol-
lowing hypernymy detection paradigm, HYPER-
DEF, where we augment distributional contextual
models with that of learning terms representations
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from their definitions. This paradigm has an im-
portant advantage in its powerful generalization,
as definitions are agnostic to specific domains and
benchmarks, and are equally available for words
regardless of their frequency in a given data set.
Consequently, the task of identifying the relation
between two terms is enhanced by the knowl-
edge of the terms’ definitions. Our model can be
applied to any new terms in any domain, given
some context of the term usage and their domain-
agnostic definitions. Moreover, given our learning
approach – we learn also the notion of lexical en-
tailment between terms – we can generalize to any
lexical relation between terms.

Technically, we implement HYPERDEF by
modifying the AttentiveConvNet (Yin and
Schütze, 2017), a top-performing system on a
textual entailment benchmark (Bowman et al.,
2015), to model the input (x, dx; y, dy), where di
(i = x, y) is the definition of term i. In contrast
to earlier work which mostly built separate repre-
sentations for terms x and y, HYPERDEF instead
directly models the representation for each pair
in {(x, y), (x, dy), (dx, y), (dx, dy)}, and then
accumulates the four-way representations to form
an overall representation for the input.

In our experiments, we train HYPERDEF on a
task-agnostic annotated dataset, Wordnet, and test
it on a broad array of open-domain hypernymy de-
tection datasets. The results show the outstanding
performance and strong generalization of the HY-
PERDEF model.

Overall, our contributions are as follows:

• To our knowledge, this is the first work in hy-
pernymy detection that makes use of term def-
initions. Definitions provide complementary
knowledge to distributional context, so that our
model better tolerates unseen words, rare words
and words with biased sense distribution.

• HYPERDEF accounts for word sense when in-
ferring the hypernymy relation. This differs
from much of the literature, which usually de-
rives sense-unaware representative vectors for
terms – earlier approaches would say ‘yes’ if
the relation holds for some combination of the
terms’ senses.

• HYPERDEF has strong generalization capabil-
ity – once trained on a task-agnostic definition
dataset, it can be used in different testbeds, and
shows state-of-the-art results.

2 Related Work

The main novelty of our HYPERDEF lies in the
information resource that is employed to represent
the terms. Prior work in exploring information
resources can be put into two categories: under-
standing terms by the co-occurring context in raw
text, or grounding the terms in open-domain ob-
jects.

2.1 Mining Distributional Context from Text

Window-based Context Baroni et al. (2012b)
build distributional semantic vectors for terms
from a concatenation of three corpora: the British
National Corpus, WackyPedia and ukWac. Each
entry in the vector is the PMI-formulated score
from co-occurrence counts. Dimension reduction
is conducted by Singular Value Decomposition
(SVD) before feeding representation vectors to a
classifier.

Dependency-based Context Roller and Erk
(2016) compute a syntactic distributional space
for terms by counting their dependency neighbors
across the corpus.

Shwartz et al. (2017) further compare (i) con-
texts being parent and daughter nodes in the de-
pendency tree, and (ii) contexts being the parent-
sister pairs in the dependency tree.

Term Embeddings Unspecialized term embed-
dings are not informative signals for detecting
specific lexico-semantic relations. Hence, com-
munity often explicitly build transformation func-
tions from unspecialized embeddings to relation-
specialized embeddings. Fu et al. (2014) first
use the skip-gram model (Mikolov et al., 2013)
to learn generic term embeddings from a large
Chinese encyclopedia corpus, then learn a projec-
tion function from the generic space to hypernymy
space by annotated hypernymy pairs. Other work
trying to specify the generic word embeddings to
hypernymy detection task include (Vulic and Mrk-
sic, 2017; Glavas and Ponzetto, 2017).

Other advanced types of term embeddings spe-
cific to the hypernymy detection problem in-
clude Gaussian distributed embeddings (Vilnis
and McCallum, 2015), non-negative embeddings
(Chang et al., 2017), magnitude-oriented embed-
dings (Nguyen et al., 2017), and so on.

In our work, distributional context model is also
applied. More specifically, we will directly use
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pretrained word embeddings as initial word repre-
sentations and specialize them in training. In con-
trast, distributional context only acts as one side
of information resource to express words, we fo-
cus on making use of a second side of information
from word definitions to build a more robust sys-
tem.

2.2 Grounding Terms to Open-domain
Objects

Do and Roth (2012) build Wikipedia representa-
tions for input terms – representing the input terms
by a set of relevant Wikipedia pages.

Shwartz et al. (2015) represent each term pair
as a set of paths which are extracted from different
large-scale knowledge resources (DBPedia, Wiki-
data, Yago and WordNet), then train a classifier to
determine whether the two terms satisfy a relation
of interest given those path connections.

Young et al. (2014) map terms to a set of im-
ages, then determine the directional inference by
conditional probability over statistic of image in-
tersection.

Compared with mining of distributional context
from text, these works switch the context from
words to Wikipedia pages, KB paths or images.
So, they share a similar mechanism while differing
in the categories of entries in distributional vec-
tors.

Our paradigm HYPERDEF shares the same in-
spiration with above distributional models. More
importantly, It goes beyond the frame of distribu-
tional models by exploring a novel information re-
source – definitions – to derive the word seman-
tics.

3 HYPERDEF Model

In this section, we first give a brief review of
a top-performing neural network for textual en-
tailment – AttentiveConvNet (Yin and Schütze,
2017), which acts as a base model to encode a pair
of texts. Then, we elaborate on the adaptation we
make towards AttentiveConvNet so that the result-
ing system can better serve the hypernymy detec-
tion problem.

3.1 AttentiveConvNet

AttentiveConvNet3 (Yin and Schütze, 2017) is es-
sentially a Siamese convolutional neural network

3https://github.com/yinwenpeng/Attentive Convolution

(CNN) (LeCun et al., 1998) equipped with an at-
tention mechanism. It predicts the relationship of
two sentences by accumulating the dominant fea-
tures of fine-grained alignments across sentences.
The reason we base our system on this model is
two-fold: (i) AttentiveConvNet is one of the top-
performing systems of modeling sentence pairs
in textual entailment, and (ii) AttentiveConvNet
implements the fine-grained cross-sentence align-
ments in the granularity of local windows; this
makes it appropriate to reason between a defini-
tional sentence and a term.

We use bold uppercase, e.g., H, for matrices;
bold lowercase, e.g., h, for vectors; bold lower-
case with index, e.g., hi, for columns of H; for-
mat h[i] to denote the ith entry of vector h; and
non-bold lowercase for scalars.

AttentiveConvNet, shown in Figure 1, repre-
sents a sentence S (S ∈ {S1, S2}) of n words
as a sequence of hidden states hi ∈ Rd (i =
1, 2, . . . , n), forming a feature map H ∈ Rd×n,
where d is the dimensionality of hidden states.
Each hi has a left context hi−1 and a right con-
text hi+1. Given feature maps H1 and H2 for sen-
tences S1 and S2 respectively, AttentiveConvNet
derives a representation for the pair (S1, S2). Un-
like conventional CNNs over single sentences, At-
tentiveConvNet develops an attention mechanism
to achieve fine-grained alignments automatically,
then puts convolution filters over aligned hidden
states together with their context.

Overall, AttentiveConvNet derives the pair rep-
resentation in three steps. (i) A matching function
determines how relevant each hidden state in sen-
tence S2 is to the current hidden state hi in sen-
tence S1. All hidden states in S2 are then accu-
mulated by weighted average to form an aligned
hidden state h̃i. (ii) Convolution for position i
in S1 integrates the two aligned hidden states (hi,
h̃i) with context hi−1 and hi+1. (iii) Max-pooling
over the generated group of hidden states in step
(ii) yields a representation for the pair (S1, S2).
Next, we describe these processes in detail.

Generation of Aligned Hidden States. First,
a matching function fe(hi,hS2

j ) generates a score
ei,j to evaluate how relevant the two hidden states
hi,hS2

j are.

Given the matching scores, the aligned hidden
state h̃i in S2 for hidden state hi in S1 is the
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h˜i
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Figure 1: AttentiveConvNet models a sent. pair (S1, S2). In
our work, Si (i=1,2) can be the definition sentence or
the term itself (we treat a term as a short sentence.)

weighted average of all hidden states in S2:

h̃i =
∑

j

softmax(ei)[j] · hS2
j (1)

Attentive Convolution. A position i in S1 has
hidden state hi, left context hi−1, right context
hi+1 and aligned hidden state h̃i from S2. At-
tentive convolution then generates the higher-level
representation for this combination:

mi = tanh(W · [hi−1,hi,hi+1, h̃i] + b) (2)

where parameters W ∈ Rd×4d, b ∈ Rd.
Pair Representation Generation. As Equation

2 shows, each mi denotes the inference features
between hi and its alignment h̃i in context. Atten-
tiveConvNet uses max-pooling over {mi} to get
the overall representation p for the pair:

p[i] = max(m1[i],m2[i], · · · ,mn[i]) (3)

Finally, the representation p is used in classifi-
cation. The whole model is learned in an end-to-
end training4.

3.2 Four-way AttentiveConvNet
AttentiveConvNet originally works on sentence
pairs. We formulate the hypernymy detection

4For more details, please refer to (Yin and Schütze, 2017).

Figure 2: HYPERDEF – combining distributional
model with definition encoding

problem as {(x, dx; y, dy; 1/0)}. Just as in
(Shwartz et al., 2016) which directly concatenates
the term path representation vector with term em-
bedding vectors as the classifier input, a simple
combination of distributional models and defini-
tion encoding for us could be: separately learn-
ing the distributional model over term embedding
pairs and an AttentiveConvNet model over def-
inition pairs, then concatenate their output rep-
resentations. However, the analysis over dataset
{(x, dx; y, dy; 1/0)} hints that HYPERDEF can
obtain more indicative features by modeling (term,
definition), which crosses the distributional mod-
els and definition encoding. For example, the def-
inition of term “cat” in WordNet is: feline mam-
mal usually having thick soft fur and no ability to
roar: domestic cats; wildcats. Intuitively, when
the system meets the pair (cat, mammal), it should
be trivial to get the “hypernymy” decision since
“mammal” appears in the definition sentence.

Inspired by this observation, we implement the
HYPERDEF paradigm as four-way AttentiveCon-
vNets, as Figure 2 shows, i.e., treating the two
terms as word sequences as well, then do Atten-
tiveConvNet over all four combinations: (x, y),
(x, dy), (dx, y) and (dx, dy).

Assume we get four separate representations:
pww from (x, y), pwd from (x, dy), pdw from
(dx, y) and pdd from (dx, dy), as Section 3.1 de-
scribed. We construct the final representation for
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random split lexical split
all –pww –pwd –pdw – pdd all –pww –pwd – pdw –pdd

HYPERDEF (F1) .905 .874 .896 .876 .881 .887 .875 .870 .849 .862
HYPERDEF (AP) .933 .902 .921 .905 .909 .900 .890 .883 .880 .877
w/o attention (F1) .825 .743
w/o definition (F1) .734 .619
LSTM+atten. (F1) .757 .685

Table 1: Tune HyperDef on wn dev

(x, dx; y, dy) via concatenation:

p = [pww,pwd,pdw,pdd] (4)

then p is fed to the final classifier.
AttentiveConvNet over (x, y) resembles the

conventional hypernymy classifiers which take
two representation vectors (one for x, the other
for y) as input and output the label. Note that
AttentiveConvNet puts filter weights over (x, y)
to learn more abstract representations; this actu-
ally is in common with some literature such as (Fu
et al., 2014; Vulic and Mrksic, 2017; Glavas and
Ponzetto, 2017), which utilize weights to project
generic word representations into specified repre-
sentations towards hypernymy annotations.

AttentiveConvNet over (x, dy) and (dx, y) com-
pares a term with the descriptive sentence of the
other term; this might provide direct clues, as we
discussed in the beginning of this subsection.

AttentiveConvNet over (dx, dy) resembles lit-
erature (Do and Roth, 2012; Young et al., 2014).
HYPERDEF provides an alternative resource for
interpreting terms, resorting to definitional expres-
sions instead of Wikipedia pages or images.

Overall, our HYPERDEF combines strengths of
(i) conventional supervised classifiers over context
distributions, and (ii) rich interpretation of terms
in broader knowledge bases.

3.3 Analysis of HYPERDEF

Our HYPERDEF has the following properties:

• HYPERDEF combines distributional models
with definition encoding, but it is not simply
a concatenation of two independent subsys-
tems. HYPERDEF enables modeling across
(distributional context, definition). This is
expected to generate more indicative fea-
tures than a similar work (Shwartz et al.,
2016), which simply concatenated distribu-
tional models with path-based models;

• HYPERDEF employs definitions to provide
richer information for the terms. But it does
not generate an auxiliary term representation
vector from the definitive sentence as the lit-
erature (Hill et al., 2016) did. Instead, HY-
PERDEF formulates a pair of input elements
– each can be a distributional vector or a def-
inition representation – into a cross-sentence
attention mechanism, which directly yields a
compact representation to the pair rather than
two separate vectors for the two input ele-
ments. This is shown more effective to model
the relationship of two pieces of text (Yin and
Schütze, 2017);

• Distributional models and definitive sen-
tences in HYPERDEF provide complemen-
tary knowledge. For terms which can not re-
trieve a definition, HYPERDEF still works –
just turning into a basic distributional model.
This work uses WordNet and Wikipedia as
example resources for the definition retrieval,
more splendid resources will be developed
gradually in released HYPERDEF models.
We will also provide users the option to type
into their definitions;

• WordNet provides term definitions in the
sense level, so theHYPERDEF model is es-
sentially trained in the sense level. For poly-
semy cases in testing, HYPERDEF can sim-
ply test on all combinations of definitions,
then pick the pair with the highest probabil-
ity;

• For terms that were never observed in train-
ing, we expect context distributions, such
as pretrained embeddings, and definitions
are available, so HYPERDEF is hardly influ-
enced in this case. This is exactly the main
advantage of HYPERDEF: generalization.
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4 Experiments

4.1 Pre-training of HYPERDEF

Dataset Preparation. As we aim to build a
strongly generalizing hypernymy detector, the
training data we collect here is expected to be
task-agnostic. Hence, extracting from structured
knowledge resources, such as WordNet (Fell-
baum, 1998), Wikidata (Vrandecic, 2012), DB-
Pedia (Auer et al., 2007), and Yago (Suchanek
et al., 2007), is preferred. Some literature, e.g.,
(Shwartz et al., 2015), claim that there is limited
coverage for almost all knowledge resources. For
example, WordNet does not cover many proper-
names (Donald Trump → president) or recent
terminology (AlphaGo → computer program).
Our data tends to alleviate this challenge, since
in testing, descriptive sentences in the HYPER-
DEF paradigm can provide the precise and dis-
tinct features for terms even if these terms are
OOV and in new types.

In this work, we pick one of those knowl-
edge resources – WordNet – to collect training
data. Specifically, our positive instances consist
of (i) all direct hypernymy pairs, and (ii) switched
terms from the original hyponymy pairs. Neg-
ative instances include (i) pairs with other rela-
tions such as antonym, synonym, and (ii) pairs of
positive instances after exchanging the two terms.
Note that each term is accompanied by its defini-
tion in sense level. So we get instances in form
(x, dx; y, dy; 1/0), where the binary value “1/0”
indicates whether y is x’s hypernymy or not. Al-
together, we collect about 900K instances with
roughly a 8:1 ratio between negative and positive
instances.

In testing, we implement HYPERDEF to re-
trieve definitions and distributional context for
terms automatically5.

Random and Lexical Dataset Splits. In our pri-
mary dataset, we perform a random split, with
80% train, 10% dev, and 10% test.

As pointed out by Levy et al. (2015), super-
vised distributional lexical inference methods tend
to perform “lexical memorization”, i.e., instead of
learning a relation between the two terms, they
mostly learn an independent property of term y in
the pair: whether y is a “prototypical hypernym”
or not. Levy et al. (2015) suggest to splitting the

5In the released HYPERDEF model, we will provide an
option for users to input definitions.

train and test sets such that each will contain a dis-
tinct vocabulary (“lexical split”), in order to pre-
vent the model from overfitting by lexical memo-
rization.

In the current phase, we use notations wn train,
wn dev, and wn test to refer to the three parts.
Note that wn train and wn dev will be used to train
and tune the HYPERDEF model, while wn test is
set to show how well the model performs in Word-
Net domain – it is not expected to act as a testbed
in real benchmarks. In experiments, we will com-
pare our model in random and lexical splits.

Training Setup. Given wn train in form {(x,
dx; y, dy; 1/0)}, a binary classifier via logistic re-
gression is trained over the pair representation p
obtained from Equation 4, predicting 1 or 0 for the
hypernymy relation. The objective function is im-
plemented through negative log-likelihood. Terms
and words in definitions are initialized by 300d
Word2Vec embeddings (Mikolov et al., 2013) and
kept unchanged in training. This benefits the gen-
eralization as it ensures that the words in train-
ing and the new words in test data lie in the same
space. All hidden sizes are 300 as well. The whole
system is trained by AdaGrad (Duchi et al., 2011)
with initial learning rate 0.02.

We first run the HYPERDEF in wn test to check
if it is effective in the WordNet domain. Then we
test it in some open-domain benchmarks. Note
that all experiments use the HYPERDEF models
pretrained over wn train.

4.2 Performance within WordNet

As mentioned in Section 4.1, wn train, wn dev
and wn test have two distinct setups: “random
split” and “lexical split”, inspired by the “lexical
memorization” observation (Levy et al., 2015).

We first tune the parameters in wn train and
search the best system layout based on wn dev.
F1 and average precision (AP) are reported. Ta-
ble 1 lists the performance records, with the first
block for “random split” and the second block for
“lexical split”.

We first discuss three baselines: (i) “w/o defi-
nition”: We discard definitions and only use dis-
tributional model, i.e., a logistic regression clas-
sifier (LR) over the concatenated (x, y) embed-
dings from Word2Vec. Its performance drops
11.5% from “random split” to “lexical split”.
This is within expectation as Levy et al. (2015)
concluded that this baseline is not effective in
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learning genuine term relations; (ii) “w/o atten-
tion”: We discard the attention mechanism in
AttentiveConvNet, resulting in a bi-CNN struc-
ture. It works on instances {(x, dx; y, dy; 1/0)},
a vanilla CNN is used to encode the definition
sentence into a dense representation vector. So,
each term in (x, y) will get two separate rep-
resentation vectors (one is from Word2Vec, the
other from the definition); finally totally four rep-
resentation vectors are concatenated and fed to
the LR. This baseline works much better than
“w/o definition” (improvements of 9% ∼ 11%).
Their comparison shows that incorporating term
definitions in reasoning process is promising;
(iii) “LSTM+attention” (Rocktäschel et al., 2016).
A representative attention mechanism in LSTM
(Hochreiter and Schmidhuber, 1997) for textual
entailment. We apply it in the same way as
our four-way AttentiveConvNet, however, found
it performs poorly. We suspect that this is due to
two reasons: i) Though there is entailment or hy-
pernymy relation between a term pair, e.g., (“cat”,
“animal”), unfortunately there is no clear clue of
that relation between their definition pair if consid-
ering all the information contained in the defini-
tions. For example, “cat” – “a small domesticated
carnivorous mammal with soft fur, a short snout,
and retractile claws. It is widely kept as a pet or
for catching mice, and many breeds have been de-
veloped”, and “animal” – “a living organism that
feeds on organic matter, typically having special-
ized sense organs and nervous system and able
to respond rapidly to stimuli”. Apparently, we
can not infer the whole definition of “animal” by
cat’s definition. Instead, their help mainly comes
from some key-phrases, such as “domesticated
carnivorous mammal”, “living organism” and so
on. LSTM, encoding the whole word sequences
in attention, potentially would be misled. Our
approach relies on convolution filters and max-
pooling, excelling in modeling keywords-driving
features (Yin et al., 2017). This baseline indicates
the overall strength of our system comes from the
definition incorporation as well as an appropriate
encoder.

Considering the whole table, we observe that:
(i) HYPERDEF models have pretty close perfor-
mances in “random split” and “lexical split” –
mostly within 2∼3%. This strongly indicates
that HYPERDEF is less influenced by the “lexical
memorization” problem. Our systems, equipped

random lexical
F1 .902 .881
AP .915 .891

Table 2: Pretrained HyperDef on wn test

with definition encoding, show promising general-
ization (at least in WordNet domain); (ii) Though
HYPERDEF models in “all” setup behave simi-
larly in random split and lexical split, the detailed
contributions of pww, pwd, pdw and pdd differ in
the two settings. To be specific, in “wn dev (ran-
dom split)”, there is no clear winner among {pww,
pdw, pdd}, pwd contributes consistently less than
the other three. In “wn dev (lexical split)”, in-
stead, pwd, pdw and pdd perform similarly while
pww performs worst. This indicates that when
dealing with unseen terms, definition-based com-
ponents in HYPERDEF play a dominant role.

Experiments on wn dev enable to store the best
HYPERDEF models – concatenation over the four
representations: pww, pwd, pdw and pdd. Then
we reload the pretrained models and report their
performance on wn test, as shown in Table 2.
From Table 1 to Table 2, we observe pretty small
drop in performance – mostly∼ 1% . This prelim-
inarily demonstrates the strong generalization.

Next, we test the best HYPERDEF models pre-
trained on “wn train (lexical split)” in open do-
main benchmarks.

4.3 Performance in Open-domain Datasets

First, we use four widely-explored datasets:
BLESS (Baroni and Lenci, 2011), EVALution
(Santus et al., 2015), Lenci/Benotto (Benotto,
2015), and Weeds (Weeds et al., 2014). They were
constructed either using knowledge resources (e.g.
WordNet, Wikipedia), crowd-sourcing or both.
The instance sizes of hypernymy and “other” re-
lation types are detailed in Table 3. We also re-
port “#OOV pair”, the proportions of unseen term
pairs in above four datasets regarding the train-
ing set of HYPERDEF, i.e., wn train in Section
4.1. We notice that most term pairs in BLESS and
Lenci/Benotto datasets are unseen in wn train.

First, we extract the term’s all sense definitions
from WordNet based on the term string. For a
few instances which contain terms not covered
by WordNet, such as proper noun “you”, “ev-
erybody” etc, we set definitions the same as the
term strings (this preprocessing does not influence
results, just for making the system uniformed).
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dataset #hyper. #others #OOV pair
BLESS 1.337 25,217 99.04%
EVALution 3,637 9,828 78.86%
Lenci/Benotto 1,933 3,077 92.50%
Weeds 1,469 1,459 71.54%

Table 3: Statistics of four benchmarks. “#OOV pair”:
the proportions of unseen term pairs regarding the
training set (i.e., wn train in Section 4.1) of HYPER-
DEF.

Then, we apply the pre-trained HYPERDEF model
on the test sets of the four benchmarks, discrim-
inating hypernymy from “other” relations. AP
and AP@100 are reported. As WordNet sorts
sense definitions by sense frequency (Fellbaum,
1998), we test the term pairs in two ways: (i)
Only choose the top-1 sense definition to de-
note a term, reported as “HYPERDEFTopDef”; (ii)
Keep all sense definitions for those terms, then
test on all sense combinations and pick the high-
est probability as the term pair score, reported
as“HYPERDEFAllDef”.

We compare HYPERDEF with baselines: (i)
Best-Unsuper. The best unsupervised method
in (Shwartz et al., 2017), implemented by sim-
ilarity measurement over weighted dependency-
based context vectors; (ii) Concat-SVM (Glavas
and Ponzetto, 2017). An SVM model with RBF
kernel is trained on concatenation of unspecial-
ized concept embeddings (Baroni et al., 2012a);
(iii) DUAL-T (Glavas and Ponzetto, 2017). Using
dual tensors, DUAL-T transforms unspecialized
embeddings into asymmetrically specialized rep-
resentations – sets of specialized vectors – which
are next used to predict whether the asymmetric
relation holds between the concepts; (iv) Hyper-
Score (Nguyen et al., 2017). The state-of-the-art
system. It uses a large-scale hypernymy pair set
to guide the learning of hierarchical word embed-
dings in hypernymy-structured space.

Table 4 clearly demonstrates the superiority of
our HYPERDEF models over other systems. The
three baselines Concat-SVM, DUAL-T and Hy-
perScore are more in line with HYPERDEF since
they did supervised learning over large numbers of
annotated pairs. HYPERDEF integrates term defi-
nitions, which is shown effective in improving the
performance across different testbeds.

In addition, HYPERDEFAllDef consistently out-
performs HYPERDEFTopDef . This makes sense
as HYPERDEFTopDef may be misled by incorrect

definitions. In addition, the superiority of HY-
PERDEFAllDef clearly supports the effectiveness
of HYPERDEF in dealing with polysemy cases.

Above four benchmarks are relatively small and
contain common words mostly. In real-world ap-
plications, there is a need to figure out the hyper-
nymy relation between common nouns and proper
nouns (Do and Roth, 2012). Taking “(Cham-
plin, city)” for example, “Champlin” is not cov-
ered by WordNet vocabulary, thus uncovered by
wn train – the training data of our HYPERDEF

model. Motivated, we further test HYPERDEF on
the following dataset.

HypeNet Dataset. Shwartz et al. (2016) con-
struct this dataset by extracting hypernymy rela-
tions from several resources: WordNet, DBPedia,
Wikidata and Yago. Like our collected data, term
pairs in other relations are considered as negative
instances. It maintains a ratio of 1:4 positive to
negative pairs.

Similarly, HypeNet dataset has “random split”
and “lexical split” as well; their sizes are list in
Table 5. HypeNet contains lots of locations, e.g.,
(Champlin, city), and organizations, e.g., (Tele-
gram, company) and (Sheetz, company). We first
try to extract definitions for those terms from
WordNet, if fail, then we extract from Wikipedia
pages, treating the first sentence as a definition.

We play HYPERDEF in two different ways, one
testing its “pre-trained” model on HypeNet’s test
data, the other – “specialized” – training HYPER-
DEF on HypeNet’s training data then test on Hy-
peNet’s test data like other baselines did.

Table 6 shows: (i) If trained on the specific
training data of HypeNet, our system HYPER-
DEF can get state of the art performance. This
indicates the superiority of our model over base-
line systems.

(i) Our pretrained HYPERDEF model performs
less satisfactorily. Only the result on “Lex. split”
is relatively close to the outstanding baselines.
This makes sense as baseline systems are specified
by the HypeNet training set while our pretrained
model comes from a different domain. We studied
the dataset and found following problems.

Error Analysis. Two error sources are ob-
served. (i) Wrong definition. For example,
the system obtains the definition “a substance or
treatment with no active therapeutic effect” for the
term “Placebo” in the pair (Placebo, song); how-
ever, a successful detection requires mining an-
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BLESS EVALuation Benotto Weeds
Model AP AP@100 AP AP@100 AP AP@100 AP AP@100
Best-Unsuper (Shwartz et al., 2017) .051 .540 .353 .661 .382 .617 .441 .911
Concat-SVM (Glavas and Ponzetto, 2017) .097 .235 .321 .329 .523 .586 .644 .793
DUAL-T (Glavas and Ponzetto, 2017) .487 .823 .446 .866 .557 .847 .774 .985
HyperScore (Nguyen et al., 2017) .454 – .538 – .574 – .850 –
HYPERDEFTopDef .595 .749 .524 .867 .557 .825 .872 .989
HYPERDEFAllDef .508 .872 .623 .927 .576 .909 .889 .991

Table 4: System comparison on BLESS, EVALution, Benotto and Weeds datasets

Dataset train dev test #OOV pair
HypeNet (rnd) 49.5K 3.5K 17.7K 95.56%
HypeNet (lex) 20.3K 1.4K 6.6K 95.33%

Table 5: Statistics of HypeNet dataset. “#OOV pair” is
for “test” regarding the “wn train” of HYPERDEF.

Lex. split Rand. split
Model P R F1 P R F1

HypeNet .809 .617 .700 .913 .890 .901
DUAL-T .705 .785 .743 .933 .826 .876
pre-trained .572 .717 .637 .474 .601 .530
specialized .670 .914 .773 .892 .935 .913

Table 6: System comparison on HypeNet test

other definition – “are an alternative rock band,
formed in London, England in 1994 by singer-
guitarist Brian Molko and guitarist-bassist Stefan
Olsdal” which depicts the article title “Placebo
(band)”. This is a common problem due to the am-
biguity of entity mentions. To relieve this, we plan
to refine the definition retrieval by more advanced
entity linking techniques, or retrieve all highly re-
lated definitions and test as in polysemy cases (re-
call that in Table 4 we showed HYPERDEF has
more robust performance while addressing poly-
semy terms); (ii) Misleading information in defi-
nitions. Our system predicts “1” for the pair (Au-
rangabad, India); we analyze the definition of “Au-
rangabad”: is a city in the Aurangabad district of
Maharashtra state in India. We intentionally re-
moved the phrase “in India”, and then the system
predicts “0”. This demonstrates that definitions in-
deed provide informative knowledge about terms,
but a system must be intelligent to avoid being
misled; (iii) We miss a common embedding space
to initialize single words and (multi-word) entities.
To generalize well to new entities, the model has to
presume the new entities and the known terms lie
in the same representation space. However, most

pretrained embedding sets cover pretty limited en-
tities. To learn uniformed word and entity embed-
dings, we may need to combine unstructured text
corpus, semi-structured data (e.g., Wikipedia) and
structured knowledge bases together. We will ad-
vance this data preprocessing component – the ac-
cess of term definitions and term representations –
in our released system.

5 Conclusion

In this work, we introduced a novel approach to
detecting hypernymy relations by incorporating
term definitions. We extracted a task-agnostic an-
notated data from WordNet, then trained a neu-
ral network to generate a universal hypernymy de-
tector, HYPERDEF. HYPERDEF, once trained,
performs competitively in diverse open-domain
benchmarks, even though it was not fine-tuned on
those benchmark-specific training sets. This val-
idates the powerful generalization of our model
HYPERDEF. Our hope, and one of the key future
directions following this work is to generalize this
approach to the low-resource language setting.
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Abstract

Being able to predict whether people agree or
disagree with an assertion (i.e. an explicit, self-
contained statement) has several applications
ranging from predicting how many people will
like or dislike a social media post to classi-
fying posts based on whether they are in ac-
cordance with a particular point of view. We
formalize this as two NLP tasks: predicting
judgments of (i) individuals and (ii) groups
based on the text of the assertion and previ-
ous judgments. We evaluate a wide range of
approaches on a crowdsourced data set con-
taining over 100,000 judgments on over 2,000
assertions. We find that predicting individual
judgments is a hard task with our best results
only slightly exceeding a majority baseline.
Judgments of groups, however, can be more
reliably predicted using a Siamese neural net-
work, which outperforms all other approaches
by a wide margin.

1 Introduction

One of the most basic reactions when reading a
sentence is to agree or disagree with it.1 Mech-
anisms that allow us to express agreement (e.g.
thumb-up, like, up-vote, ♥) or disagreement (e.g.
thumb-down, dislike, down-vote) towards posts
of other users can be found in almost all social
networking sites. The judgments associated with
posts that discuss controversial political or social
issues, such as legalization of drug, immigration
policy, or gun rights, are a rich source of infor-
mation for those interested in the opinions of in-
dividuals or groups. For instance, public opinion
regarding an issue is often illustrated by the num-
ber of retweets, likes, or upvotes that a politician
or influential person receives.

1You are probably thinking about whether you agree with
that statement right now.

Hence, especially for controversial issues, be-
ing able to predict how people judge posts has sev-
eral applications: people at large could automati-
cally anticipate if politicians, companies or other
decision makers would agree or disagree with a
new perspective on a problem or how they would
evaluate a new possible solution. The method can
also be used by journalists to more accurately ana-
lyze the homogeneity of opinions or to detect filter
bubbles in social media. Decision makers them-
selves would be able to evaluate in advance how
citizens, customers, or employees react to a press
announcement, a new regulation, or tweet. Social
media users could be enabled to search, sort or fil-
ter posts based on whether they are in accordance
with or contrary to their personal world view. Such
predictions could also be used to augment chat ap-
plications by indicating to a user if her recipients
will agree or disagree with a message to be sent,
enabling to choose a more or less confrontational
discussion style.

In this paper, we describe how the outlined use
cases can be framed as two inference tasks: pre-
dicting individual judgments and predicting judg-
ments of whole groups. As a first step, we restrict
ourselves to judgments on textual utterances that
are explicit, relevant, and that do not contain mul-
tiple positions. We will refer to such utterances as
assertions. For solving the tasks, we define the de-
gree to which two assertions are judged similar as
judgment similarity. This similarity allows us to
predict a judgment based on other judgments that
have been made on similar, known assertions.

Across both tasks, we compare this strategy
against several baselines and reference approaches
on a newly crowdsourced data set containing over
100 000 judgments on assertions. We find that,
for predicting individual judgments, our best re-
sults only slightly exceed a majority baseline, but
that judgments of groups can be more reliably pre-

214



Figure 1: Overview on the two prediction tasks.

dicted using a Siamese neural network, which out-
performs all other approaches by a wide margin.

2 Predicting Judgments

In order to predict if someone will agree with
an assertion, we need knowledge about that per-
son. Ideally, we would have access to a large set
of other assertions which the person has already
judged. We could then measure the similarity be-
tween previous assertions and the new assertion
and hypothesize that the judgment on the new as-
sertion should be the same as for a highly similar
one. In Figure 1, we show this case for binary
(yes/no) predictions on individuals and argue that
this can be also generalized to probabilistic pre-
dictions on groups of people. Thus, we formulate
two prediction tasks:

In the first task, we want to predict judgments
of individuals on assertions based on other judg-
ments by the same person. Thus, the first task is
formulated as follows: given a set of assertions
a1, ..., an relevant to an issue and the judgments
of a person pi on a1, ..., an−1 an automatic system
has to predict pi’s judgment on the assertion an.

In the second task, we want to predict judg-
ments of groups on assertions based on averaged
judgments of other assertions. Hence, this task
can be formalized as follows: given a set of judg-
ments of a group of persons p1, ..., pk on the asser-
tions a1, ..., an−1, an automatic systems must pre-
dict the judgment on the assertion an for the same
group of persons. Judgments of groups can be
expressed by an aggregated agreement score be-
tween -1 and 1, where -1 means that every person
disagrees to an assertion and 1 that every person
agrees to the assertion.

For measuring the similarity between two asser-
tions, we propose to compare how a large group
of people judges them. We define the degree to
which two assertions are judged similarly by a
large group as the judgment similarity of the two
assertions. However, judgments of other persons

are not easily available – e.g. if we want to predict
a judgment on a new, unseen assertion. To over-
come this limitation, we propose to use methods
that consider the texts of the assertions to mimic
judgment similarity and have thus the ability to
generalize from existing data collections.

3 Related Work

Measuring the judgment similarity of two asser-
tions is related to several NLP tasks such as the
detection of semantic text similarity (STS) (Agirre
et al., 2012), paraphrase recognition (Bhagat and
Hovy, 2013), and textual entailment (Dagan et al.,
2009).

Unlike semantic text similarity, we do not use
a notation of similarity based on the intuition of
humans, but one that derives from the context of
judgments. Hence, we define that the judgment
similarity of two assertions is 1 if two assertions
are consistently judged the same and are thus in-
terchangeable in the context of our task.

There are several reasons why assertions are
judged similarly: their text may convey similar se-
mantics such as in the assertions ‘Marijuana alle-
viates the suffering of chronically ill patients’ and
‘Marijuana helps chronically ill persons’. This
type of similarity corresponds to what methods
of semantic text similarity capture. However, a
strong judgment similarity of two assertions can
also be due to semantically entailed relationships
between assertions. For instance, if people agree
with ‘Marijuana is a gateway drug for teenagers
and damages growing brains’ most of them also
agree to ‘Marijuana is dangerous for minors’, de-
spite the texts being different in content and hav-
ing thus low semantic text similarity. In addition,
two assertions can also have a strong judgment
similarity because of underlying socio-cultural,
political, or personal factors. For instance, the as-
sertions ‘Consuming Marijuana has no impact on
your success at work’ and ‘Marijuana is not ad-
dictive’ describe different arguments for legalizing
marijuana, but judgments made on these assertions
are often correlated.

Our work also relates to other attempts on pre-
dicting reactions to text, such as predicting the
number of retweets (Suh et al., 2010; Petrovic
et al., 2011), the number of likes on tweets (Tan
et al., 2014), the number of karma points of red-
dit posts (Wei et al., 2016), or sales from prod-
uct descriptions (Pryzant et al., 2017). What those
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works have in common is that they measure some
kind of popularity, which differs significantly from
our task: even if one agrees with a text, one might
decide not to retweet or like it for any number of
reasons. There are also cases in which one may
retweet a post with which one disagrees in order
to flag someone or something from the opposing
community. Furthermore, there are effects such
as the author’s followers affecting the visibility
of posts and thereby the likelihood of a like or a
retweet (Suh et al., 2010).

In addition, we relate to works that aim at pre-
dicting whether two texts (Menini and Tonelli,
2016) or sequences of utterances (Wang and
Cardie, 2014; Celli et al., 2016) express agreement
or disagreement with each other. More broadly,
we also relate to works that analyze stance (Mo-
hammad et al., 2016; Xu et al., 2016; Taulé et al.,
2017), sentiment (Pang and Lee, 2008; Liu, 2012;
Mohammad, 2016), or arguments (Habernal and
Gurevych, 2016; Boltuzic and Šnajder, 2016; Bar-
Haim et al., 2017) that are expressed via text. In
contrast to these works, we do not examine what
judgment, sentiment, or claim is expressed by a
text, but whether we can infer agreement or dis-
agreement based on judgments which were made
on other assertions.

Finally, we relate to work on analyzing and pre-
dicting outcomes of congressional roll-call voting.
These works constantly find that votes of politi-
cians can be explained by a low number of under-
lying, ideological dimensions such as being left
or right (Heckman and Snyder, 1996; Poole and
Rosenthal, 1997, 2001). Our work is different
from these attempts, as we do not consider politi-
cians who might have incentives to vote in accor-
dance with the ideological views of their party, and
as we base our prediction on the text of assertions.

4 Data Collection

For exploring how well the two tasks can be solved
automatically, we use the dataset Nuanced Asser-
tions on Controversial Issues (NAoCI) created by
Wojatzki et al. (2018). The dataset contains as-
sertions judged on a wide range of controversial
issues.2 The NAoCI dataset mimics a common
situation in many social media sites, where peo-
ple e.g. up- or downvote social media posts. How-
ever, it does not have the experimental problems

2The dataset is accessible from https://sites.
google.com/view/you-on-issues/

of using social media data directly. These prob-
lems include legal reasons of scraping social me-
dia data and moderator variables such as the defi-
nition of issues, the influence of previous posts, or
the question of whether someone is not judging an
assertion because she does not want to judge it or
because she did not perceive it.

The data was collected using crowdsourcing
conducted on crowdflower.com in two steps.
First, participants were asked to generate a large
set of assertions relevant to controversial issues.
The set of assertions was created using crowd-
sourcing, as a manual creation of assertions would
be potentially incomplete and subject to personal
bias. We provided instructions to make sure that
the assertions are natural, self-contained state-
ments about an issue. Next, a large number of
people was asked to indicate whether they agree
or disagree with these assertions.

The process was reviewed and approved by the
institutional ethics board of the National Research
Council Canada.

Generating Assertions In order to obtain real-
istic assertions, 69 participants were asked to gen-
erate assertions for sixteen predefined issues (see
Table 1). For each issue, the subjects were given
definition of the issue and a few example asser-
tions. In addition, the instructions state that as-
sertions should be explicit, relevant to an issue,
self-contained, and only contain a single position.
Specifically, the use of co-reference or hedging in-
dicated by words such as perhaps, maybe, or pos-
sibly was not permitted. After a removal of dupli-
cates and instances that did not follow the rules,
this process resulted in about 150 unique asser-
tions per issue (2,243 in total).

Judging Assertions Next, 230 subjects were
asked to indicate whether they agree or disagree
with an assertion, resulting in over 100 000 judg-
ments (see Table 1). The participants were free
to judge as many assertions on as many issues as
they wanted. On average each assertion is judged
by about 45 persons and each participant judged
over 400 assertions. For each person, agreement is
encoded with 1, disagreement with −1, and miss-
ing values with 0 (as not all subjects judged all
assertions). Additionally, we can also compute
the aggregated agreement score for each assertion
by simply subtracting the percentage of partici-
pants that disagreed with the assertion from the
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# of # of
Issue Assertions Judgments

Black Lives Matter 135 6 154
Climate Change 142 6 473
Creationism in School 129 5 747
Foreign Aid 150 6 866
Gender Equality 130 5 969
Gun Rights 145 6 423
Marijuana 138 6 200
Mandatory Vaccination 134 5 962
Media Bias 133 5 877
Obama Care 154 6 940
Same-sex Marriage 148 6 899
US Electoral System 175 7 695
US in the Middle East 138 6 280
US Immigration 130 5 950
Vegetarian & Vegan Lifestyle 128 5 806
War on Terrorism 134 5 892

Total 2 243 101 133

Table 1: Issues and number of crowdsourced assertions
and judgments.
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Figure 2: Distribution of aggregated agreement scores.

percentage of participants that agreed with the as-
sertion. Figure 2 shows the distribution of ag-
gregated agreement scores (grouped into bins of
size .05) across all issues. The mass of the dis-
tribution is concentrated in the positive range of
possible values, which indicates that the partic-
ipants more often agree with the assertions than
they disagree. Consequently, baselines accounting
for this imbalance perform strongly in predicting
judgments on assertions. However, the distribu-
tion corresponds to what we observe in many so-
cial network sites, where e.g. the ratio of likes to
dislikes is also clearly skewed towards likes.

All data, the used questionnaires along with the
directions and examples are publicly available on
the project website.2

5 Measuring Judgment Similarity
Between Assertions

As mentioned above, we want to predict judg-
ments on a previously unseen assertion based on
judgments of similar assertions. For that purpose,
we need to measure the similarity of assertions
sim(a1, a2) based on their text only. For measur-
ing the similarity of two assertions we rely on the
judgment matrix J , with jp,a as the judgment pro-
vided by participant p for assertion a, with ~jp as
the row vector of all ratings of participant p, and
~ja as the column vector of all ratings provided for
assertion a. We measure the gold similarity of two
assertions by comparing their judgment vectors in
the matrix. If the vectors are orthogonal, the asser-
tions are maximally dissimilar (i.e. persons who
agree to assertion a1 disagree with a2). If the vec-
tors are parallel, the assertions have a perfect sim-
ilarity. We compute the cosine similarity between
the judgment vectors of two assertions. We cal-
culate the gold similarity between all unique pairs
(e.g. we do not use both a1 with a2 and a2 with
a1) in our data and do not consider self-pairing.

5.1 Experimental Setup
As baselines for this task, we utilize well-
established semantic text similarity (STS) meth-
ods that calculate overlap between the surface
forms of assertions. We use the following methods
as implemented by DKPro Similarity (Bär et al.,
2013)3: (i) unigram overlap expressed by the Jac-
card coefficient (Lyon et al., 2001), (ii) greedy
string tiling (Wise, 1996), (iii) longest common
sub string (Gusfield, 1997). Additionally, we use
averaged word embeddings (Bojanowski et al.,
2017).

Beyond the baselines, we apply two machine
learning approaches: a conventional SVM-based
classifier and a neural network. The SVM clas-
sifier is implemented using LibSVM (Chang and
Lin, 2011) as provided by DKProTC (Daxen-
berger et al., 2014).4 We use a combination of var-
ious ngram features, sentiment features (derived
from the system by Kiritchenko et al. (2014)5),
embedding features (averaged embeddings by Bo-
janowski et al. (2017)) and negation features. We
used a linear kernel with C=100 and the nu-SVR

3version 2.2.0
4version 1.0
5The NRC-Canada system ranked first in the SemEval

2013 (Nakov et al., 2013) and 2014 (Rosenthal et al., 2014)
tasks on sentiment analysis.
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regression model. Iterative experiments showed
that this configuration gave the most stable results
across the issues. For the neural approach, we
adapt Siamese neural networks (SNN), which con-
sist of two identical branches or sub-networks that
try to extract useful representations of the asser-
tions and a final layer that merges these branches.
SNNs have been successfully used to predict text
similarity (Mueller and Thyagarajan, 2016; Necu-
loiu et al., 2016) and match pairs of sentences (e.g.
a tweet to reply) (Hu et al., 2014). In our SNN, a
branch consists of a layer that translates the asser-
tions into sequences of word embeddings, which
is followed by a convolution layer with a filter
size of two, max pooling over time layer, and a
dense layer. To merge the branches, we calculate
the cosine similarity of the extracted vector repre-
sentations. The SNN was implemented using the
deep learning framework deepTC (Horsmann and
Zesch, 2018) in conjunction with Keras6 and Ten-
sorflow (Abadi et al., 2016). In order to ensure full
reproducibility of our results, the source code for
both approaches is publicly available.7 We eval-
uate all approaches using 10-fold cross validation
and calculate Pearson correlation between the pre-
diction and the gold similarity.

5.2 Results

Table 2 shows the correlation of all approaches av-
eraged over all sixteen issues.8 Overall, the STS
baselines result in very low correlation coefficients
between .02 and .07, while the trained models ob-
tain coefficients around .6. This shows that the
systems can learn useful representations that cap-
ture judgment similarity and that this representa-
tion is indeed different from semantic similarity.
Since both models are purely lexical and still yield
reliable performance, we suspect that the relation-
ship between a pair of assertions and their judg-
ment similarity also has a lexical nature.

While STS baselines obtain consistently low re-
sults, we observe largely differing results per is-
sues (ranging from .32 to .72) with SVM and SNN
behaving alike. Detailed results for each issue are
listed in Table 3.

In order to better understand the results, we ex-

6
https://keras.io/

7
https://github.com/muchafel/judgmentPrediction

8As Pearsons r is defined in a probabilistic space it can-
not be averaged directly. Therefore, we first z-transform the
scores, average them and then transform them back into the
original range of values.

Method r

SNN .61
SVM .58
Embedding distance .07
Jaccard .07
Greedy string tiling .06
Longest common sub string .05

Table 2: Pearson correlation (averaged over all issues)
of text-based approaches for approximating similarity
of assertion judgments.5

Issue SVM SNN

Climate Change .70 .72
Gender Equality .67 .73
Mandatory Vaccination .68 .74
Obama Care .66 .70
Black Lives Matter .66 .74
Media Bias .63 .63
US Electoral System .63 .59
Same-sex Marriage .59 .61
War on Terrorism .56 .59
Foreign Aid .54 .46
US in the Middle East .52 .55
US Immigration .52 .57
Gun Rights .51 .64
Creationism in school .48 .51
Vegetarian and Vegan Lifestyle .43 .40
Legalization of Marijuana .37 .32

Table 3: Correlation coefficients of the similarity pre-
diction by the SVM and the SNN, obtained in 10 fold
cross-validation.

amine the scatter-plots that visualize assignment
of gold to prediction (x–Axis: gold, y–Axis: pre-
diction) and investigate cases that deviate strongly
from an ideal correlation. Figure 3 shows the scat-
ter plot for the issue Climate Change for both clas-
sifiers. For the SVM we observe that there is a
group of pairs that is predicted inversely propor-
tional, i.e. their gold value is positive, but the re-
gression assigns a clearly negative value. We ob-
serve that these instances mainly correspond to
pairs in which both assertions have high negative
word scores. For instance the pair, ‘There is not
a real contribution of human activities in Climate
change’ and ‘Climate change was made up by the
government to keep people in fear’, have a com-
parable high similarity of .20. The SVM, how-
ever, assigns them a similarity score of −.38. We
suspect that this effect results from the distribu-
tion of similarity scores that is skewed to the posi-
tive range of possible scores. Therefore, the SVM
probably assigns too much weight to ngrams that
signal a negative score. Far less pronounced, for
the neural approach, we find instances whose gold
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values are negative, but which are assigned a pos-
itive value. When inspecting these pairs we find
that many of them contain one assertion which
uses a negation (e.g. not, unsure, or unlikely). An
example for this is the pair, ‘There has been an in-
crease in tropical storms of greater intensity which
can be attributed to climate change’ and ‘Different
changes in weather does not mean global warm-
ing’, that have a low similarity in the gold data
(−0.19), but get assigned a rather high similarity
score (.20).

6 Predicting Judgments of Individuals

Now that we have means for quite reliably esti-
mating the judgment similarity of assertions, we
can try to predict judgments on individual asser-
tions. We compare the judgment similarity meth-
ods against several baselines and collaborative fil-
tering methods (that make use of judgments that
are made by other persons to calculate person and
assertion similarity).

Baselines (BL) The random baseline predicts
agree or disagree for each assertion. We also
define the all agree baseline, which always pre-
dicts agree. As the data contains substantially
more agree judgments than disagree judgments
(c.f. Figure 2), this is a strong baseline. As a
third baseline, we average all known judgments of
a person and predict agree if this value is positive
and predict disagree otherwise. We refer to this
baseline as tendency.

Judgment Similarity (JS) We use the above de-
fined judgment similarity methods to calculate the
similarity between each of the assertions previ-
ously judged by that person and the assertion for
which we want to make the prediction. Then we
simply transfer the judgment of the most similar
assertion to the assertion of interest.9 To prevent
leakage, the scores of the prediction are taken from
the models that have been trained in the cross val-
idation. This means, for predicting the score of
a pair of assertions we use the model which does
not include the pair in the training set. As the ma-
trix is missing one entry for each prediction (i.e.
the judgment on the assertion for which we want
to make the prediction), one could theoretically
form a new matrix for each prediction and then

9Note that the subjects have all rated different numbers of
assertions. Thus, for the sake of comparability, we restrict
ourselves to the most similar assertion (as opposed to averag-
ing a judgment over the n most similar assertions.)

re-calculate all cosines. However, we find that
the judgment similarity between assertions does
not change significantly when a single entry in
the vectors of the assertions is removed or added.
Hence, due to computational complexity, the gold
similarity was calculated over the entire matrix of
judgments.

There are several assertions that do not have tex-
tual overlap, which is why the STS methods often
return a zero similarity. In such a case, we fall
back on the all agree baseline. We refer to strate-
gies which are based on judgment similarity as
most similar assertion (method), where method
indicates how the similarity is computed.

All strategies use all available context. For in-
stance, if we want to predict the judgment of the
assertion an and a prediction strategy considers
other judgments, the strategy uses all the judg-
ments on the assertions a1, ..., an−1.

Collaborative Filtering (CF) Collaborative fil-
tering (Adomavicius and Tuzhilin, 2005; Schafer
et al., 2007; Su and Khoshgoftaar, 2009) uses pre-
viously made judgments and judgments made by
others to predict future judgments. Collaborative
filtering has been successfully used in applica-
tion areas such shopping recommendations (Lin-
den et al., 2003), or personalization of news (Das
et al., 2007). Note that collaborative filtering re-
quires knowledge of how others judged the asser-
tion for which the system tries to make a predic-
tion. Therefore, these strategies are not applicable
if we want to predict judgments on a previously
unseen assertion. Nevertheless, they represent an
upper bound for our text-based predictions.

As a simple collaborative filtering strategy, we
predict how the majority of other persons judged
an assertion. Therefore, we average the judgments
of all other users and predict agree if this value
is positive and disagree if the value is negative.
This strategy will be referred to as mean other. In
addition, we compute the similarity between pairs
of people by calculating the cosine similarity be-
tween the vector that corresponds to all judgments
a person has made. We use this person–person
similarity to determine the most similar person
and then transfer the judgment on an of the user
which is most similar to pi. We refer to this strat-
egy as most similar user. We also use the (gold)
judgment similarity between assertions to predict
agree or disagree based on how the assertion that
is most similar to an has been judged. We call this
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Figure 3: Comparison of gold judgment similarity and judgment similarity as predicted by the SVM and the SNN
for the issue Climate Change.

Strategy Type Accuracy

most similar user CF .85
most similar assertion (gold) CF .76
tendency BL .75
mean other CF .74
most similar assertion (SNN) JS .73
most similar assertion (SVM) JS .72
all agree BL .71
most similar assertion (jaccard) JS .70
most similar assertion (embedding) JS .68
most similar assertion (gst) JS .69
most similar assertion (lcss) JS .67
random BL .50

Table 4: Accuracy of different approaches for predict-
ing judgments of individuals.

strategy most similar assertion (gold).

6.1 Results

Table 4 shows the accuracy of the strategies across
all issues obtained using leave-one-out cross val-
idation. We observe that all strategies are signif-
icantly better than the random baseline. On av-
erage, the all agree strategy is more than 20%
above the random baseline and thus represents a
highly competitive baseline. The tendency base-
line, which is a refinement of all agree, is even
4% higher. Only the collaborative filtering strate-
gies most similar assertion and most similar user
beat this baseline. With an accuracy of about 85%
the most similar user strategy performs best. The
methods that use the learned judgment similar-
ity beat the all agree but fall behind the tendency
baseline. The fact that methods based on judgment

similarity are already close to their upper-bound
(most similar assertion (gold)) shows that their
potential is limited, even if measuring judgment
similarity can be significantly improved. One pos-
sible explanation for comparably low performance
of most similar assertion is that the past assertions
are not sufficient to make a meaningful prediction.
For instance, if only a few assertions have been
judged in the past and none of them is similar to
a new assertion, then a prediction becomes guess-
ing. As expected from their poor performance of
approximating judgment similarity, the methods
relying on STS measures fall behind the all agree.

7 Predicting Judgments of Groups

We now turn to predicting judgments of groups,
i.e. the task of estimating what percentage of a
group of people are likely to agree to an asser-
tion. We illustrate the prediction task in the fol-
lowing example: From the assertion ‘Marijuana is
almost never addictive’ with an aggregated agree-
ment score of 0.9 we want to predict a compara-
tively lower value for the assertion ‘Marijuana is
sometimes addictive’.

Direct Prediction (DP) As a reference ap-
proach, we train different regression models that
predict the aggregated agreement score directly
from the text of the assertion. We train each model
over all issues in order to achieve the necessary
generalization.

Again, we compare more traditional models
based on feature engineering and neural models.
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For the feature engineering approach we exper-
iment with the following feature sets: First, we
use a length feature which consists of the num-
ber of words per assertion. To capture stylis-
tic variations, we compute a feature vector con-
sisting of the number of exclamation and ques-
tion marks, the number of modal verbs, the av-
erage word length in an assertion, POS type ra-
tio, and type token ratio. We capture the word-
ing of assertions by different ngram features. For
capturing the semantics of words, we again de-
rive features from the pre-trained fastText word
vectors (Bojanowski et al., 2017). To capture the
emotional tone of an assertion, we extract fea-
tures from the output of the readily available sen-
timent tool NRC-Canada Sentiment Analysis Sys-
tem (Kiritchenko et al., 2014).

As the neural approach on directly predicting
aggregated judgments, we use a single branch of
the Siamese network. However, since we are try-
ing to solve a regression problem, here the net-
work ends in a single node equipped with a linear
activation function. Through iterative experiments
we found out that it is advantageous to add two ad-
ditional dense layers before the final node. As this
model resembles a convolutional neural network
(CNN), we label this approach as CNN.

Judgment Similarity (JS) In analogy to the
prediction of judgments of individuals, we first
calculate the judgment similarity of two assertions
using the SVM and SNN approaches that take pair
of assertions into account. We then take the n-
most similar assertions and return the average of
the resulting scores. As an upper bound, we also
compute the judgment similarity that results from
the gold data. Note, that this upper bound again
assumes knowledge about judgments on the asser-
tion for which we actually want to make a pre-
diction. We make the code for both approaches
publicly available.10

7.1 Results
Table 5 shows the performance of the different ap-
proaches for predicting judgments of groups. For
the prediction based on judgment similarity, we
observe large differences between the the SVM
and SNN predictions. This is especially interest-
ing because the performance of the similarity pre-
diction is comparable. We attribute this to the sys-
tematic error made by the SVM when trying to

10
https://github.com/muchafel/judgmentPrediction

Model Type r

gold (n = 7) JS .90
gold (n = 1) JS .84
SNN (n = 34) JS .74
SNN (n = 1) JS .45
SVM (n = 18) JS .42
CNN DP .40
sentiment + trigrams DP .36
trigrams DP .35
unigrams + embeddings DP .32
unigrams DP .32
SVM (n = 1) JS .32
sentiment + trigrams + style DP .27
sentiment DP .13
style DP .10
length DP .00

Table 5: Correlation coefficients for approaches on pre-
dicting judgments of groups.

predict the similarity of assertions that have a neg-
ative agreement score. While the SVM only out-
performs the plain regressions if the prediction is
based on several assertions, we observe a substan-
tially better performance for the judgment similar-
ity based on the SNN. For the best judgment sim-
ilarity model (SNN with n = 34), we obtain a
coefficient of r = .74 which is substantially better
than the direct prediction model (CNN, r = .40).

For the plain regression, we observe that the
CNN outperforms all models based on feature en-
gineering and that among the SVM models ngram
features yield the best performance. While the
sentiment feature alone has low performance, the
model that combines sentiment and ngrams shows
slight improvement over the trigrams alone. The
length feature and the style features alone have a
comparable low performance and models which
combine these feature with lexical features show a
lower performance than the lexical models alone.

Issue-wise analysis To better understand the
differences between the judgment similarity meth-
ods, we inspect their performance depending on
the number of given assertions. Figure 4 shows
this comparison both for individual issues and av-
eraged across all issues. The upper-bound reaches
a correlation of up to r = .89 (n = 8). The
strength of this correlation and the fact that even
our best estimate is still 15 points less shows
the potential of judgment similarity for predicting
judgments of groups.

For the SNN, the predictions follow a similar
pattern: resembling a learning curve, the perfor-
mance increases rapidly with increasing n, but
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Figure 4: Prediction quality based on the transfer of the n-most similar assertions (expressed by the strength of
correlation with the gold values). Sub-figure a) shows the scores averaged across all issues. We show the variance
obtained on individual issues by the SVM in Sub-Figure b) and by the SNN in Sub-Figure c).

then plateaus from a certain number of assertions.
However, the number of assertions for which we
observe a plateau varies significantly. For the
SVM we observe a similar pattern for most of the
approaches, but the plateau is often reached much
later. There are two issues (US Engagement in the
Middle East and US Immigration) where we do
not observe an increase in performance with in-
creasing n. We suspect that the systematic error of
the SVM is particularly strong here.

8 Conclusion & Future Work

In this paper, we examined whether an automati-
cally measured judgment similarity can be used to
predict the judgments of individuals or groups on
assertions. We compare these judgment similarity
approaches against several reference approaches
on a data set of over 100,000 judgments on over
2,000 assertions. For the prediction of individual
judgments reference approaches yield competitive
results. However, for the prediction of group judg-
ments the best approach using judgment similar-
ity as predicted by a SNN outperforms other ap-
proaches by a wide margin.

While the presented approaches represent a first
take on predicting judgments on assertions, the
proposed tasks also suggest several directions of
future research. These include more advanced al-
gorithmic solutions and experiments for obtain-
ing a deeper understanding of the relationship be-
tween text and judgments. For improving the au-
tomatic prediction, we want to explore how robust

the learned models are by examining whether they
can be transferred between issues. In addition, we
want to examine if knowledge bases, issue spe-
cific corpora, or issue specific word vectors can
improve the current approaches. To better under-
stand what textual properties of assertions cause
judgment similarity, we want to annotate and ex-
perimentally control typed relationships (e.g. para-
phrases, entailment) of pairs of assertions. Be-
ing able to predict the degree to which two asser-
tions are judged similarly might also be helpful for
NLP tasks in which one tries to predict opinions
or stance of the author of an text. Hence, we want
to examine if judgment similarity can be used to
boost the performance of systems in these tasks.
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Abstract

Current methods for knowledge graph (KG)
representation learning focus solely on the
structure of the KG and do not exploit any
kind of external information, such as visual
and linguistic information corresponding to
the KG entities. In this paper, we propose
a multimodal translation-based approach that
defines the energy of a KG triple as the sum of
sub-energy functions that leverage both mul-
timodal (visual and linguistic) and structural
KG representations. Next, a ranking-based
loss is minimized using a simple neural net-
work architecture. Moreover, we introduce
a new large-scale dataset for multimodal KG
representation learning. We compared the per-
formance of our approach to other baselines on
two standard tasks, namely knowledge graph
completion and triple classification, using our
as well as the WN9-IMG dataset.1 The results
demonstrate that our approach outperforms all
baselines on both tasks and datasets.

1 Introduction

Knowledge Graphs (KGs), e.g., Freebase (Bol-
lacker et al., 2008) and DBPedia (Auer et al.,
2007), are stores of relational facts, which are
crucial for various kinds of tasks, such as ques-
tion answering and information retrieval. KGs are
structured as triples of head and tail entities along
with the relation that holds between them. Factual
knowledge is virtually infinite and is frequently
subject to change. This raises the question of the
incompleteness of the KGs. To address this prob-
lem, several methods have been proposed for au-
tomatic KG completion (KGC, for a survey refer
to Wang et al., 2017). In recent years, translation-
based approaches have witnessed a great success.
Their main idea is to model the entities and their

1Code and datasets are released for research
purposes: https://github.com/UKPLab/
starsem18-multimodalKB

relation as low-dimensional vector representations
(embeddings), which in turn can be used to per-
form different kinds of inferences on the KG.
These include identifying new facts or validating
existing ones. However, translation-based meth-
ods rely on the rich structure of the KG and gener-
ally ignore any type of external information about
the included entities.

In this paper, we propose a translation-based ap-
proach for KG representation learning that lever-
ages two different types of external, multimodal
representations: linguistic representations created
by analyzing the usage patterns of KG entities in
text corpora, and visual representations obtained
from images corresponding to the KG entities. To
gain initial insights into the potential benefits of
external information for the KGC task, let us con-
sider the embeddings produced by the translation-
based TransE method (Bordes et al., 2013) on the
WN9-IMG dataset (Xie et al., 2017). This dataset
contains a subset of WordNet synsets, which are
linked according to a predefined set of linguis-
tic relations, e.g. hypernym. We observed that
TransE fails to create suitable representations for
entities that appear frequently as the head/tail of
one-to-many/many-to-one relations. For example,
the entity person appears frequently in the dataset

Embedding Space Top Similar Synsets

Linguistic
n02472987 world, n02473307 Homo erectus,
n02474777 Homo sapiens, 02472293 homo,
n00004475 organism, n10289039 man

Visual
n10788852 woman, n09765278 actor,
n10495167 pursuer n10362319 nonsmoker,
n10502046 quitter, n09636339 Black

Structure (TransE)

hypernym, n00004475 organism,
n03183080 device, n07942152 people,
n13104059 tree, n00015388 animal,
n12205694 herb, n07707451 vegetable

Table 1: Closest synsets to the person synset
(n00007846) according to different embedding spaces.
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as a head/tail of the hyponym/hypernym relation;
the same holds for entities like animal or tree.
TransE represents such entities as points that are
very close to each other in the embedding space
(cf. Tab. 1). Furthermore, the entity embeddings
tend to be very similar to the embeddings of rela-
tions in which they frequently participate. Conse-
quently, such a representation suffers from limited
discriminativeness and can be considered a main
source of error for different KG inference tasks.

To understand how multimodal representations
may help to overcome this issue, we performed the
same analysis by considering two types of external
information: linguistic and visual. The linguistic
representations are created using word embedding
techniques (Mikolov et al., 2013), and the visual
ones, called visual embeddings, are obtained from
the feature layers of deep networks for image clas-
sification (e.g., Chatfield et al., 2014) on images
that correspond to the entities of the dataset. For
the same category of entities discussed above, we
observed that both the visual and the linguistic em-
beddings are much more robust than the structure-
based embeddings of TransE. For instance, per-
son is closer to other semantically related con-
cepts, such as Homo erectus in the linguistic em-
bedding space, and to concepts with common vi-
sual characteristics (e.g., woman, actor) in the vi-
sual embedding space (cf. Tab. 1). Furthermore,
the linguistic and the visual embeddings seem to
complement each other and hence are expected to
enhance KG representations if they can be lever-
aged during the representation learning process.

The contributions of this paper can be summa-
rized as follows: (1) We propose an approach for
KG representation learning that incorporates mul-
timodal (visual and linguistic) information in a
translation-based framework and extends the def-
inition of triple energy to consider the new mul-
timodal representations; (2) we investigate dif-
ferent methods for combining multimodal rep-
resentations and evaluate their performance; (3)
we introduce a new large-scale dataset for multi-
modal KGC based on Freebase; (4) we experimen-
tally demonstrate that our approach outperforms
baseline approaches including the state-of-the-art
method of Xie et al. (2017) on the link prediction
and triple classification tasks.

2 Related Work

2.1 Translation Models
TransE (Bordes et al., 2013) is among the earli-
est translation-based approaches for KG represen-
tation learning. TransE represents entities and re-
lations as vectors in the same space, where the re-
lation is considered a translation operation from
the representation of the head to that of the tail
entity. For a correct triple, TransE assumes that
h + r ≈ t, where h, r, t are the vector represen-
tations of the head, relation, and tail, respectively.
Additionally, TransE use a dissimilarity measure d
to define the energy of a given triple as d(h+r, t).
Finally, the representations of KG entities and re-
lations are learned by minimizing a margin-based
ranking objective that aims to score positive triples
higher than negative triples based on their energies
and a predefined margin.

TransE is a simple and effective method, how-
ever, the simple translational assumption con-
strains the performance when dealing with com-
plex relations, such as one-to-many or many-to-
one. To address this limitation, some exten-
sions of TransE have been proposed. Wang et al.
(2014) introduced TransH, which uses translations
on relation-specific hyperplanes and applies ad-
vanced methods for sampling negative triples. Lin
et al. (2015b) proposed TransR, which uses sep-
arate spaces for modeling entities and relations.
Entities are projected from their space to the cor-
responding relation space by relation-specific ma-
trices. Moreover, they propose an extension called
CTransR, in which instances of pairs of head and
tail for a specific relation are clustered such that
the members of the clusters exhibit similar mean-
ings of this relation. Lin et al. (2015a) proposed
another extension of TransE, called PTransE, that
leverages multi-step relation path information in
the process of representation learning.

The above models rely only on the structure of
the KG, and learning better KG representations
is dependent upon the complexity of the model.
In this paper, however, we follow a different ap-
proach for improving the quality of the learned
KG representation and incorporate external mul-
timodal information in the learning process, while
keeping the model as simple as possible.

2.2 Multimodal Methods
Recent advances in natural language processing
have witnessed a greater interest in leveraging
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multimodal information for a wide range of tasks.
For instance, Shutova et al. (2016) showed that
better metaphor identification can be achieved by
fusing linguistic and visual representations. Col-
lell et al. (2017) demonstrated the effectiveness
of combining linguistic and visual embeddings
in the context of word relatedness and similarity
tasks. Regarding KG representation learning, the
first and, to the best of our knowledge, only at-
tempt that considers multimodal data is the work
of Xie et al. (2017). Their IKRL approach extends
TransE based on visual representations extracted
from images that correspond to the KG entities. In
IKRL, the energy of a triple is defined in terms of
the structure of the KG as well as the visual repre-
sentation of the entities. Our work, while building
upon the foundations of Xie et al. (2017), sets it-
self apart based on the following properties: (1) in
addition to images, our model integrates another
kind of external representation, namely linguistic
embeddings for KG entities – thus, adding multi-
modal information; (2) we base our approach on
a simple and easily extensible neural network ar-
chitecture; (3) we introduce an additional energy
function that considers the multimodal represen-
tation of the KG entities; (4) we introduce a new
large-scale dataset for multimodal KG representa-
tion learning.

3 Proposed Approach

We denote the knowledge graph as G = (E ,R, T ),
where E is the set of entities, R is the set of rela-
tions, and T = {(h, r, t)|h, t ∈ E , r ∈ R} the
set of KG triples. For each head and tail entity
h, r ∈ E , we define three kinds of representations
(embeddings): structural hI

s, t
I
s ∈ IRN , linguistic

hI
w, t

I
w ∈ IRM , and visual hI

i , t
I
i ∈ IRP , where

N , M and P are the corresponding numbers of
dimensions. Furthermore, we represent each rela-
tion r ∈ R as a vector rIs ∈ IRN in the space of
the structural information. The superscript I de-
notes that these are the input embeddings. Since
the different embeddings do not live in the same
space, we assume from now on that they can be
transformed into a common space using a multi-
layer network (e.g., hI

s into hs, cf. Fig. 1). Fol-
lowing the translational assumption, given a triple
(h, r, t), we have

hs + rs ≈ ts. (1)

3.1 Model

In general, previous works such as (Bordes et al.,
2013) start from Eq. (1) and build models for min-
imizing a ranking loss between positive and nega-
tive triples that are sampled from the KG. Conven-
tionally, negative triples are sampled by corrupting
the head, the tail, or the relation of correct triples.
We follow this idea and make it explicit by taking
two different “views” on the translational assump-
tion. Apart from the first view through Eq. (1), we
can also rewrite the translational assumption as

ts − rs ≈ hs. (2)

We will learn the two views jointly. For each view,
we sample specific kinds of negative triples ac-
cording to which part of the triple has to be pre-
dicted. For the head-centric view, we define T ′

tail,
a set of negative triples that is sampled by cor-
rupting the tail of gold triples. Similarly, for the
tail-centric view, we define T ′

head, a set of negative
triples sampled by corrupting the head of the gold
triples:

T ′
tail = {(h, r, t′)|h, t′∈E ∧ (h, r, t′) /∈T } (3a)

T ′
head = {(h′, r, t)|h′, t∈E ∧ (h′, r, t) /∈T }. (3b)

Next, we extend the definition of triple energy in
order to integrate both the structural and the multi-
modal representations of the KG entities. For each
kind of representation as well as their combina-
tion, we define a specific energy function. Subse-
quently, the final energy of a triple is defined as the
sum of the individual energies defined below.

Structural Energy: The structure-based energy
of a triple is defined in terms of the structure of the
KG as proposed by the TransE approach (Bordes
et al., 2013). Accordingly, we define

ES = ‖hs + rs − ts‖. (4)

Multimodal Energies: The multimodal repre-
sentation of a KG entity is defined by combin-
ing the corresponding linguistic and visual repre-
sentations. Let ⊕ denote the combination opera-
tor (more details in Section 3.2). Now, we define
the multimodal representations hm and tm of the
head and the tail entities, respectively, as

hm = hw ⊕ hi (5a)

tm = tw ⊕ ti. (5b)
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Figure 1: Overview of the neural network architecture for calculating the total triple energy from the different
models. The fully connected networks transform the respective input embeddings into a common space.

Next, we transfer the structure-based energy func-
tion from Eq. (4) to the multimodal case where it
incorporates the multimodal representations under
the translational assumption, i.e.

EM1 = ‖hm + rs − tm‖. (6)

We then extend the previous energy from Eq. (6)
to define another energy function that considers
the structural embeddings in addition to the multi-
modal ones as follows:

EM2 = ‖(hm + hs) + rs − (tm + ts)‖. (7)

These presented multimodal energies can be un-
derstood as additional constraints for the trans-
lation model. M1 states that the relation corre-
sponds to a translation operation between the mul-
timodal representation of the head and the tail en-
tities once projected into the structural space. M2
enforces that same constraint, however, on the sum
of the multimodal and the structural embeddings
of the head and the tail entities. While Eqs. (4),
(6), and (7) cannot be fulfilled at the same time, we
found that combining these complementary ener-
gies makes the results more robust.

Structural-Multimodal Energies: Next, to en-
sure that the structural and the multimodal repre-
sentations are learned in the same space, we follow
the proposal of Xie et al. (2017) and define the fol-
lowing energy functions:

ESM = ‖hs + rs − tm‖ (8a)

EMS = ‖hm + rs − ts‖. (8b)

Finally, the overall energy of a triple for the
head and the tail views are defined as

E(h, r, t) = ES + EM1 + EM2

+ESM + EMS . (9a)

Objective Function: For both the head and the
tail view, we aim to minimize a margin-based
ranking loss between the energies of the positive
and the negative triples. The corresponding loss
functions are finally defined as

Lhead =
∑

(h,r,t)∈T

∑

(h,r,t′)∈T ′
tail

max
(
γ + E(h, r, t)

−E(h, r, t′), 0
)

(10)

Ltail =
∑

(h,r,t)∈T

∑

(h′,r,t)∈T ′
head

max
(
γ + E(t,−r, h)

−E(t,−r, h′), 0
)
. (11)

Here, γ is a margin parameter, which controls the
amount of energy difference between the positive
and the negative triples. Finally, we aim to mini-
mize the global loss

L = Lhead + Ltail. (12)

To bring the different representations (structural,
linguistic, visual) into the same space, we em-
ploy a simple feed-forward neural network archi-
tecture. The input of the network consists of the
structural and the multimodal embeddings of the
heads, the tails, and the relations (Fig. 1); the fully-
connected layers map these inputs into a common
space. Furthermore, we share the weights between
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Figure 2: The DeViSE method (Frome et al., 2013).

those fully-connected layers that receive the same
kind of input. Additionally, the weights are also
shared across the head and the tail views.

3.2 Combining Multimodal Representations
To complete the description of our approach, we
still need to define the ⊕ operator used in Eq. (5)
to combine the linguistic and visual embeddings
into a single one. To that end, we identified three
methods for multimodal representation learning
and adapted them to KG entities.

Concatenation Method: The simplest method
to create multimodal representations for KG enti-
ties is to combine the multimodal embedding vec-
tors by concatenation. Given the linguistic ew and
the visual ei embeddings of an entity e, we de-
fine the multimodal representation em = ew

_ei,
where _ is the concatenation operator.

DeViSE Method: Next, we consider the deep
visual-semantic embedding model (DeViSE) of
Frome et al. (2013), which leverages textual data
to explicitly map images into a rich semantic em-
bedding space. Given the visual representation
of some concept, the goal is to learn a mapping
into the linguistic (word) embedding space. The
mapped representation can then be used as a mul-
timodal representation for the target entity. Fig. 2
illustrates the application of DeViSE to generating
multimodal representations for KG entities.

Imagined Method: Finally, we consider the
Imagined method of Collell et al. (2017) for creat-
ing multimodal representations of concepts based
on their linguistic and visual embeddings. Imag-
ined is similar to DeViSE, however, it applies the
reverse procedure. That is, for a given concept
Imagined aims to learn a mapping from the lin-
guistic embedding space of that concept into the

Dataset #Rel #Ent #Train #Valid #Test

WN9-IMG 9 6555 11 741 1337 1319
FB-IMG 1231 11 757 285 850 29 580 34 863

Table 2: Datasets statistics
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Figure 3: The Imagined method (Collell et al., 2017).

visual embedding space. The mapping can be for-
mulated as a linear or nonlinear transformation us-
ing a simple neural network, and the objective is
to minimize the distance between the mapped lin-
guistic representation and the visual representation
of the entities. Subsequently, a multimodal repre-
sentation is created by applying the learned map-
ping function on the linguistic representation of
the entity and then concatenating the resulting vec-
tor with the original linguistic embedding (Fig. 3).

4 Experiments

4.1 Datasets

WN9-IMG: This dataset provided by Xie et al.
(2017) is based on WordNet. It contains a col-
lection of triples, where the entities correspond to
word senses (synsets) and the relations define the
lexical relationships between the entities. Further-
more, for each synset a collection of up to ten im-
ages obtained from ImageNet (Deng et al., 2009)
is provided.

FB-IMG: To demonstrate the scalability of our
approach to larger datasets, we created another
dataset based on FB15K (Bordes et al., 2013),
which consists of triples extracted from Freebase.
For each entity, we crawled 100 images from the
web using text search based on the entity labels.
To ensure that the crawled images are representa-
tive of the corresponding entities, we applied an
approach for image filtering based on the Page-
Rank algorithm (Page et al., 1999). First, we
created a vector representation (embedding) for
each image by feeding it into a pre-trained VGG19
neural network for image classification (Simonyan
and Zisserman, 2014). The image embeddings
consist of the 4096-dimensional activation of the
last layer (before the softmax). Next, for each
entity we create a similarity graph for the corre-
sponding images based on the cosine similarity
between their embedding vectors. Finally, we cal-
culated the PageRank score for each image in the
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graph and kept the top 10 results. Tab. 2 gives ba-
sic statistics of the two datasets.

4.2 Representations

We now discuss the procedure we followed to ob-
tain different kinds of representations for the enti-
ties and relations of the two evaluation datasets.

Structural Representation: This baseline rep-
resentation is created based on the structure of the
KG only, without any external information. In our
experiments we created structure representations
for the entity and the relations of the two datasets
using the TransE algorithm. For both datasets, we
trained TransE with 100 dimensions and used the
same values for the other hyperparameters as rec-
ommended by Bordes et al. (2013).

Linguistic Representation: The linguistic rep-
resentations of the entities are obtained by ap-
plying word embedding techniques. For the FB-
IMG dataset, we used a pre-trained word embed-
ding model for Freebase entities as provided by
the word2vec framework (Mikolov et al., 2013).
The provided embeddings are 1000 dimensional
and are trained using the skipgram model over the
Google 100B token news dataset. We applied L2-
normalization on the generated embeddings.

The entities of the WN9-IMG dataset corre-
spond to word senses rather than to individ-
ual words. In order to create embeddings for
the synsets, we used the AutoExtend framework
(Rothe and Schütze, 2015), which enables cre-
ating sense embeddings for a given sense based
on the embeddings of the contained lemmas. For
this purpose, we initialized AutoExtend with pre-
trained 300-dimensional GloVe embeddings (Pen-
nington et al., 2014). In case where no pre-trained
embeddings are found for the sense lemmas, Au-
toExtend generates zero initialized vectors for the
corresponding synsets. In order to provide bet-
ter representations, we define the embeddings of
such synsets by copying the embeddings of the
first hyperonym synset that has non-zero AutoEx-
tend embeddings. The linguistic embeddings of
WN9-IMG entities (synsets) are 300-dimensional
vectors, which were also L2-normalized.

Visual Representation: For each image of a
given KG entity, we created a visual embedding
vector using the same procedure as for creat-
ing the FB-IMG dataset. This was done using
a pre-trained VGG model (Simonyan and Zis-

serman, 2014). For the WN9-IMG dataset, we
used the VGG19 model and extracted the 4096-
dimensional vector of the last fully-connected
layer before the softmax. For the FB-IMG
dataset, which contains much more data than
WN9-IMG and in order to speed up the train-
ing, we used the more compact VGG-m-128
CNN model (Chatfield et al., 2014), which pro-
duces 128-dimensional embedding vector for each
image. Next, the visual embeddings are L2-
normalized. We investigated two ways of combin-
ing the embedding vectors corresponding to im-
ages of a given entity. The first method defines
the visual embedding of an entity as the average
of the embeddings of all corresponding images.
The second method uses the dimension-wise max-
imum. In our experiments we observed that av-
eraging the embedding vectors outperforms the
maximum method. Hence, we only report the re-
sults obtained with averaging.

4.3 Experimental Setup

We investigated different sets of hyperparameters
for training the model. The best results were ob-
tained using the Adam optimizer (Kingma and
Ba, 2014) with a fixed learning rate of 0.001 and
batch size of 100. We used the hyperbolic tan-
gent function (tanh) for the activation and one
fully-connected layer of 100 hidden units. We ob-
served that regularization has a minor effect. In
the case of WN9-IMG, we used dropout regular-
ization (Srivastava et al., 2014) with a dropout ra-
tio of 10%; we applied no regularization on the
FB-IMG dataset. Regarding the margin of the loss
function, we experimented with several values for
both datasets γ ∈ {4, 6, 8, 10, 12}. The best re-
sults for both datasets were obtained with γ = 10.

We investigated different configurations of our
approach: (1) Ling considers the linguistic em-
beddings only, (2) Vis considers the visual em-
beddings only, (3) multimodal where the visual
and the linguistic embeddings are considered ac-
cording to the presented multimodal combination
methods: DeViSE, Imagined, and the Concatena-
tion methods (cf. Sec. 3.2), and (4) only head in
which we use the head view only and the concate-
nation method for combining the multimodal rep-
resentations. Here, negative samples are produced
by randomly corrupting the head, the tail, or the
relation of gold triples.

We compared our approach to other baseline
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methods including TransE (Bordes et al., 2013)
and IKRL (Xie et al., 2017). For TransE, we set
the size of the embeddings to 100 dimensions and
followed the recommendations of Bordes et al.
(2013) regarding the other hyperparameters. We
also implemented the IKRL approach and the best
results were achieved by using margins of 8 and
4 for the WN9-IMG and the FB-IMG datasets, re-
spectively. We tested two configurations of IKRL:
(1) IKRL (Vis) uses the visual representation only
(as in the original paper) and initializes the struc-
tural representations with our learned TransE em-
beddings, and (2) IKRL (Concat), which uses the
concatenation of the linguistic and the visual em-
beddings. Please note that we do not apply the
attention mechanism for creating image represen-
tations as proposed in the IKRL paper (Xie et al.,
2017). However, we include that model, referred
to as IKRL (Paper), in the comparison.

4.4 Link Prediction

Evaluation Protocol: Given a pair of a head/tail
and a relation, the goal of link prediction is to iden-
tify the missing tail/head. For each test triple, we
replaced the head/tail by all entities in the KG and
calculated the corresponding energies in ascend-
ing order. Similar to Bordes et al. (2013), we cal-
culated two measures: (1) the mean rank (MR) of
the correctly predicted entities and (2) the propor-
tion of correct entities in the top-10 ranked ones
(Hits@10). We also distinguished between two
evaluation settings, “Raw” and “Filter”. In con-
trast to the “Raw” setting, in the “Filter” setting
correct triples included in the training, validation,
and test sets are removed before ranking.

Results: Tab. 3 shows the results on the WN9-
IMG dataset. First, we can observe that lever-
aging multimodal information leads to a signifi-
cant improvement compared to the structure-only
based approach TransE, especially in terms of the
mean rank. This conclusion is in accordance with
our intuition: although the structural representa-
tions become less discriminative after the training
for certain kinds of entities (such as the one dis-
cussed in Sec. 1), the multimodal representations
compensate for this effect, thus the prediction ac-
curacy increases. Regarding the multimodal repre-
sentations, combining the linguistic and the visual
embeddings seems to outperform models that rely
on only one kind of those representations. This
holds for our approach as well as for IKRL. Re-

Method MR Hits@10 (%)

Raw Filter Raw Filter

TransE 160 152 78.77 91.21
IKRL (Paper) 28 21 80.90 93.80
IKRL (Vis) 21 15 81.39 92.00
IKRL (Concat) 18 12 82.26 93.25
Our (Ling) 19 13 80.78 90.79
Our (Vis) 20 14 80.74 92.30
Our (DeViSE) 19 13 81.80 93.21
Our (Imagined) 19 14 81.43 91.09
Our (Concat) 14 9 83.78 94.84
Our (only head) 19 13 82.37 93.21

Table 3: Link prediction results on WN9-IMG.

garding the multimodal combination method, we
surprisingly noticed that the simple concatenation
method outperforms other advanced methods like
DeViSE (Frome et al., 2013) and Imagined (Col-
lell et al., 2017). This suggests that translation-
based approaches for KG representation learning
profit more from the raw representations than gen-
eral purpose pre-combined ones, which are not
necessarily tuned for this task.

The evaluation also shows that our approach
with the concatenation method outperforms the
best IKRL model, IKRL (Concat), which was
trained on the same representations as our ap-
proach. Additionally, our model outperforms the
best performing IKRL model reported in (Xie
et al., 2017) with less than half the MR and more
than one point in Hits@10. This shows the benefit
of our additional energy term coupling structural
and multimodal embeddings. To assess the benefit
of taking two separate views on the translational
assumption, we evaluated the performance of us-
ing the head view only. We observe a considerable
drop in performance. The MR becomes 5 points
higher and the Hits@10 drops by more than one
percentage point compared to the same model that
is trained using both the head and the tail views.

Compared to WN9-IMG, the FB-IMG dataset
has a much larger number of relations, entities,
and triples (cf. Tab. 2), thus it better resembles
the characteristics of real KG. On the FB-IMG
dataset, the superiority of our model compared
to the baselines, especially IKRL, becomes even
more evident (cf. Tab. 4). Our model performs
best and achieves a significant boost in MR and
Hits@10 compared to the baselines, while IKRL
slightly outperforms TransE in terms of MR only.
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Method MR Hits@10 (%)

Raw Filter Raw Filter

TransE 205 121 37.83 49.39
IKRL (Concat) 179 104 37.48 47.87
Our (Concat) 134 53 47.19 64.50

Table 4: Link prediction results on FB-IMG.

Therefore, the results confirm the robustness of
our method for large-scale datasets.

Finally, we observe that, in general, the perfor-
mance boost on the FB-IMG dataset is lower than
in the case of the WN9-IMG dataset. This can
be explained by the higher scale and complexity
of the FB-IMG dataset. Furthermore, the visual
representations of the FB-IMG entities are based
on images that are automatically crawled from the
Web. Accordingly, some of the crawled images
may not be representative enough or even noisy,
while the images in WN9-IMG have better quality
since they are obtained from ImageNet, which is a
manually created dataset.

4.5 Triple Classification

Evaluation Protocol: Triple classification is a
binary classification task, in which the KG triples
are classified as correct or not according to a given
dissimilarity measure (Socher et al., 2013). For
this purpose a threshold for each relation δr is
learned. Accordingly, a triple (h, r, t) is consid-
ered correct if its energy is less than δr, and incor-
rect otherwise. Since the dataset did not contain
negative triples, we followed the procedure pro-
posed by Socher et al. (2013) to sample negative
triples for both the validation and the test sets. As
a dissimilarity measure, we used the total energy
of the triple and determined the relation threshold
using the validation set and then calculated the ac-
curacy on the test set.

Results: We measured the triple classification
accuracy of our approach using ten test runs. In
each run, we sampled new negative triples for both
the validation and the test sets. We report the max-
imum, the minimum, the average, and the standard
deviation of the triple classification accuracy.

For WN9-IMG, the results (cf. Tab. 5) show that
our approach outperforms the baselines with up to
two points in maximum accuracy and around three
points in average accuracy. Please note that a di-
rect comparison with IKRL (Paper) is not possi-

Method Accuracy(%)

max min avg ± std

TransE 95.38 89.67 93.35± 1.54
IKRL (Paper) 96.90 – –
IKRL (Vis) 95.16 88.75 92.57± 1.78
IKRL (Concat) 95.40 91.77 93.56± 1.03
Our (Concat) 97.16 94.93 96.10 ± 0.87
Our (only head) 95.58 91.78 93.14± 1.09

Table 5: Triple classification results on WN9-IMG.

Method Accuracy(%)

max min avg ± std

TransE 67.13 66.47 66.81± 0.21
IKRL (Concat) 66.68 66.03 66.34± 0.20
Our (Concat) 69.04 68.16 68.62 ± 0.25

Table 6: Triple classification results on FB-IMG.

ble since we do not have access to the same set of
negative samples. Still, the maximum classifica-
tion accuracy of our approach is higher than that of
by IKRL (Paper). Finally, the results confirm that
using separate head and tail views leads to better
results than using the head view only.

Regarding the FB-IMG dataset, the results in
Tab. 6 emphasize the advantage of our approach.
Compared to the multimodal approach IKRL,
which fails to outperform TransE, our model em-
ploys multimodal information more effectively
and leads to more than one point improvement in
average accuracy compared to TransE.

In conclusion, the conducted evaluation demon-
strates the robustness of our approach on both
evaluation tasks and on different evaluation
datasets.

5 Conclusion

In this paper, we presented an approach for KG
representation learning that leverages multimodal
data about the KG entities including linguistic as
well as visual representations. The proposed ap-
proach confirms the advantage of multimodal data
for learning KG representations. In future work,
we will investigate the effect of multimodal data
in the context of advanced translation methods and
conduct further research on combining visual and
linguistic features for KGs.
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Abstract 

While there have been many proposals for 
theories of semantic roles over the years, 
these models are mostly justified by intui-
tion and the only evaluation methods have 
been inter-annotator agreement. We ex-
plore three different ideas for providing 
more rigorous theories of semantic roles.  
These ideas give rise to more objective cri-
teria for designing role sets, and lend 
themselves to some experimental evalua-
tion. We illustrate the discussion by exam-
ining the semantic roles in TRIPS.  

1 Introduction 

Semantic roles play a foundational role in most 
computational approaches to encoding meaning, 
yet they remain surprisingly ill-defined. For the 
most part, a role taxonomy is defined by an in-
formal gloss and some examples. In other cases, 
semantic roles act purely as convenient names for 
arguments of a predicate, frame or event, but are 
otherwise uninterpreted. This paper starts from the 
belief that if we are going to base a representation 
on semantic roles, they should have consequences 
independent of the predicate or event they are 
used in. In particular, we will explore three differ-
ent aspects that identify criteria one might want in 
a theory of semantic roles: 
1. Entailment: We should be able to identify en-

tailments from a role independent of the type 
that has such roles 

2. Integration with ontology: Roles should obey 
the typical entailments in an ontology (e.g., 
inheritance of properties from parents in the 
ontology) 

3. Derivability: The roles that a type has should 
be derivable from its semantic properties, as 
revealed by definitions of the type in sources 
such as dictionaries. 

The first property helps ensure that roles are used 
consistently in a semantic lexicon, the second en-
sures consistency with an ontology used for rea-

soning, and the third evaluates the semantic inter-
dependence of roles and the types they occur in. 

This paper will examine a particular role set, 
the TRIPS roles sketched in Allen & Teng, 
(2017)1. The first two properties are more formal 
in nature, but the third allows empirical evalua-
tion, namely, whether the roles of an unknown 
word sense can be derived from its definition.  

2 Preliminaries 

Semantic roles have a long history, originating in 
linguistics as thematic roles (e.g., Fillmore, 1968; 
Dowty, 1991) and widely adopted in computa-
tional linguistics for semantic representations be-
cause of their compatibility with frame-based and 
graph-based (i.e., semantic networks) representa-
tions of meaning.  

Very roughly, computational approaches can be 
divided into two classes based on whether one be-
lieves there is a single universal set of roles (e.g., 
LiRICS (Bunt & Rosemary, 2002; Petukhova & 
Bunt, 2008), VerbNet (Kipper et al., 2008; Bonial 
et al., 2011)), or whether one believes each type 
may identify its own unique roles (e.g., FrameNet 
(Baker et al., 1998)). Straddling a middle ground 
is PropBank (Palmer et al., 2005), which uses a 
universal set of role names, but allows each type 
to define what their roles mean. Our interest is in 
defining a universal set of roles across all types. 

A key distinction that most frameworks make 
is between the inner (or core or argument) roles 
and the outer (or relational or adjunct) roles. The 
core roles identify objects that are typically re-
quired to fully specify the content of the type, 
while relational roles are typically optional but 
add additional information. For instance, in 

The snow melted into a puddle. 

The subject of this sentence is clearly a critical ar-
gument to the melting event. In fact, we cannot 
                                                        
1 More detail can be found in the TRIPS LF documentation: 
trips.ihmc.us/parser/LF%20Documentation.pdf 
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describe a melting event in a well-formed sen-
tence without mentioning what melted (even if it 
is vague, as in something melted). On the other 
hand, the result construction realized by into a 
puddle is optional. Typically, roles of time and lo-
cation are relational roles as they can be applied to 
almost any event and are usually optional.  

 But there are differences that go beyond op-
tionality. The core roles semantically are like ar-
guments to a predicate, although they might be 
optional. The relational roles semantically denote 
a relationship between an event and some other 
condition, not an argument. For instance, the 
phrase into a puddle above denotes first a seman-
tic relationship called RESULTING-OBJECT 
(one of the senses of the word into) that takes as 
one argument the melting event and the other ar-
gument the object that the snow becomes, i.e., a 
puddle. We will elaborate on this later in the pa-
per. 

This paper describes three possible ways to es-
tablish a more rigorous semantics for a set of 
semantic roles, and explores each method in 
terms of the TRIPS semantic roles. In Section 4 
we describe the start of an axiomatization of the 
roles. In Section 5 we describe the integration of 
the roles with an ontology. And in Section 6 we 
describe experiments involving derivability, i.e., 
can the roles that a given verb sense has be de-
rived from its dictionary definition.  

3 Overview of TRIPS Semantic Roles 

The TRIPS core roles are shown in Table 1. These 
roles are defined to reflect the causal relationship 
between the role values and the events they are in. 
Informally, an AGENT of an event necessarily ex-
erts causal influence to bring about the event. An 
AFFECTED of an event is necessarily affected or 
changed in some way by the event but does not 
cause the event. Objects filling the NEUTRAL 
and FORMAL roles are acausal, i.e., not neces-
sarily causing or changed by the event.  NEU-
TRAL objects are existent and can be created or 
destroyed.  These include both physical (e.g., a 
box) and abstract (e.g., an idea) objects. In con-
trast, FORMAL objects have no temporal exist-
ence (e.g., a proposition). Finally, EXPERI-
ENCER is a special class for sentient objects in 
stative events involving perceptual or cognitive 
states. 

Table 1 summarizes the distinguishing features 
of each of the roles, and shows correspondences 
with VerbNet and LiRICS. Note the mappings are 
nowhere near one-to-one, reflecting differing cri-
teria that are used to define each of the role sets. 
In some cases, the LiRICS role is not completely 
clear and is marked with a question mark. 

Some differences are differences of granularity 
(cf: the hierarchical roles in Bonial et al. (2001) 
and Allen (1995)). For instance, the TRIPS 
AGENT role only requires a causal relationship to 
the event, and does not require intentionality of 
the agent (as in LiRICS which distinguishes be-
tween its AGENT and CAUSE roles). TRIPS 
takes this stance as it seems most verbs with 
agents would also allow non-intentional causes as 
well. We believe the intentionality distinction is 
not signaled in linguistic usage, and should be de-
rived based on commonsense knowledge and rea-
soning. Thus, we do not make the distinction in 
the role set. 

As another example, VerbNet identifies classes 
of STIMULUS/EXPERIENCER verbs, as in The 
clown amused the children. Roughly, the STIM-
ULUS role plays a causal role similar to AGENT 
and the EXPERIENCER plays an AFFECTED 
role where the object is affected in some cognitive 
fashion. The TRIPS roleset stays at an abstract 
level of representation, assigning the clown to 
AGENT and children to AFFECTED.  For similar 
reasons, TRIPS does not have INSTRUMENT as 
a core role (although there is a sense of the prepo-
sition with that captures accomplishing actions 
with a tool – e.g., He opened the door with a key). 

Note TRIPS and VerbNet agree on the EXPE-
RIENCER role in some cases, namely with stative 
verbs. In TRIPS, EXPERIENCER only occurs 
with stative verbs of perception and cognition. 

There is a surprising variety in the VerbNet 
roles corresponding to the TRIPS roles, partly due 
to the principle in VerbNet that objects should fill 
the same role across all the different constructions 
supported by the verb. For instance, in The horse 
jumped over the fence, the horse is assigned a 
THEME role because jump supports another con-
struction where the horse plays that role, as in He 
jumped the horse over the fence. Using the TRIPS 
criteria, however, the horse is clearly an AGENT 
in the first, and an AFFECTED in the second. 

236



   

Note that based on the definitions of the roles, 
it is common that the same role appears more than 
once in a sentence. We distinguish these argu-
ments by attaching numbers to them. Thus, in The 
box is touching the table we have two roles NEU-
TRAL and NEUTRAL1 for the box and the table 
respectively. VerbNet uses a similar scheme and 
labels these arguments THEME and CO-THEME. 

Most of the remaining TRIPS roles are rela-
tional roles, which as discussed above relate an 
event to some other property. Linguistically, rela-
tional roles are realized by prepositional phrases 
and other adverbial constructions. Semantically, a 
relational role identifies causal temporal relation-
ships between the event and the property denoted 
by the prepositional phrase. As an example, for 
the sentence He pushed the box into the corner, 
there is an event (He pushed the box) that results 
in a culmination state (The box is in the corner). 
The key characteristic of a RESULT relation is 

that the state is caused by the event and starts im-
mediately at the end of the event. Table 2 shows a 
number of result related roles based on their tem-
poral properties. These three roles differ only in 
the temporal properties of the caused state. 

Note that many cases one might think are 
SOURCE roles are actually RESULT roles ac-
cording to their temporal criterion. For instance, in 
He lifted the bottle out of the box, the state of be-
ing out of the box is true at the end of the event! 
Using our definitions the SOURCE role seems 
mostly limited to cases using the preposition from.  

Note also that the prepositions in these con-
structions have fully independent word senses, so 
our representation does not conflate He put the 
cup on the box and He put the cup in the box. In 
contrast, VerbNet assigns the box to a DESTINA-
TION role in both and ignoring the preposition. 

Other relational roles, which we will not have 
the space to discuss here, correspond relatively 

TRIPS Roles Properties Example VerbNet Roles Example from VerbNet LiRICS 

AGENT +causal He 
pushed 
the box 

AGENT Amanda carried the package AGENT 
CAUSER The bug causes the chip to give 

wrong answers … CAUSE 

INSTRUMENT The hammer broke the window INSTRUMENT 
STIMULUS The clown amused the children AGENT? 

THEME The horse jumped over the 
fence AGENT 

AFFECTED -causal, 
+affected 

He 
pushed 
the box 

PATIENT Tony bent the rod 

PATIENT THEME Carla slid the books 
DESTINATION Lora buttered the toast 

SOURCE The doctor cured Pat of pneu-
monia 

EXPERIENCER Carrie touched the cat 
PRODUCT The contractor will build you a 

house RESULT 
RESULT David dug a hole 

NEUTRAL -causal, 
-affected, 
+existent 

I saw the 
box 

PIVOT Dorothy needs new shoes PIVOT 
THEME We avoided the ball THEME 

STIMULUS I saw the play THEME 
EXPERIENCER I loved to write. PIVOT 

LOCATION We avoided the area THEME? 
TOPIC Ellen said a few words THEME? 

FORMAL -causal, 
-affected 
-existent 

I want to 
cry 

ATTRIBUTE He appeared crazy ATTRIBUTE 
STIMULUS I loved to write THEME 

THEME I needed to come THEME 
PREDICATE The bug causes the chip to give 

wrong answers … THEME 
RESULT I forced him to come THEME? 

EXPERIENCER 
-causal, 

-affected, 
+cognitive 

He saw 
the ex-
plosion 

EXPERIENCER I saw the play 
PIVOT AGENT The populace feel that the RIAA 

has too much power 

Table 1: Key Core Roles and Correlates in Other Rolesets 
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well to similar roles in VerbNet, LiRICS and 
PropBank (e.g., LOCATION, TIME, MANNER, 
EXTENT, FREQUENCY, …).  

4 Axiomatizing Roles 

Given the space constraints we cannot present a 
full axiomatization of the role set.  To give a fla-
vor of the axiomatization we look at one core role 
in particular, namely the AFFECTED role. This 
introduces most of the formal framework that is 
used to define all the roles.  In addition, we will 
show the axiomatization of one of the key rela-
tional roles, namely the RESULT role. 

4.1 The Framework  

We start from the formalism developed in Allen & 
Teng (2013), extended from the interval temporal 
logic based framework in Allen & Ferguson 
(1994) and Allen (1984).  In this framework, both 
events and property predicates are reified (cf. Da-
vidson, 1967) with functional relations capturing 
semantic roles and arguments. Terms, rather than 
predicates, are temporally qualified.  For example, 
x@t represents “object x over time t”.   

Objects filling roles of events are temporally 
situated.  For example, Jack lifted the ball (over 
interval t1) is represented as  
				∃e.(LIFT(e),time(e)=t1, 

								AGENT(e)=jack1@t1,	
								AFFECTED(e)=ball1@t1) 

Key to this framework is a theory of scales. For 
example, height(o@t) maps a temporally situated 
object to the set of values on the height scale that 

this object takes over period t. Note that the object 
o may take different values on a scale sc over a 
given time interval t.  Thus, sc(o@t) is a set of 
values.  If sc is not a scale applicable to o@t, then 
sc(o@t) is empty. For example, for all time inter-
vals t, we have mood(rock1@t) =	∅. 

Adjectives in natural language are typically 
represented as Scale Predicates, which denote (of-
ten but not necessarily convex) subsets of values 
on a corresponding scale.  Two examples are 
ScalePred(temperature, Cold) and ScaleP-
red(mood, Happy).  Thus, it is true that John is 
Happy today is written as 

  TrueOf(john1@today, Happy). 
In this paper, to describe relations between time 

intervals, we will make use of the meets relation, 
written t1:t2, and “during or equal”, written t1 ⊆ 
t2, from Allen's temporal relations (Allen, 1983).   

For more details, see Allen & Teng (2013). 

4.2 The AFFECTED Role 

In Allen & Teng (2013), existence is taken as a 
primitive in the formal framework.  We will de-
fine this as a scale with dichotomous values: ex-
istent(o@t) = true if o exists over the time interval 
t.  An object can go in and out of existence at dif-
ferent times. This includes both physical objects 
such as tables and chairs as well as some abstract 
objects such as thoughts and orderings. 

For some objects, it does not make sense to talk 
about their existence.  These include propositions, 
properties, scales and scale values.  (For example, 
hungry, five pounds.)  For these objects, ∀𝑡. exist-

TRIPS Role Distinctive 
Properties 

Example VerbNet Role Example from 
VerbNet 

LiRICS 
Role 

RESULT E causes R to 
become true at 
end of E 

He pushed the 
box inside the 

closet 

DESTINATION Amanda carried the 
package to New York 

FINAL_ 
LOCATION 

PRODUCT I kneaded the dough 
into a loaf 

RESULT 

RESULT Tony bent the rod into 
a U 

RESULT 

SOURCE E causes R to 
become not true 
at start of E 

He pushed the 
box from the 

shelf 

INITIAL 
LOCATION 

The book slid from 
the table 

INITIAL_ 
LOCATION 

SOURCE The thief stole the paint 
from the museum 

SOURCE 

TRANSIENT-
RESULT 

E causes R to be 
transiently true 
some time dur-
ing E 

He walked by 
the school 

TRAJECTORY Carla slid the books 
across the table 

ATTRIBUTE 

LOCATION He jumped the horse 
over the fence 

THEME 

Table 2: Some Result Related Relational Roles and Correlates in Other Rolesets.  E denotes the 
event and R denotes the role under discussion. 
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ent(o@t) = ∅. Note that the value is ∅, not false, 
meaning the existent scale is not applicable. 

Now consider the AFFECTED role of an event.  
It denotes an object that is casually acted upon in 
the event by the AGENT of the event and is 
changed in some way by the event.  In “I lifted the 
box”, the box changed location.  In “The snow 
melted”, the snow changed state of matter.  In “I 
molded the clay”, the clay changed shape.   

Each event type (e.g., LIFT, MELT, MOLD) is 
associated with a specific dimension of change 
such that every occurrence of a particular event 
type entails a change in the AFFECTED along 
that particular dimension.  For example, for each 
MOLD event, the AFFECTED of MOLD changes 
shape, even though the resulting shape in each in-
stance might differ.  This is captured by specifying 
that all events of the same event type share a scale 
on which change occurs for the AFFECTED. 

We can thus formulate the conditions for AF-
FECTED as follows.  Let E(e) denote that e is an 
event occurrence of type E.  Let scale(sc) denote 
that sc is a scale. 
∀𝐸		∃𝑠𝑐		∀𝑒, 𝑜, 𝑡.  

         𝐸(𝑒), 𝑠𝑐𝑎𝑙𝑒 𝑠𝑐 , 
         𝑡𝑖𝑚𝑒(𝑒) = 𝑡, 𝑨𝑭𝑭𝑬𝑪𝑻𝑬𝑫(𝑒) = 𝑜@𝑡  
      ⟹	∃𝑡1, 𝑡2.			  
               𝑡1 ⊆ 𝑡, 𝑡1: 𝑡2,																																																																									
																	𝑠𝑐(𝑜@𝑡1) ≠ 𝑠𝑐(𝑜@𝑡2)		
This says the AFFECTED of e undergoes at least 
one change in a scale dimension sc characteristic 
of the event type E. There can be more changes, 
both along the same scale (e.g., the clay changes 
shape continuously while being molded), or along 
other dimensions (e.g., the snow changes both 
shape and volume while being melted). 

In the above, t1 is during or equal t, the time in-
terval of the event, whereas t2 is met by t1 but 
could be during, overlaps, or at the end of t.  This 
allows for changes that are intermittent and may 
not persist to the end of the event (e.g., flicker, 
wiggle) and also changes that occur only at the 
end of the event (e.g., the stick snapped).  In the 
latter case, for AFFECTED objects that only come 
into existence at the end of the event (e.g., I drew 
a circle), it is possible that sc(o@t1) = ∅. 

Note that the semantics of the roles are defined 
with respect to completed events.  This is captured 
by the predicate E(e). For example, for I was 
drawing a circle but did not finish, even though 
the circle never came into existence, the roles are 
derived not from the progressive formulation but 
from the corresponding case in which the event 
has occurred. 

4.3 Characteristic Properties of Core Roles 

Table 1 lists several properties: causal, affected, 
existent.  Each of the core roles can be character-
ized by a combination of the presence or absence 
of these properties.  The axiomatization of the 
AFFECTED role indicates how the affected prop-
erty can be defined.  The existent property is cap-
tured by the existent scale discussed in the previ-
ous section. 

The causal property is meant to indicate that 
an object exerts a causal influence.  In the transi-
tive case the AGENT causes the event to happen 
to the AFFECTED (I caused the lifting of the 
box).  The causal property is often taken as prim-
itive in other rolesets, but we will outline here 
how it might be formalized.   

We take advantage of the intuition that if X 
causes an event e, then if we change X in some 
way we can change the event that occurs. More 
formally, let sc_E be the scale characteristic of 
event type E, that is, when an event of type E oc-
curs, its AFFECTED is changed along the scale 
dimension sc_E.  Loosely speaking, when +causal 
obtains (for an AGENT oag), there exists some 
scale sc* such that a change of oag on the sc* 
scale would entail a change of the AFFECTED 
oaff on the sc_E scale. In other words, there is 
some property of the AGENT such that when 
this property is changed, regardless by what 
means, some property of the AFFECTED will 
vary accordingly.  

4.4 Wrinkles 

A few further considerations complicate the for-
mulation above. 

First, existent objects are constantly undergoing 
changes.  For example, an object typically gets 
older (on the AGE scale) as time passes, even 
without being involved with any explicit AGENT 
or EVENT.  Such changes (with their associated 
scales) would trivially satisfy the conditions in the 
formulation above, such that almost any (existent) 
object could be a candidate for being an AF-
FECTED of any EVENT.  We call such innocuous 
changes Background Changes and exclude them 
from consideration.  

Second, for some events although the occur-
rence of the event typically induces a change 
along the specified scale dimension, this is not al-
ways the case.  For instance, for the PUSH event, 
typically the AFFECTED object changes location 
but in some cases the object might not move.  For 
example, I pushed the door but it was locked.  We 
need to define a notion of canonical or perhaps 
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counterfactual change.  This is especially pertinent 
for events such as PREVENT (I prevented the ac-
cident) or MAINTAIN (The pump maintained the 
air pressure), in which the events in question are 
meant to induce no change in the object being act-
ed upon.  

Third, the NEUTRAL role mostly entails the 
absence of properties: not causal and not affected.  
It would seem then that any existent object could 
fill this role, even if this object bears no relation-
ship to the event in question. Similarly, in LiRICS 
for example, the THEME role is defined as  

“Participant in a state or event that is essential 
to the event taking place or the state being in 
effect. In an event, a theme does not have con-
trol over the way the event occurs and is not 
structurally changed by the event.” (Schiffrin 
& Bunt, 2007).   

We need to define the notion of being relevant or 
essential to an event to select for the proper ob-
jects.  The same consideration applies to FOR-
MAL and EXPERIENCER roles as well. 

The axiomatization above thus represents our 
first attempts to formalize the semantic role en-
tailments.  We expect further refinements as we 
explore these issues in depth.  

4.5 The RESULT Relational Role 

Intuitively a RESULT relates an EVENT and the 
eventual state.  The RESULT only becomes true at 
the end of the EVENT.  For example, in “The cat 
slid under the table”, the cat was not under the ta-
ble before or during the sliding event, but at the 
end of the event the cat is under the table. 

In contrast, in many approaches the relationship 
between the event and the resulting spatial predi-
cate is unclear.  For example, VerbNet would treat 
“the table” as the DESTINATION without explicit 
representation of the spatial relation (under).  

RESULTs are often spatial, but they can also be 
other general states.  For example, in “I wiped the 
desk clean”, the result is that the desk is clean. 

Resultative constructions apply to intransitive 
events (e.g., slide) as well as transitive events 
(e.g., wipe).  For intransitive events, the resulting 
state pertains to the subject of the event (e.g., In 
The cat slid under the table, the result is that the 
cat is under the table), whereas for transitive 
events, the resulting state pertains to the object of 
the event (e.g., from I wiped the desk clean, the 
RESULT is that the desk is clean). 

It is possible to transform intransitive construc-
tions into transitive constructions. For example, in 
“The dog barked the cat up the tree”, the BARK 
event is normally intransitive, but in the above re-

sultative construction, the dog is the AGENT of 
the BARK event, the cat is the AFFECTED and 
the RESULT is that the cat is up the tree. (For a 
treatment of this, see Allen & Teng (2017).) 

Thus, the RESULT role can be formalized as 
follows for a transitive event type E. 
∃𝑠𝑐		∀𝑒, 𝑜, 𝑡, 𝑃.  

        𝐸 𝑒 , 𝑠𝑐𝑎𝑙𝑒 𝑠𝑐 , 𝑆𝑐𝑎𝑙𝑒𝑃𝑟𝑒𝑑(𝑠𝑐, 𝑃),  
        𝑡𝑖𝑚𝑒 𝑒 = 𝑡, 
          𝑨𝑭𝑭𝑬𝑪𝑻𝑬𝑫(𝑒) = 𝑜@𝑡,  
        𝑹𝑬𝑺𝑼𝑳𝑻(𝑒) = 𝑃 
      ⟹ ∃𝑡2.		𝑡: 𝑡2,	 
               𝑇𝑟𝑢𝑒𝑂𝑓 𝑜@𝑡2, 𝑃 , 
            ∀𝑡1 ⊆ 𝑡.		~𝑇𝑟𝑢𝑒𝑂𝑓(𝑜@𝑡1, 𝑃)			   
For example, for the WIPE event e in “I wiped the 
desk clean”, we have ScalePred(cleanliness, 
Clean), that is, the predicate Clean is defined on 
the cleanliness scale.  In addition, AFFECTED(e) 
= desk1@t and RESULT(e) = Clean; that is, the 
desk is clean immediately after the WIPE event 
but not before.    

Similarly, for the intransitive case, the AF-
FECTED above is replaced by the role filled by 
the subject, that is, the RESULT is a change in the 
subject at the end of the EVENT. 

Note that an EVENT can have multiple RE-
SULTs.  For example, “The cat climbed on the 
box away from the rising water”, in which case 
the two results combine as a conjunction true im-
mediately after the event. 

The scale allowed for each event type con-
strains the possible interpretations of the text.  For 
example, in “I wiped the table clean”, the table 
can change on the cleanliness scale and thus al-
lows a RESULT construction here.  In contrast, in 
“I wiped the table happy”, the mood scale is not 
applicable to tables, ruling out the RESULT con-
struction.  Instead, one would prefer an alternative 
interpretation using a manner-like construction in 
which “happy” is used to qualify “I”. 

5  Integration with an Ontology 

The second criterion we set for a theory of seman-
tic roles is integration with an ontology. If seman-
tic roles are to have an impact on deep language 
understanding and reasoning, they should be inte-
grated with an ontology that supports that reason-
ing and stores commonsense knowledge. There is 
a large relevant literature concerning roles in se-
mantic networks (e.g., Hayes, 1980; Thomason & 
Touretsky, 1991). Essentially such roles are func-
tions from a type (for verbs an event type is one 
sense of the verb) to another object. If a word 
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sense S has a semantic role R, then for all instanc-
es of S there is an object that fills the R role, i.e.,  

∀𝑠.		𝑆 𝑠 ⟹ 	∃𝑟.		𝑅 𝑠, 𝑟  

This axiom captures what is sometimes called an 
essential role (Palmer, 2006), i.e., a semantic role 
that must exist even if not specified in the input 
sentence. Palmer notes that other roles are obliga-
tory, that is, they are both essential and linguisti-
cally required, and still others are simply optional 
and may or may not be realized at either the lin-
guistic or inferential levels.  

A critical foundation of semantic networks is 
inheritance down type hierarchies, where a sub-
type “inherits” all properties of its parent types. 
When viewing this from the perspective of se-
mantic roles, this means any role that is essential 
for a given type T must also then be essential for 
all subtypes of T.  

Surprisingly, the predominant models of se-
mantic roles do not address such issues in any 
depth. VerbNet, for instance, creates its classes 
based on clustering by verb usage patterns, rather 
than semantic entailments, and has a very limited 
hierarchical structure defined in terms of exten-
sions in allowed usages. Within these hierar-
chies, though, it does have inheritance of roles. 
Propbank, on the other hand, is word based and 
even semantically very similar verbs have differ-
ent rolesets (e.g., compare the rolesets for the 
verbs constrict, compress and squeeze, which 

one would expect would be clustered to-
gether in an ontology).  

The TRIPS role set is fully integrated 
with a rich ontology. In this ontology, the 
concepts are organized both by entailment 
as well as the semantic roles the verb sens-
es take. Table 3 shows a small part of the 
upper ontology for events and the roles that 
are defined for each type and inherited 
from ancestor types. Note TRIPS allows 
both essential and optional roles. Both are 
inherited down the hierarchy, and lower 
types can make an inherited optional role 
essential, but not vice versa.  Whether a 
role is obligatory or not is not specified in 
the ontology, but rather in the lexicon 
where the words and the argument struc-
tures they allow are defined. Furthermore, 
it employs explanation closure techniques 
(Schubert, 1994) – if a role is not defined 
as possible in the ontology then the role is 
not possible. 

The integration of roles with an ontolo-
gy mutually constrains the assignment of 

roles to verb sense predicates and constrains the 
ontology itself. For instance, if we believe that 
the verb disappear takes the AFFECTED role 
and not an AGENT role, then its word sense can-
not be under the EVENT-OF-ACTION or 
EVENT-OF-STATE hierarchies, but it looks like 
a good candidate for being under the EVENT-
OF-UNDERGOING-ACTION category. Like-
wise, although you might think the verb analyze 
might take an EXPERIENCER role, if you be-
lieve that analyze falls under EVENT-OF-
ACTION, then it should take the AGENT role 
instead.  

One other aspect that relates to the ontology is 
selectional preferences. As in many semantic 
networks, one can also constrain the semantic 
type of the arguments that can fill a role. For in-
stance, one might say that the event type EAT 
typically concerns an animate entity (as AGENT) 
and some comestible substance (as the AF-
FECTED role). Such knowledge is critical for 
driving semantic disambiguation during parsing. 
The TRIPS restrictions are soft constraints, i.e., 
the parser prefers interpretations that satisfy the 
constraints, but can construct interpretations that 
do not. As with roles, the selectional preferences 
are inherited down the hierarchy, with more spe-
cific event types accumulating all the constraints 
imposed on their ancestors in the hierarchy. We 
do not have the space to discuss this further here.  

Type New roles/  
 Inherited roles 

Verbs  
(often in sub-
classes) 

EVENT-OF-ACTION AGENT  
EVENT-OF-AGENT-
INTERACTION 

AGENT1 
AGENT 

Meet, collabo-
rate, … 

EVENT-OF-
CREATION 

AFFECTED 
AGENT 

Bake, establish, 
… 

EVENT-OF-
CAUSATION 

AFFECTED, 
AGENT 

Push, control, 
… 

MOTION RESULT 
    AGENT 
    AFFECTED 

Go, disperse, 
move, … 

EVENT-OF-
UNDERGOING-ACTION 

AFFECTED  Die, inherit, … 

EVENT-OF-STATE NEUTRAL  

POSSESS NEUTRAL1 
NEUTRAL 

Own, possess, 
… 

HAVE-PROPERTY FORMAL 
NEUTRAL 

Be, seem, … 

EVENT-OF-
EXPERIENCE 

EXPERIENCER 
     NEUTRAL 

Appreciate, be-
lieve, … 

Table 3: Some Roles in the Event Ontology (Showing 
Role Inheritance) 
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6 Derivability in Definitions 

The third criterion we explore is derivability. The 
motivation is as follows: If semantic roles have a 
semantics independent of their predicates/events, 
then the semantic properties of roles would not 
change between a predicate and its definition. For 
example, consider the word sense corresponding 
to the predicate for kill, defined as cause to die. 
According to our analysis above, kill would take 
two essential roles: AGENT and AFFECTED. The 
definition, on the other hand, involves a predicate 
cause that takes an AGENT, AFFECTED and a 
FORMAL role (to die). A highly abbreviated logi-
cal form for this definition is shown in Figure 1. 
While cause has three roles, only the FORMAL 
role is fixed by the definition (i.e., it is the die 
event). The unfilled essential roles in the defini-
tion are AGENT and AFFECTED, exactly the 
roles for kill.  

Our hypothesis is that given a good definition 
of a word sense, the essential roles can be de-
rived from that definition automatically. This, of 
course, has significant impact. If the definitions 
in WordNet (Fellbaum, 1998) are generally rea-
sonable, we can bootstrap from the items prede-
fined in the TRIPS ontology and lexicon, and de-
rive the semantic roles for any verb in WordNet. 
Our preliminary evaluation described here indi-
cates that this is a very feasible goal.  

To implement this we need a strategy for iden-
tifying unfilled semantic roles in a definition. 
The most common case we have encountered in 

WordNet definitions is that the unfilled roles are 
elided in the definition. The TRIPS parser instan-
tiates such gaps in the logical form using its IM-
PRO construct. Other cases include indicating 
the unfilled roles by an indefinite pronoun, such 
as someone or something.  

More complicated cases occur when the roles 
do not occur at the top level but in an embedded 
clause, as in one definition of approach (move 
towards), shown in Figure 2. The roles for the 
predicate Towards are FIGURE and GROUND, 
and an IMPRO fills the GROUND role of the 
predicate. Thus we have a role chain, from the 
head verb through RESULT and GROUND. We 
have analyzed such role patterns and created a 
mapping based on the semantics of the roles. In 
this case, it would indicate a NEUTRAL role, as 
the GROUND role is not changed by the event. 
Table 4 summarizes a few of the most common 
rules for identifying roles from role chains.  

6.1 Experimental Evaluation of Derivability 

To test this technique, we built a customized 
TRIPS system to parse definitions. The main cus-
tomization was the addition of about a dozen top 
level syntactic rules that capture the common 
forms of definitions, which as we have seen con-
tain much ellipsis. Otherwise, the grammar and 
lexicon are exactly the same as in all the other 
variants of the TRIPS parser. Our experiment also 
takes advantage of the fact that the TRIPS ontolo-
gy has an extensive mapping to WordNet synsets, 
and uses the WordNet hypernym hierarchy to 

Role Chain Role 
Identified 

Example Word and Defi-
nition 

Justification 

 
R wolf : f eat f An unfilled direct role R of 

the head verb is R 

 
NEUTRAL near: f move towards f The ground of the property 

is not affected by the verb 

 
AFFECTED jump: f cause [ f to  jump] The agent of the embedded 

event is changed by under-
going the cause event  

Table 4: A few sample rules for deriving roles from definitions.   

V ArgR

V V1RESULT ArgGROUND

 
Figure 1: Key aspects of the LF for to cause to 

die 

 
Figure 2: Key aspects of the LF for to 

move towards 
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identify abstractions. Any WordNet synset can be 
mapped to its most specific type in the TRIPS on-
tology (Allen & Teng, 2017). 

The experiment was set up as follows.  We re-
peat the following to obtain 40 test cases: 
1) Randomly choose a WordNet synset S such 

that: (a) S has a direct mapping to a TRIPS 
ontology type T, (b) the TRIPS lexicon has 
word W with type T that is also in S, and (c) 
the WordNet definition is not circular. 

2) Remove the lexical entry for W from the 
TRIPS lexicon after recording its essential 
roles as the gold standard answer. 

3) Parse the definition for S and extract the es-
sential roles as described above. 

4) Compare the roles from steps 2) and 3) to 
compute precision and recall.  

For a baseline we assigned each verb the AGENT 
and AFFECTED roles. Table 5 shows the results 
of the experiment. We obtained 88% precision and 
77% recall for our approach, versus 63% and 66% 
respectively using the baseline assignments. Be-
cause a large number of English verbs are simple 
transitive verbs describing change, the baseline 
did better than one might expect. Still our ap-
proach based on parsing definitions performed far 
better, lending strong support that our role set 
passes the derivability test. 

Based on a manual analysis of the errors in this 
experiment, the errors arose from a combination 
of parse errors, ambiguities, and definitions that 
are terse and loose.  For instance, one sense of ap-
pear is defined as to come into sight. This is am-
biguous between entering into some state (the 
right interpretation here), and the acquisition read-
ing where sight is acquired. The parser chose the 
latter, leading to an assignment of AGENT as the 
role rather than AFFECTED. We also missed a 
few roles because of parser errors. For instance, a 
sense of pronounce is defined as to declare 
judgement on (e.g., they pronounced him unfit). 
The parser failed to identify the second gap (i.e., 
the missing object of the preposition on). In addi-
tion, this is the one case we found where our strat-
egy for identifying arguments was inadequate. 
There is an argument to this verb that is the 
judgement, but this is not signaled by an elided 
argument or an indefinite pronoun. Thus the gold 
answer is AGENT, NEUTRAL, FORMAL but our 

system was able to identify only the AGENT role. 
There are several additional processing steps 

we could take to improve the performance. For 
instance, sometimes multiple definitions are pre-
sented in WordNet and we could process them 
all and try to combine them. Currently we only 
analyze the first one. Also, we could try to verify 
the roleset by attempting to parse examples that 
are given in the gloss. Often it seems that the lex-
icographer depends on the examples to supple-
ment and disambiguate the definitions.   

In our error analysis we did not find any ex-
ample where if we had identified the correct 
parse of the definition, we would have identified 
an inappropriate role for the word being defined. 
This indicates that the semantic roles appear to 
be consistent across the lexicon and, furthermore, 
are identifiable by the semantic properties in-
duced by the events in the definitions. In other 
words, they meet the criterion of derivability! 

7 Discussion 

We have presented three possible criteria for how 
one can produce and validate a semantics for a 
semantic role set. We have illustrated the tech-
niques by looking at the roles in the TRIPS 
framework.  Note we do not claim this indicates 
the TRIPS roleset is the only roleset that could be 
useful in linguistic theory and computational se-
mantic models. However, we have shown that the 
TRIPS roleset is internally consistent and has a set 
of desirable semantic properties: (1) it is amenable 
to axiomatization in a temporal logic, (2) it is in-
tegrated into an ontology that supports inher-
itance, and (3) the roles are derivable in the sense 
that they can be derived for verb senses based on 
their definitions. 

The TRIPS roleset was created by considering 
the properties of causality, temporality, existence, 
and sentience. Other researchers choose to create 
rolesets based on other criteria. We encourage 
those researchers to attempt to formalize their 
roles along the dimensions we have defined to 
create a firm theoretical foundation by which all 
theories can be compared. 
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 Our Approach Baseline 
Precision 88.4% 63.4% 
Recall 77.2% 65.8% 
F1 score 82.4% 64.5% 

Table 5: Results in Deriving Rolesets 

243



   

8 References  

Allen, J. F. (1983). Maintaining Knowledge About 
Temporal intervals. Communications of the ACM 
26(11):832-843.   

Allen, J. F.   (1984). Towards a general theory of ac-
tion and time.  Artificial Intelligence, 23(2):123-
154. 

Allen, J.F. (1995). Natural Language Understanding, 
Benjamin Cummings, Second Edition.  

Allen, J. F. and G. Ferguson (1994).  Actions and 
events in interval temporal logic.  Journal of Logic 
and Computation, 4(5):531-579. 

Allen, J. F. and C. M. Teng (2013).  Becoming differ-
ent: A language-driven formalism for com-
monsense knowledge.  In the 11th International 
Symposium on Logical Formalizations of Com-
monsense Reasoning, Cyprus. 

Allen, J., and C. M. Teng (2017). Broad coverage, 
domain-generic deep semantic parsing. AAAI 
Workshop on Construction Grammar, March, Stan-
ford University.  

Baker, Collin F., Charles J. Fillmore, and John B. 
Lowe. (1998). The Berkeley FrameNet Project. In 
Proceedings of COLING-ACL’98, pages 86–90, 
Montréal, Canada.  

Bonial, C., et al. (2011). A Hierarchical Unification of 
LIRICS and VerbNet Semantic Roles. 5th IEEE 
Conf. on Semantic Computing (ICSC), Palo Alto, 
CA. 

Bunt, H. C. and L. Romary (2002). Requirements on 
multimodal semantic representations. Proceedings 
of ISO TC37/SC4 Preliminary Meeting, pages 59–
68.  

Davidson, D. (1967). The Logical Form of Action 
Sentences. The Logic of Decision and Action. N. 
Rescher. Pittsburgh, University of Pittsburgh Press. 

Dowty, D. (1991). Thematic Proto-Roles and Argu-
ment Selection, Language, Vol 67-3, pp547-619 

Fellbaum, C.  (1998, ed.)  WordNet: An Electronic 
Lexical Database.  Cambridge, MA: MIT Press. 

Fillmore, Charles (1968) “The case for case”, in E. 
Bach and R. Harms, (eds) Universals in Linguistic 
Theory, Holt, Rinehart, and Winston, New York, 1–
90. 

Hayes, Pat (1980). The Logic of Frames. In Reading 
in Artificial Intelligence, Margan Kaufman. 

Kipper, K., A. Korhonen, N. Ryant, and M. Palmer 
(2008). A large-scale classification of English 
verbs. Language Resources and Evaluation Jour-
nal, vol. 42, pp. 21–40, 2008.  

Palmer, M. (2006). Semantic Processing for Finite 
Domains, Cambridge University Press. 

Palmer, M., Gildea, D. and Kingsbury, P. (2005). The 
Proposition Bank: A corpus annotated with seman-
tic roles, Computational Linguistics Journal, 31:1.  

Petukhova, V. and Bunt, H. (2008). LIRICS Semantic 
Role Annotation: Design and Evaluation of a Set of 
Data Categories. LREC. 

Schiffrin A. and H. C. Bunt (2007). LIRICS Delivera-
ble D4.3. Documented compilation of semantic da-
ta categories.  http://lirics.loria.fr 

Schubert, L.K. (1994). Explanation closure, action 
closure, and the Sandewall test suite for reasoning 
about change, J. of Logic and Computation 4(5), 
Special Issue on Actions and Processes, pp. 679-
799 

Thomason R. and D. Touretsky (1991). Inheritance 
Theory and Networks with Roles, in Principles of 
Semantic Networks, Morgan-Kaufmann.  

 
 
 
 
 
 
 
 

244



Proceedings of the 7th Joint Conference on Lexical and Computational Semantics (*SEM), pages 245–254
New Orleans, June 5-6, 2018. c©2018 Association for Computational Linguistics

Measuring Frame Instance Relatedness

Valerio Basile
University of Turin

Italy
basile@di.unito.it

Roque Lopez Condori
Université Côte d’Azur,

Inria, CNRS, I3S, France
roque.lopez-condori@inria.fr

Elena Cabrio
Université Côte d’Azur,

Inria, CNRS, I3S, France
elena.cabrio@unice.fr

Abstract

Frame semantics is a well-established
framework to represent the meaning of nat-
ural language in computational terms. In
this work, we aim to propose a quantita-
tive measure of relatedness between pairs
of frame instances. We test our method
on a dataset of sentence pairs, highlighting
the correlation between our metric and hu-
man judgments of semantic similarity. Fur-
thermore, we propose an application of our
measure for clustering frame instances to
extract prototypical knowledge from natu-
ral language.

1 Introduction

Frame Semantics has been a staple of artificial
intelligence and cognitive linguistics since its
first formulation in the ’70s (Fillmore, 1976).
In particular, frame semantics has been widely
adopted as a theoretical backbone for the inter-
pretation of natural language, in order to repre-
sent its meaning with formal structures suited
for computation. In a nutshell, according to
frame semantics, the meaning of a sentence can
be represented as a set of situations (frames)
and the entities involved in them (frame ele-
ments), each with their own role.

Several approaches have proposed in the
past years to automatically interpret natural
language in terms of frame semantics (Gildea
and Jurafsky, 2002; Thompson et al., 2003;
Erk and Padó, 2006, among others). How-
ever, the vast majority of these approaches fo-
cuses on the extraction of the structure of the
frames evoked in the natural language fragment
(frames and roles), while leaving the frame el-
ements either underspecified or simply repre-
senting them as spans of the original text. In
this work, we propose to fully represent the
meaning of a natural language sentence with

instantiated frames, where the frame elements
are nodes in a knowledge graph.

Moreover, while a great deal of effort has
been directed towards the extraction of frames
from natural language, not many systems pro-
cess frames further, to solve downstream tasks
in NLP and AI — an example is Sentilo (Recu-
pero et al., 2015), a sentiment analysis system
built on top of the frame-based machine read-
ing tool FRED by Presutti et al. (2012).

In this paper we define a quantitative mea-
sure to compute the semantic relatedness of a
pair of frame instances, and apply it to the task
of creating a commonsense knowledge base.

The main contributions of this paper are:

• A novel measure of relatedness between
frame instances (Section 3).

• A high-quality data set of natural lan-
guage sentences aligned to the frame in-
stances evoked by them (Sections 4 and
5).

• A pilot study on the extraction of pro-
totypical knowledge based on frame in-
stance clustering (Section 6).

Before introducing the novel contributions, we
describe related work (Section 2), while Sec-
tion 7 summarizes our conclusions.

2 Related Work

The most relevant to our research is the work
of Pennacchiotti and Wirth (2009), which in-
troduces the notion of “frame relatedness” and
proposes different types of measures to asses
it. These measures are grouped in three cate-
gories: i) based on the hypothesis that frames
are related if their lexical units are semanti-
cally related; ii) corpus-based measures, which
suggest that related frames tend to occur in
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the same or similar contexts (e.g., measured
by pointwise mutual information or distribu-
tional semantic models); iii) hierarchy-based
measures, which leverage the FrameNet hier-
archy, assuming that frames are likely related
if they are close in the network structure of
FrameNet. The results of their experimental
tests show high correlation between some of
these measures and a dataset of human judg-
ments of semantic similarity.

Subsequent works have taken the measures
presented by Pennacchiotti and Wirth (2009)
as basis to implement more refined measures.
Kim et al. (2013) proposes SynRank, a func-
tion to calculate frame relatedness which uses
three measures: i) content similarity, based on
the overlapping of the terms that evoke the
frames, ii) context similarity, defined by neigh-
bor frames within a window in its document,
and iii) corpus-based word similarity, which
uses the corpus-specific information.

Virk et al. (2016) presented a supervised ap-
proach to enrich FrameNet’s relational struc-
ture with new frame-to-frame relations. To cre-
ate these new relations, the authors propose to
use features based on frame network structure
and frame elements (role names similarity by
overlap). In addition to these features, the over-
lap among content words (nouns, verbs, adjec-
tives and adverbs) occurring in verbal defini-
tions of each frame of FrameNet is also used.

More recently, Alam et al. (2017) proposed
three measures to compute the semantic relat-
edness between two frames using the hierar-
chical structure of the FrameNet graph. These
measures are i) path similarity, based on the
shortest path between two nodes in the tax-
onomy, ii) Leacock-Chodorow similarity (Lea-
cock and Chodorow, 1998), which considers
the shortest path between two nodes and the
depth of the taxonomy and iii) Wu-Palmer sim-
ilarity (Wu and Palmer, 1994), based on the
depths of two nodes in the taxonomy and their
least common subsumer. In (Shah et al.) a
word sense-based similarity metric is used as
a proxy to frame instance relatedness in order
to cluster frame instances.

Our method presupposes a formalization of
the frame element structure including the en-
tities that fill the semantic roles, akin to the
work of (Scheffczyk et al., 2006), which seeks

to give the slot fillers semantic type constraints
by linking them to a top-level ontology.

To our knowledge, our approach is the
first to address the relatedness of instantiated
frames that include disambiguated concepts in
their frame elements.

3 A Quantitative Measure of Frame
Instance Relatedness

In the theory of frame semantics, a frame is
a prototypical situation uniquely defined by a
name, e.g., Driving_vehicle, an event in-
volving a vehicle, someone who controls it,
the area where the motion takes place, and so
on. Frames have frame elements, identified
by the role they play in the frame. Following
the example above, Driver and Vehicle
are some of the frame elements expected to be
present in a Driving_vehicle situation.

Most NLP works on frame semantics are
based on FrameNet (Baker et al., 1998), a lex-
ical semantic resource which contains descrip-
tions and annotations of frames. In FrameNet,
each frame type defines its own set of frame el-
ements and associated words (known as lexical
units) which can evoke the frame. FrameNet
also lists a set of frame-to-frame relations
(e.g. subframe_of, is_causative_of)
according to how they are organized with re-
spect to each other.

We propose a method to compute a nu-
meric score indicating the relatedness of a
pair of frame instances. Formally, we
define a frame instance fi as a tuple
(ft, {(r1, e1), ..., (rn, en)}), ft ∈ T , r ∈
R, e ∈ E, where T is the set of frame types, R
is the set of semantic roles, and E is the vocab-
ulary of entities that could fill any given role.

The relatedness between two frame in-
stances fi1 and fi2 is computed as a linear
combination of the relatedness between the two
frame types and the distance between the frame
elements contained in the frame instances:

firel(fi1, fi2) =

= αftrel(fi1, fi2)+(1−α)ferel(fi1, fi2)
(1)

The relatedness firel(fi1, fi2) is therefore de-
fined to be a number in the range [0, 1], while
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the α parameter controls the extent to which
the relatedness is weighted towards the frame
types or the frame elements. The frame type
relatedness ftrel and the frame element relat-
edness ferel can be computed in several ways,
which we detail in the remainder of this sec-
tion.

3.1 Implementation Details

The method to compute the relatedness of
frame instances that we propose is independent
from the actual vocabulary of frames, roles and
concepts — although for some of the steps pre-
cise characteristics of the frame definition are
needed, e.g., a set of lexical units. In prac-
tice, we use the frame type and element inven-
tory of FrameNet 1.5, containing 1,230 frames,
11,829 lexical units and 173,018 example sen-
tences. As concept inventory, we select Ba-
belNet, a large scale multilingual dictionary
and semantic network (Navigli and Ponzetto,
2012). Words in BabelNet belong to one or
many BabelNet synsets, each synset defines a
sense, thus it represents a potential semantic
role filler in a frame element.

3.2 Frame Type Relatedness

Pennacchiotti and Wirth (2009) surveys a
number of methods to compute a relatedness
score between frames. We implemented the
best performing algorithm for frame related-
ness among those introduced in the aforemen-
tioned paper, namely the co-occurrence mea-
sure (ftrelocc). This algorithm is based on an
estimate of the point-wise mutual information
(pmi) between the two frames, computed on
the basis of their occurrence in an annotated
corpus.

Given two frame types ft1 and ft2, and a
corpus C, the measure is defined as:

ftrelocc(fi1, fi2) = log2
|Cft1,ft2 |
|Cf t1||Cf t2|

(2)

where Cft1 and Cft2 indicate the subsets of
contexts in which ft1 and ft2 occur respec-
tively, and Cft1,ft2 the subset of contexts
where both frame types occur.

Since a large corpus of frame-annotated nat-
ural language is hard to come by and very ex-
pensive to produce, the occurrence of a frame

type fti in a context c is defined as the occur-
rence of at least one of the lexical units lfti as-
sociated to that frame type in FrameNet in that
particular context:

Cfti = {c ∈ C : ∃lfti ∈ c}
Cft1,ft2 = {c ∈ C : ∃lft1 ∈ c ∧ ∃lft2 ∈ c}

While the original method only considers the
word part of the lexical units, we computed the
occurrence counts on SEMCOR (Landes et al.,
1998), a corpus of manually sense-labeled En-
glish text (words are annotated with part-of-
speech tags and senses from WordNet). By
using a disambiguated corpus, we are able to
match the lexical units from FrameNet to the
sense labels of SEMCOR, overcoming the am-
biguity of polysemous words.

We also implement an alternative measure
of frame type relatedness, based on distribu-
tional semantics (ftreldist inspired by another
of the measures in the same paper by Pennac-
chiotti and Wirth (2009)). We created vector
representations for each frame type by merg-
ing the representations of their lexical units in a
pre-trained word space model. For each frame
type, we compute the average of the vectors
in GloVe6B (Pennington et al., 2014), a large
word embedding model of English words, cor-
responding to each lexical unit in the frame.
The measure of distributional frame type relat-
edness between two frame types ft1 and ft2 is
then given by the cosine similarity between the
two respective frame vectors ~ft1 and ~ft2:

ftreldist(fi1, fi2) =
~ft1 · ~ft2

|| ~ft1|||| ~ft2||
(3)

3.3 Frame Elements Relatedness
The second half of equation 1 corresponds to
the relatedness measured between two sets of
frame elements, therefore an aggregation step
is needed. For each concept corresponding
to the frame elements fei ∈ fi1, we com-
pute all the similarity scores with respect to
the concepts corresponding to the frame ele-
ments fej ∈ fi2, and select the best match.
The aggregation by maximum is an approxi-
mation of the best match algorithm on bipartite
graphs, that is, the measure gives more weight
to the most similar pairs of frame elements
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rather than averaging the similarities of all the
possible combinations. The resulting similari-
ties are averaged over all the frame elements.
Since this process is asymmetrical, we com-
pute it in both directions and take the average
of the results:

ferel(fi1, fi2) =

=
1

2

( 1

|fi1|
∑

fei∈fi1
max

fej∈fi2
csim(fei, fej) +

+
1

|fi2|
∑

fei∈fi2
max

fej∈fi1
csim(fei, fej)

)
(4)

The function csim(fei, fej) between con-
cepts is again computed as cosine simi-
larity between vector representations. In
this case we leverage the semantic resource
NASARI (Camacho-Collados et al., 2016), a
concept space model built on top of the Babel-
Net semantic network. Each vector in NASARI
represents a BabelNet synset in a dense 300-
dimensional space. The reason to use a differ-
ent vector space model than the one used for
ftreldist is that NASARI provides represen-
tations of disambiguated concepts, which we
have from KNEWS, while GloVe6B is a word-
based model and the lexical units are not dis-
ambiguated.

Note that in equation 4 the semantic roles of
the elements are ignored in the computation of
the relatedness between frame elements. We
therefore extend the definition of frame ele-
ment relatedness by adding the extra parame-
ter roles, acting as a filter: when activated, it
sets the relatedness score of a pair of frame ele-
ments to zero if they do not share the same role
in the frame instance.

4 Evaluation by Text Similarity

To our knowledge, there is no manually anno-
tated dataset of frame instances and their relat-
edness. In order to circumvent this shortcom-
ing, we propose an indirect methodology for
the evaluation of the frame instance relatedness
measures we introduced in Section 3. The key
idea of our evaluation approach is to measure
the relatedness of frame instances extracted
from pairs of short texts, for which a gold stan-
dard pairwise similarity score is given.

We parse the text with a knowledge extrac-
tion system to extract all the frame instances.
We then measure the semantic relatedness of
the extracted frame instances and compare the
outcome with a judgment of pairwise seman-
tic similarity given on the original sentences.
The aim of this experiment is to show that our
measure of frame instance relatedness corre-
lates with the semantic relatedness of the text
that evokes the frame. In other words, we use
textual similarity as a proxy for human judg-
ment of relatedness between frame instances.

4.1 Data

The dataset we selected to carry out this exper-
iment is provided by the shared task on Seman-
tic Text Similarity (STS) held at SemEval 2017
(task 1, track 5 English-English) (Cer et al.,
2017). The set is composed of 250 pairs of
short English sentences, manually annotated
with a numerical score from 1 to 5 indicating
their degree of semantic relatedness. Examples
of sentence pairs from the gold standard set,
along with their human judgments of semantic
similarity, are shown in Table 1.

Table 1: Examples of the sentence pairs in the Se-
mEval 2017 STS dataset, with numbers indicating
their semantic similarity on a scale from 1 to 5.

Sim. Sentence pair
4.0 There are dogs in the forest.

The dogs are alone in the forest.
3.4 The boy is raising his hand.

The man is raising his hand.
1.0 A woman supervisor is instructing

the male workers.
A woman is working as a nurse.

0.2 The woman is kneeling next to a cat.
A girl is standing next to a man.

4.2 Knowledge Extraction

To compute the relatedness score of pairs of
frame instances, we need to extract them from
the natural language text. For this purpose, we
use KNEWS (Knowledge Extraction With Se-
mantics), a fully automated pipeline of NLP
tools for machine reading (Basile et al., 2016).
The input of KNEWS is an arbitrary English
text, and its output is a set of RDF triples
encoding the frames extracted from the text
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by Semafor (Das et al., 2014). KNEWS in-
tegrates the Word Sense Disambiguation tool
Babelfy (Moro et al., 2014) to extract con-
cept and entities from the input sentences, and
maps them to the frame roles provided by
Semafor, creating frame instances where the
frame types are from FrameNet 1.5 and the
frame roles are filled with concepts from Ba-
belNet. An example of the extraction of frame
instances from natural language performed by
KNEWS is shown in Figure 1. In the exam-
ple, three frame instances are extracted from
the sentence “two men sit on a bench”, with
frame types People, Cardinal_numbers
and Being_located. The frame elements
are completed with BabelNet synset identi-
fiers, e.g., the Theme of Being_located
is bn:00001533n (man, adult male, male:
An adult person who is male (as opposed to
a woman)1) and the Location of the same
frame instance is bn:00009850n (bench: A
long seat for more than one person2).

We ran KNEWS on the 500 sentences from
the STS dataset and extracted 1,650 frame in-
stances of 178 different frame types. Each
frame instance has on average 1.2 frame ele-
ments, for a total of 2,107 roles filled by 457
different types of concepts.

4.3 Frame-based Sentence Similarity
Our aim in this experiment is to assess the re-
latedness of sentences by measuring the relat-
edness of their corresponding frame instances.
Since we have defined (in Section 3) a method
to compute the relatedness of frame instances,
an extra step of aggregation is needed in order
to reconcile the measurement for the evalua-
tion. We define the similarity ssim(s1, s2) be-
tween two sentences s1 = {fi11, ..., fi1n} and
s2 = {fi21, ..., fi2m} as follows:

ssim(s1, s2) =

=
1

2

( 1

|s1|
∑

fi1i∈s1

max
fi2j∈s2

firel(fi1i , fi
2
j ) +

+
1

|s2|
∑

fi2i∈s2

max
fi1j∈s1

firel(fi1i , fi
2
j )
)

(5)

1http://babelnet.org/synset?word=
bn:00001533n

2http://babelnet.org/synset?word=
bn:00009850n

Table 2: Pearson correlation between sentence pair
similarity scores predicted by frame instance relat-
edness and the SemEval STS reference set.

without role filter with role filter
ftrel: occ dist occ dist
alpha

1.0 0.526 0.455 0.526 0.455
0.9 0.529 0.465 0.536 0.477
0.8 0.529 0.471 0.544 0.495
0.7 0.525 0.473 0.550 0.510
0.6 0.517 0.471 0.555 0.522
0.5 0.503 0.463 0.558 0.531
0.4 0.484 0.451 0.558 0.538
0.3 0.461 0.436 0.557 0.542
0.2 0.436 0.418 0.554 0.544
0.1 0.410 0.400 0.550 0.545
0.0 0.381 0.381 0.543 0.543

We tested the effect of the α parameter, the
frame type relatedness measures ftrelocc and
ftreldist, and the filter on semantic roles to in-
vestigate their impact on the quality of the re-
latedness measurement. The result is given in
Table 2 in terms of Pearson correlation between
the gold standard relatedness scores and the re-
latedness scores predicted by our method.

Overall, the occ measure of frame type re-
latedness produces better results than dist. We
find that both halves of equation 1 contribute
to the final result, with a sweet stop around
α = 0.4 that achieves the best performance
on this benchmark with ftrel = occ and the
filter on the semantic roles. Indeed, enforcing
the matching constraint on the semantic roles
proves to be a successful strategy. The differ-
ence in terms of adherence to the text similarity
scores with and without such constraint is sig-
nificant and consistent across every variation of
the other parameters.

4.4 Discussion

It must be stressed that the aim of the experi-
ment presented in this section is not to achieve
state of the art performance on the STS task,
for which better algorithms based on word sim-
ilarity and other techniques have been pro-
posed. In fact, many tasks that rely on sen-
tence level semantics can be solved without
the need of extracting frame instances. Rather,
we show that our method to compute a relat-
edness score between frame instances works
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@prefix fbfi: <http://framebase.org/ns/fi->
@prefix fbframe: <http://framebase.org/ns/frame->
@prefix fbfe: <http://framebase.org/ns/fe->
@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>
@prefix bn: <http://babelnet.org/rdf/>

fbfi:People_01b52400 rdfs:type fbframe:People.
fbfi:People_01b52400 fbfe:Person bn:00001533n.
fbfi:Cardinal_numbers_3faa6c9c rdfs:type fbframe:Cardinal_numbers.
fbfi:Cardinal_numbers_3faa6c9c fbfe:Entity bn:00001533n.
fbfi:Being_located_079aed4d rdfs:type fbframe:Being_located.
fbfi:Being_located_079aed4d fbfe:Theme bn:00001533n.
fbfi:Being_located_079aed4d fbfe:Location bn:00009850n.

Figure 1: Frame instances extracted by KNEWS from the sentence “two men sit on a bench”.

in practice, despite the inevitable shortcom-
ings of the frame extraction process, i.e., wrong
and/or missing classifications of frames, roles
and concepts. The STS dataset has a strong
bias towards people-centric frames. In fact,
the most frequent frame type in our collec-
tion is People (345 occurrences in 1,650 frame
instances), and the most frequent concept is
bn:00001533n (man, adult male, male, 226
occurrences in 2,107 frame elements).

5 Evaluation on Gold Standard
Frame Instances

The evaluation conducted in the first experi-
ment has the advantage of being fully auto-
mated. However, measuring frame instance re-
latedness indirectly through text similarity en-
tails that two distinct effects are measured at
once: 1) the relatedness of the frame instances
extracted from the text, and 2) the accuracy of
the frame instance extraction process. In this
section we propose a revised methodology for
the evaluation of the frame instance relatedness
measure that focuses only on measuring the ef-
fect (1), canceling the interference of (2). In
short, we manually correct the frame instances
extracted with KNEWS from the STS sentence
pairs and re-run the evaluation process as de-
scribed in Section 4. As by-products, we cre-
ate a gold standard dataset of frame instances
aligned with the text that evokes them3, and we
provide an evaluation of the performance of the
KNEWS knowledge extraction system.

3We will release the dataset after the review period.

5.1 Manual correction

We corrected each frame instance individually.
For the frame types, they were either confirmed
or marked as wrong. In the latter case, the
frame instance is discarded from the data set
without further process. This was also the pro-
cedure applied when an entity was not filling
any role for a particular frame instance, due
to a parsing mistake. If the frame type was
confirmed by the annotator, then the role and
sense labels were checked and possibly cor-
rected by replacing them with the correct ones
from FrameNet and BabelNet respectively.

We split the STS dataset (250 sentence pairs)
in three parts and assigned each of them to an
annotator. A subset of 37 frame instances ex-
tracted from 10 sentences was annotated by all
three annotators in order to compute a measure
of inter-coder reliability, resulting in a Fleiss’
Kappa of 0.81 on the annotation of frame types,
0.76 for roles, and 0.90 for concepts. Note
that the annotation of roles and concepts is only
considered when frame types are not discarded
by the annotators as wrong.

Once the annotation was finished, we com-
pared the obtained dataset with the one we
produced with KNEWS (Section 4.2). The
accuracy at the frame instance level (rate of
frame instances that were not corrected at all)
is 77.1%. More in detail, 79.5% of the frame
types were found correct. Among the frame in-
stances with correct frame types, 95.9% of the
roles and 82.5% of the concepts were correct.
During the manual inspection, we confirmed
that Semafor (like most semantic parsers) is
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biased towards the most dominant frame for
ambiguous forms. The final gold standard
set comprises 1,261 frame instances and 1,579
frame elements.

5.2 Text Similarity Experiment with Gold
Standard Frame Instances

We repeated the experiment in 4.3, this time
computing the pair-wise frame relatedness on
the manually corrected frame instances. To
provide a fair comparison, we removed the
frame instances from the original set corre-
sponding to the frame instances removed dur-
ing the manual correction. We used the filter
on semantic roles described in 4.3 and ftrelocc
(the performance patterns we observed were
the same as in the original experiment). The
results of the experiment are shown in Fig-
ure 2. The overall performance is slightly
lower than the previous experiment. This can
be explained by observing that in this version
of the experiment we are using less data, al-
though of higher quality. Due to the struc-
ture of the correlation-based evaluation, incor-
rect frame instances extracted from a pair of
sentences contribute to their relatedness score
more than missing some frame instances. Also,
the dominance bias could play a role, in that
we mostly discarded low-frequency frames, for
which the relatedness metric we defined could
perform less than optimally. An in-depth anal-
ysis of this phenomenon (i.e., how does lexical
ambiguity interplay with the variance in relat-
edness scores?) is left for future work.

6 Clustering Frame Instances to
Extract Prototypical Knowledge

In the previous sections, we proved that our
method for computing a relatedness score be-
tween two frame instances correlates well with
human judgments of semantic similarity based
on the natural language expression of such in-
stances. What we presented is a kind of intrin-
sic evaluation, which, while helpful in assess-
ing the quality of the solution, does not pro-
vide an insight into the motivation to imple-
ment a measure of frame instance relatedness,
and what open problems could benefit from
our approach down the line. To fill this gap,
we propose a pilot study on the application of
the method introduced in this paper to a down-
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Figure 2: Pearson correlation between sentence pair
similarity scores predicted by frame instance relat-
edness on corrected frame instances and the Se-
mEval STS reference set.

stream task, namely the extraction of common
sense knowledge from text, in line with the pro-
totypical knowledge building method in (Shah
et al.).

We start by observing that defining a quan-
titative distance metric between homogeneous
instances allows us to apply a clustering algo-
rithm. The result of such clustering is a par-
tition of the original set into subsets that can
be either overlapping (soft clustering) or non-
overlapping (hard clustering). Moreover, clus-
ters have a definite shape, with one of the el-
ements being the most central one (called the
clustroid), and the others being more or less
far from the center. We perform a hard clus-
tering of the frame instances collected from
the STS dataset and used for the experiment
in Section 4.3, and formulate three hypotheses:
i) elements close to the center of their respec-
tive clusters are the best candidates to repre-
sent prototypical frame instances; ii) elements
near the border of their respective clusters are
less likely to represent prototypical frame in-
stances, and therefore can be filtered out; iii)
the size of each cluster influences the prototyp-
icality degree of the elements in its central re-
gion, with larger clusters containing more pro-
totypical frame instances near its center.

To cluster the frame instances, we follow
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Table 3: Random sample of frame instances extracted from the STS dataset.
Cluster size 5

Frame type Noise_makers (the Noise_maker is an artifact used to produce sound, especially for
musical effect)

Role Noise_maker (this FE identifies the entity or substance that is designed to produce sound)
Concept Guitar (a stringed instrument usually having six strings; played by strumming or plucking)
Cluster size 40
Frame type Substance (this frame concerns internally undifferentiated Substances)
Role Substance (the undifferentiated entity which is presented as having a permanent existence)
Concept Sand (a loose material consisting of grains of rock or coral)
Cluster size 3

Frame type
Part_inner_outer (This frame concerns Parts of objects that are defined relative to the center
or edge of the object

Role Part

Concept Center (an area that is approximately central within some larger region)
Role Whole (an undivided entity having all its Parts)
Concept Pond (a small lake)

Table 4: Clustroids of randomly selected clusters from the STS dataset.
Cluster size 8

Frame type Vehicle (the frame concerns the vehicles that human beings use for the purpose of transportation)

Role Vehicle (is the transportation device that the human beings use to travel)
Concept Boat (a small vessel for travel on water)
Cluster size 5

Frame type Biological_area (this frame contains words that denote large ecological areas as well as
smaller locations characterized by the type of life present)

Role Locale (this FE identifies a stable bounded area)
Concept Forest (the trees and other plants in a large densely wooded area)
Cluster size 35

Frame type Roadways (This frame involves stable Roadways which connect two stable Endpoints,
the Source and the Goal)

Role Roadway (the Roadway is the roadway that connects locations)
Concept Road (a way or means to achieve something)

Table 5: Clustroids of the three largest clusters in the dataset.
Cluster size 418
Frame type People (this frame contains general words for Individuals, i.e. humans)
Role Person (the Person is the human being)
Concept Man (an adult person who is male -as opposed to a woman-)
Cluster size 51

Frame type Clothing (this frame refers to clothing and its characteristics, including anything that people
conventionally wear)

Role Garment (this FE identifes the clothing worn)
Concept Shirt (a garment worn on the upper half of the body)
Cluster size 50
Frame type Kinship (this frame contains words that denote kinship relations)
Role Alter (the person who fills the role named by the Kinship term with respect to the Ego)
Concept Child (a young person of either sex)

the hierarchical clustering approach, because
the number of clusters is not necessary to be
known a priori. In particular, we used the ver-
sion implemented in the SciPy library4. We
tested different linkage methods for hierar-

4https://www.scipy.org/

chical clustering (single, complete, average,
weighted, centroid, median and ward), observ-
ing comparable results in terms of number of
clusters and their size distribution. We perform
the clustering with average linkage and the best
performing parameters of the frame relatedness
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measure (the distance metric for the clustering)
according to the experiments in Section 4.

While giving an objective assessment about
the prototypicality of a frame instance is some-
what hard, we observe different behavior in
line with our hypothesis. The examples re-
ported in Table 3 include quite arbitrary, albeit
correct, frame instances. On the other hand, the
examples in Table 5 are indeed highly proto-
typical, e.g., a shirt is a prototypical piece of
clothing, while the examples in Table 4 can be
placed somewhere in the middle of the proto-
typicality scale.

7 Conclusion and Future Work

We presented a novel method to compute
a quantitative relatedness measure between
frame instances, that takes into account the
type of the frames, the semantic role of the
frame elements, and the entities involved in the
frame instances. Based on a test conducted on
a gold standard set of sentence pairs, the mea-
sure we defined correlates positively with hu-
man judgments of semantic similarity. We fur-
ther apply the relatedness measure to the task
of extracting prototypical knowledge from nat-
ural language.

One clear bottleneck of our experimental
setup is given by the automatic parsing, that
does not always reach optimal performances.
We believe that a stable measure of relatedness
between frame instances will in fact boost the
performance of a disambiguation system, act-
ing as a coherence measure for an all-word dis-
ambiguation approach. We intend to test such
strategy in future work.

The experiment on frame instance cluster-
ing for prototypical knowledge extraction pre-
sented in Section 6 showed promising results.
In future work, we plan to conduct a large-scale
experiment following the same principles in-
cluding an extensive systematic evaluation of
the quality of the resulting dataset.
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Abstract

Feature sparseness is a problem common
to cross-domain and short-text classification
tasks. To overcome this feature sparseness
problem, we propose a novel method based
on graph decomposition to find candidate fea-
tures for expanding feature vectors. Specif-
ically, we first create a feature-relatedness
graph, which is subsequently decomposed into
core-periphery (CP) pairs and use the periph-
eries as the expansion candidates of the cores.
We expand both training and test instances
using the computed related features and use
them to train a text classifier. We observe
that prioritising features that are common to
both training and test instances as cores dur-
ing the CP decomposition to further improve
the accuracy of text classification. We evalu-
ate the proposed CP-decomposition-based fea-
ture expansion method on benchmark datasets
for cross-domain sentiment classification and
short-text classification. Our experimental re-
sults show that the proposed method consis-
tently outperforms all baselines on short-text
classification tasks, and perform competitively
with pivot-based cross-domain sentiment clas-
sification methods.

1 Introduction

Short-texts are abundant on the Web and ap-
pear in various different formats such as micro-
blogs (Kwak et al., 2010), Question and Answer
(QA) forums, review sites, Short Message Ser-
vice (SMS), email, and chat messages (Cong et al.,
2008; Thelwall et al., 2010). Unlike lengthy re-
sponses that take time to both compose and to
read, short responses have gained popularity par-
ticularly in social media contexts. Considering the
steady growth of mobile devices that are physi-
cally restricted to compact keyboards, which are
suboptimal for entering lengthy text inputs, it is
safe to predict that the amount of short-texts will

continue to grow in the future. Considering the
importance and the quantity of the short-texts in
various web-related tasks, such as text classifica-
tion (kun Wang et al., 2012; dos Santos and Gatti,
2014), and event prediction (Sakaki et al., 2010), it
is important to be able to accurately represent and
classify short-texts.

Compared to performing text mining on longer
texts (Guan et al., 2009; Su et al., 2011; Yogatama
and Smith, 2014), for which dense and diverse fea-
ture representations can be created relatively eas-
ily, handling of shorter texts poses several chal-
lenges. The number of features that are present
in a given short-text will be a small fraction of
the set of all features that exist in all of the train
instances. Moreover, frequency of a feature in a
short-text will be small, which makes it difficult
to reliably estimate the salience of a feature using
term frequency-based methods. This is known as
the feature sparseness problem in text classifica-
tion.

Feature sparseness is not unique to short-
text classification but also encountered in cross-
domain text classification (Blitzer et al., 2006,
2007; Bollegala et al., 2014), where the train-
ing and test data are selected from different do-
mains with small intersection of feature spaces.
In the domain adaptation (DA) setting, a classifier
trained on one domain (source) might be agnostic
to the features that are unique to a different do-
main (target), which results in a feature mismatch
problem similar to the feature-sparseness problem
discussed above.

To address the feature sparseness problem en-
countered in short-text and cross-domain classi-
fication tasks, we propose a novel method that
computes related features that can be appended to
the feature vectors to reduce the sparsity. Specif-
ically, we decompose a feature-relatedness graph
into core-periphery (CP) structures, where a core

255



feature (a vertex) is linked to a set of periph-
eries (also represented by vertices), indicating the
connectivity of the graph. This graph decompo-
sition problem is commonly known as the CP-
decomposition (Csermely et al., 2013; Rombach
et al., 2017; Kojaku and Masuda, 2018, 2017).

Our proposed CP-decomposition algorithm
significantly extends existing CP-decomposition
methods in three important ways.

• First, existing CP-decomposition methods
consider unweighted graphs, whereas edges
in feature-relatedness graphs are weighted
(possibly nonnegative) real-valued feature-
relatedness scores such as positive pointwise
mutual information (PPMI). Our proposed
CP-decomposition method can operate on
edge-weighted graphs.

• Second, considering the fact that in text clas-
sification a particular periphery can be related
to more than one core, we relax the hard as-
signment constraints on peripheries and al-
low a particular periphery attach to multiple
cores.

• Third, prior work on pivot-based cross-
domain sentiment classification methods
have used features that are frequent in train-
ing (source) and test (target) data as ex-
pansion candidates to overcome the feature
mismatch problem. Inspired by this, we
define coreness of a feature as the point-
wise mutual information between a feature
and the source/target domains. The CP-
decomposition algorithm we propose will
then compute the set of cores considering
both structural properties of the graph as well
as the coreness values computed from the
train/test data.

To perform feature vector expansion, we first
construct a feature-relatedness graph, where ver-
tices correspond to features and the weight of the
undirected edge connecting two features repre-
sent the relatedness between those two features.
Different features and relatedness measures can
be flexibly used in the proposed graph construc-
tion. In our experiments, we use the simple (yet
popular and effective) setting of n-gram features
as vertices and compute their relatedness using
PPMI. We compute the coreness of features as the
sum of the two PPMI values between the feature

and the source, and the feature and the target do-
mains.1 Next, CP-decomposition is performed on
this feature-relatedness graph to obtain a set of
core-periphery structures. We then rank the set of
peripheries of a particular core by their PPMI val-
ues, and select the top-ranked peripheries as the
expansion features of the core. We expand the core
features in training and train a logistic regression-
based binary classifier using the expanded feature
vectors, and evaluate its performance on the ex-
panded test feature vectors.

We evaluate the effectiveness of the proposed
method using benchmark datasets for two dif-
ferent tasks: short-text classification and cross-
domain sentiment classification. Experimental
results on short-text classification show that the
proposed method consistently outperforms pre-
viously proposed feature expansion-based meth-
ods for short-text classification and even some of
the sentence embedding learning-based methods.
Moreover, the consideration of coreness during
the CP-decomposition improves the text classifi-
cation accuracy. In cross-domain sentiment clas-
sification experiments, the proposed method out-
performs previously proposed pivot-based meth-
ods such as the structural correspondence learning
(SCL) (Blitzer et al., 2006).

2 Related Work

Two complementary approaches for overcoming
feature sparseness in text classification can be
identified in the literature: (a) expanding the in-
stances by predicting the missing features, and
(b) projecting the instances to a dense (poten-
tially lower-dimensional) space and performing
the classification task in this projected space. Our
work can be categorised to the first group of meth-
ods. We next review prior work on both types of
approaches.

Man (2014) proposed a feature vector expan-
sion based on frequent term sets (FTS), where
they first define the co-occurrence among the fea-
tures and then the expansion candidates are se-
lected by a pre-defined threshold on frequency. Fi-
nally, the features in the original feature vectors
are expanded using these frequently co-occurring
features. Ma et al. (2016) proposed an improve-
ment based on FTS by introducing the support and
confidence to the co-occurrence relationship when

1In short-text classification experiments, coreness is com-
puted using unlabelled training and test instances.
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they create the frequent term sets for expansion.

Our proposed method is related to the pivot se-
lection methods proposed in prior work on un-
supervised cross-domain sentiment classification,
where common features (called the pivots) are first
identified using some heuristic measure, and pre-
dictors are learnt that can accurately predict those
pivots using the other (non-pivot) features. For ex-
ample, in spectral feature alignment (SFA) (Pan
et al., 2010), a bipartite graph is created be-
tween non-pivots (domain-specific) and pivots
(domain-independent) then spectral methods are
used to learn a projection from domain-specific to
domain-independent feature spaces. Blitzer et al.
(2006) proposed the frequency (FREQ) of a fea-
ture in the source and the target domain as the
criterion for selecting pivots for structural corre-
spondence learning (SCL) when performing cross-
domain named entity recognition. However, they
found (Blitzer et al., 2007) that mutual informa-
tion (MI) to be a better pivot selection criterion for
cross-domain sentiment classification tasks. Bol-
legala et al. (2015) proposed a feature expansion-
based domain adaptation method, where a senti-
ment sensitive thesaurus (SST) is built using the
pointwise mutual information (PMI) between a
feature and the source/target domains. The cores
identified by CP-decomposition can be seen as
playing the role of pivots in cross-domain text
classification tasks because cores get expanded by
their corresponding peripheries during the feature
expansion step. However, one notable characteris-
tic in the proposed method is that we induce cores
via CP-decomposition instead of applying heuris-
tic measures such as MI or PMI. As we later see
in the experiments, the proposed method outper-
forms the previous pivot-based feature expansion
methods in cross-domain sentiment classification
benchmarks.

A complementary approach to overcome
feature-sparseness is to learn a (potentially
lower dimensional) dense feature representation
for the training and test instances that suffer
from feature sparseness, and train and evaluate
classifiers in this dense feature space instead of
the original sparse feature space. Skip-thought
vectors (Kiros et al., 2015) encodes a sentence
into a lower-dimensional dense vector using
bidirectional long short-term memory (bi-LSTM),
whereas FastSent (Hill et al., 2016) learns sen-
tence embeddings by predicting the words in the

adjacent sentences in a corpus, ignoring the word
ordering. Paragraph2Vec (Le and Mikolov, 2014)
jointly learns sentence and word embeddings that
can mutually predict each other in a short-text
such as a paragraph in a document. Sequential
Denoising Autoencoder (SDAE) (Hill et al., 2016)
transforms an input sentence into an embedding
by a look-up table consisting of pre-trained word
embeddings and attempts to reconstruct the orig-
inal sentence embedding from a masked version.
Sentence embedding learning methods such as
skip-thought vectors, FastSent, SDAE etc. require
a large amount of unlabelled texts for training
such as 80 million sentence Toronto books corpus,
which might not be available for specialised
domains. As shown in our experiments, the pro-
posed methods perform competitively with these
embedding-based methods, while not requiring
any additional training data, other than the small
(typically less than 50,000 sentences) benchmark
training datasets.

In the CP-decomposition problem, one seeks
a partition of vertices into two groups called a
core and a periphery. The core vertices are
densely interconnected and the peripheral vertices
are sparsely interconnected. The core and pe-
ripheral vertices may be densely interconnected or
sparsely interconnected. Various algorithms have
been developed to find a single core-periphery
structure (Csermely et al., 2013; Rombach et al.,
2017) or multiple core-periphery structures (Ko-
jaku and Masuda, 2018, 2017) in a graph. Many
existing algorithms assume that each vertex be-
longs to only one core-periphery structure. This
assumption is problematic for text classification
because a peripheral vertex can belong to multi-
ple core-periphery structures. To circumvent this
problem, here we present a novel algorithm for
the CP-decomposition that allows a peripheral ver-
tex to belong to more than one core-periphery
structures. Some existing CP-decomposition algo-
rithms allow peripheral vertices to belong to multi-
ple core-periphery structures (Yan and Luo, 2016;
Sardana and Bhatnagar, 2016; Xiang et al., 2018).
These algorithms detect non-overlapping commu-
nities (i.e., groups of densely interconnected ver-
tices) in a graph. Then, they regard vertices that
do not belong to any community as peripheral ver-
tices. Therefore, the detected peripheries might
not be strongly related to the associated cores be-
cause they are not densely interconnected with the
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cores in general. Another CP-decomposition al-
gorithm allows communities to overlap and regard
the vertices belonging to many communities as a
core (Yang and Leskovec, 2014). Then, the de-
tected peripheral vertices may be densely intercon-
nected because they belong to the same commu-
nity. In contrast to these algorithms, the present
algorithm seeks peripheries that are densely inter-
connected with the associated cores while sparsely
interconnected with other peripheral vertices.

To the best of our knowledge, we are the first
to apply CP-decomposition to any NLP task, let
alone short-text classification. Moreover, our for-
mulation of the CP-decomposition is customised
to the needs in the NLP domain such as prioritis-
ing linguistically appropriate cores and allows a
single periphery to link to multiple cores. We hope
that our work will inspire NLP practitioners to use
CP-decomposition in related NLP tasks such as
information retrieval (Mihalcea and Radev, 2011)
(measuring similarity between short-text docu-
ments), query suggestion/expansion (Fang, 2008)
(suggesting related peripheral terms to a query
corresponding to a core).

3 CP-decomposition-based Feature
Expansion

Our proposed method consists of three steps: (a)
building a feature-relatedness graph (Section 3.1),
(b) performing CP-decomposition on the feature-
relatedness graph (Sections 3.2 and 3.3) and (c)
using the core-peripheries from the decomposition
to perform feature expansion (Section 3.4). Next,
we describe each of those steps in detail.

3.1 Feature-Relatedness Graph

Given a set of texts, we build a feature-relatedness
graph G(V, E ,W), where V is the set of vertices
corresponding to the features, E is the set of undi-
rected edges between two vertices in G and the
weight of the edge eij ∈ E connecting two fea-
tures i and j is given by the Wij element of the
weight matrix W. Let us denote the number of
vertices and edges respectively by N and M (i.e.
|V| = N and |E| = M ). Different types of fea-
tures such as n-grams, part-of-speech sequences,
named entities, dependency relations etc. can be
used as vertices in the feature-relatedness graph.
Moreover, different relatedness measures such as
co-occurrence frequency, pointwise mutual infor-
mation, χ2, log-likelihood ratio etc. can be used

to compute the weights assigned to the edges. For
simplicity, in this paper, we represent each text-
document using the set of unigrams extracted from
that document, and use PPMI to compute a non-
negative W. We connect two words if PPMI val-
ues between them are greater than zero. This for-
mulation is used for both short-text classification
and cross-domain sentiment classification experi-
ments conducted in the paper.

3.2 Core-Periphery Decomposition

Given a feature-relatedness graph G created using
the process described in Section 3.1, we propose
a method that decomposes G into a set of overlap-
ping core-periphery structures. A core-periphery
structure assumed in this study consists of one
core vertex and an arbitrarily number of periph-
eral vertices that are adjacent (i.e., directly con-
nected) to the core vertex.2 Therefore, a core-
periphery structure forms a star graph. We fur-
ther assume that a core belongs only to one core-
periphery structure, but a periphery can belong to
multiple core-periphery structures.

Let C ⊆ V be the set of cores and Pi be the
set of peripheries associated with the core i(∈ C).
We regard that a core-periphery structure is a good
pair if the core is adjacent to its peripheries with
large edge weights. One goodness measure is the
sum of edge weights between the core i and pe-
ripheries, which is given by

∑
j∈Pi

Wij . This
quantity should be larger than the value expected
from a null model (i.e., randomised graph) for the
detected core-periphery structure to be meaning-
ful. We seek C and Pi (∀i ∈ C) by maximising

Q =
∑

i∈C

∑

j∈Pi

Wij −
∑

i∈C

∑

j∈Pi

E[Wij ], (1)

where E[Wij ] is the expected edge weight between
vertices i and j in the null model. The first term
on the right-hand side of (1) is the total weights of
the edges between the cores and peripheries. The
second term is the expected value of the first term
according to the null model. Therefore, a large
positive Q value indicates that cores and periph-
eries are connected with large edge weights. To
compute E[Wij ], we must specify a null model.
We consider a simple null model where any pair
of vertices is adjacent by an edge with an equal

2In the remainder of the paper, we refer to core vertices
as cores and peripheral vertices as peripheries to simplify the
terminology.
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expected weight (Erdős and Rényi, 1959). Then,
we can rewrite (1) as

Q =
∑

i∈C

∑

j∈Pi

(Wij − p), (2)

where p is the average edge weight of the original
graph given by

p =
2

N(N − 1)

∑

i,j∈V,i 6=j

Wij . (3)

We maximise Q as follows. Given a set of
cores C, it is easy to find peripheries that max-
imise Q. Suppose a core i and a vertex j /∈ Pi,
which may belong to one or more different core-
periphery structures. Adding the vertex j to Pi
increases Q, if Wij − p is positive. Therefore, Pi
associated with core i must be the neighbours of
vertex i with an edge weight of Wij > p. There-
fore, we have

max
C

max
Pi,i∈C

Q = max
C

∑

i∈C

∑

j∈V\C
W̃ij , (4)

where

W̃ij =

{
Wij − p Wij − p > 0,
0 otherwise.

(5)

(4) indicates that the maximisation of Q is equiv-
alent to partitioning of the set of vertices V into C
and V \ C such that the sum of edge weights given
by (5) between C and V \ C is maximised. This
is known as the max-cut problem (Goemans and
Williamson, 1995). However, solving the max-cut
problem is NP-hard (Karp, 1972). Therefore, we
use the Kernighan-Lin’s algorithm (Kernighan and
Lin, 1970) to find a good (but generally a subopti-
mal) solution.

It should be noted that Q is conserved when we
regard V \ C as the cores and C as peripheries.
This is because Q is the sum of edge weights be-
tween C and V \ C. For example, suppose a graph
with a single core-periphery structure as shown in
Figure 1(a). By regarding the core as a periph-
ery and vice versa, we have another assignment of
the core-periphery structure achieving the same Q
value as shown in Figure 1(b). Although Q is the
same in the two assignments, we would like to pri-
oritise the core-periphery structure shown in Fig-
ure 1(a), because we would like to have a smaller
set of cores than peripheries. Therefore, we regard
C as the set of cores if |C| < |V \ C|; otherwise we
regard C as the set of peripheries.

3.3 Semi-supervised Core-Periphery
Decomposition

The objective given by (4) depends only on G
and does not consider any prior linguistic knowl-
edge that we might have about which features
are appropriate as cores. For example, for cross-
domain sentiment classification, it has been shown
that features that express similar sentiment in both
source and target domains are suitable as piv-
ots (Blitzer et al., 2007). To incorporate this in-
formation, we integrate the coreness of words into
the objective as follows:

max
C

max
Pi,i∈C

Q = max
C

∑

i∈C

∑

j∈V\C
W̃ij + λ

∑

i∈C
coreness(i).

(6)

In (6), coreness(i) is a nonnegative value that indi-
cates the appropriateness of i as a core. Hyperpa-
rameter λ adjusts the importance we would like to
give to coreness as opposed to determining cores
based on the graph structure. We tune λ using a
held out portion of the training data in our exper-
iments. Different measures can be used to pre-
computed the coreness values from the train/test
data such as FREQ, MI, PMI, PPMI etc, which
have been proposed in prior work on DA for se-
lecting pivots (Blitzer et al., 2006, 2007; Bollegala
et al., 2015). In this work, we use PPMI to pre-
compute the coreness for a word i as follows:

coreness(i) = (PPMI(i,Dtrain)− PPMI(i,Dtest))
2. (7)

Here, Dtrain and Dtest are respectively the set of
training and test data (or in the case of DA selected
from the source and the target domains).

3.4 Feature Expansion

To overcome feature-sparseness in training and
test instances, we expand features that are cores by
their corresponding peripheral sets. Specifically,
for each core i ∈ C, we sort its peripheries Pi by
their coreness values and select the top-k ranked
peripheries as the expansion features for a core i if
it appears in a document. The values of these ex-
pansion features are set to their PPMI values with
the corresponding core after `1 normalising over
the set of expansion features in each instance. The
effect of k on performance is experimentally stud-
ied later.
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(a) (b)

Core

Periphery

Figure 1: Core-periphery structures with an equal quality, Q. Each filled and empty circles indicate core
and peripheral vertices, respectively. Each shared region indicates a core-periphery structure.

Dataset SCL CP-decomposition

FREQ MI PMI PPMI No Expansion Non-overlapping Overlapping
w/o coreness

Overlapping
w/ coreness

TR 67.60 66.12 67.44 63.21 78.86 80.34 80.56 80.86
CR 77.85 74.83 78.52 75.50 80.87 83.89 83.89 84.40
SUBJ 87.65 82.15 85.65 82.75 88.05 89.75 90.15 90.48
MR 64.68 58.07 64.26 59.10 73.55 75.23 74.95 75.66
AVG 74.45 70.29 73.97 70.14 80.33 82.30 82.39 82.85

Table 1: Results for the short-text classification task. For each dataset, the best results are shown in bold.

4 Experiments

We evaluate the proposed method on two tasks:
short-text classification (a non-DA task) and cross-
domain sentiment classification (a DA task). For
short-text classification we use the Stanford sen-
timent treebank (TR)3, customer reviews dataset
(CR) (Hu and Liu, 2004), subjective dataset
(SUBJ) (Pang and Lee, 2004) and movie reviews
(MR) (Pang and Lee, 2005). For DA we use Ama-
zon multi-domain sentiment dataset (Blitzer et al.,
2007) containing product reviews from four cat-
egories: Books (B), DVDs (D), Electronics (E)
and Kitchen Appliances (K). Each category is re-
garded as a domain and has 1000 positive and
1000 negative reviews, and a large number of unla-
belled reviews.4 We train a classifier on 12 domain
pairs adapting from source to target (S-T): B-D, B-
E, B-K, D-B, D-E, D-K, E-B, E-D, E-K, K-B, K-
D, K-E. For the short-text classification datasets,
we use the official train/test split.

We represent each instance (document) using
a bag-of-features consisting of unigrams. Stop
words are removed using a standard stop words
list. We train an `2 regularised binary logistic
regression classifier with each dataset, where the
regularisation coefficient is tuned via 5-fold cross
validation.

3https://nlp.stanford.edu/sentiment/treebank.html
4Blitzer et al. (2007) considered 4 and 5 star rated reviews

as positive and 1 or 2 as negative in sentiment.

Methods TR CR SUBJ MR

No Expansion 76.31 81.54 88.05 73.35
FTS (Man, 2014) 76.47 62.41 50.15 66.83
SCL (Blitzer et al., 2006) 67.60 78.52 87.65 64.68
SFA (Pan et al., 2010) 60.08 70.13 79.00 59.57
Proposed 80.86 84.40 90.48 75.66

Table 3: Proposed vs. feature-based methods for
short-text classification.

4.1 Classification Accuracy

We use the classification accuracy on the test
data (i.e. ratio between the number of cor-
rectly classified test instances and the total num-
ber of test instances in the dataset) as the per-
formance evaluation measure. As baselines we
evaluate the classification accuracy without ex-
panding features (No Expansion), expanding the
features by a non-overlapping version of the CP-
decomposition method where a single periphery
will be assigned to only a single core, overlapping
CP-decomposition with and without the consider-
ation of coreness (described respectively in Sec-
tions 3.2 and 3.3). We apply SCL with pivots se-
lected from four different criteria (FREQ, MI, PMI
and PPMI) for each S-T pair in the DA datasets.
Strictly speaking, SCL is a DA method but if we
can apply to short-text classification tasks as well
if we consider training and test datasets respec-
tively as a source and a target domain and select
pivots using some selection criterion. Results on
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S-T SCL CP-decomposition

FREQ MI PMI PPMI No Expansion Non-overlapping Overlapping
w/o coreness

Overlapping
w/ coreness

B-D 72.75 65.50 71.50 69.25 75.00 75.75 76.75 76.38
B-E 72.75 71.00 74.50 66.00 71.00 71.00 69.75 69.75
B-K 77.25 64.00 80.50 77.25 78.25 78.25 77.75 78.00
D-B 71.00 53.00 66.25 65.50 74.00 74.25 74.25 75.25
D-E 72.00 67.00 72.75 74.75 74.75 73.75 73.00 74.75
D-K 79.75 57.50 79.00 76.75 79.25 78.00 79.25 79.25
E-B 62.75 57.25 66.25 60.25 69.50 68.50 68.75 68.75
E-D 64.50 62.75 65.50 62.75 73.25 71.75 73.25 73.50
E-K 82.00 77.75 81.25 79.50 84.25 84.00 82.50 84.00
K-B 65.75 52.50 68.00 68.75 70.00 70.00 69.75 69.50
K-D 67.25 53.75 66.75 68.50 72.75 72.00 72.75 73.63
K-E 77.25 74.50 74.50 74.75 79.00 79.75 79.00 80.50
AVG 72.08 63.04 72.23 70.33 75.08 74.75 74.73 75.27

Table 2: Results for DA tasks. For each S-T pair, the best results are shown in bold. The last row shows
the average of performance over the 12 S-T pairs.

the short-text and DA tasks are summarised re-
spectively in Tables 1 and 2.

As shown in Table 1, all variants of the
CP-decomposition outperform the No Expansion
baseline and the best performance is reported
by the overlapping CP-decomposition considering
the coreness values. According to binomial test re-
sults, there is no statistical significance in Table 1.
SCL performs poorly on this non-DA task, indicat-
ing that it is specifically customised for DA tasks.

Table 3 compares the performance of the pro-
posed method (i.e., overlapping version of the CP-
decomposition with coreness) against FTS, a pre-
viously proposed feature expansion method and
DA methods such as SCL and SFA applied to
short-text classification. We see that the proposed
method consistently outperforms FTS, which uses
frequently occurring features as expansion candi-
dates. This result implies that frequency of a fea-
ture alone does not enable us to find useful features
for expanding sparse feature vectors. The subop-
timal performance of SFA and SCL for short-text
classification indicates that, despite the fact that
the feature-mismatch problem in DA has some re-
semblance to the feature-sparseness problem in
short-text classification, applying DA methods to
short-text classification is not effective. On the
other hand, as shown in Table 2, proposed method
reports equal or the best performance for 10 out
of 12 domain pairs indicating that it is effective
not only for short-text classification but also for
DA. However, the improvements reported in Ta-
ble 2 are not statistically significant (according
to Clopper-Pearson confidence intervals (Clopper

Methods MR CR SUBJ

Skip-thought (Kiros et al., 2015) 76.5 80.1 93.6
Paragraph2Vec (Le and Mikolov, 2014) 74.8 78.1 90.5
FastSent (Hill et al., 2016) 70.8 78.4 88.7
SDAE (Hill et al., 2016) 74.6 78.0 90.8
CNN (Kim, 2014) 76.1 79.8 89.6
Proposed 75.7 84.4 90.5

Table 4: Proposed vs. document-level embedding-
based methods for short-text classification.

and Pearson, 1934) computed at p < 0.01), im-
plying that CP-decomposition is less effective on
DA datasets, which contain longer (on average 5-
10 sentence reviews) texts.

We compare the proposed method against the
state-of-the-art embedding-based short-text classi-
fication methods in Table 4. For skip-thought vec-
tors (Kiros et al., 2015), Paragraph2Vec (Le and
Mikolov, 2014), FastSent (Hill et al., 2016) and
SDAE (Hill et al., 2016) provided by Hill et al.
(2016), we show the published results on MR,
CR and SUBJ.5 CNN represents the convolutional
neural network-based document-level embedding
learning method proposed by Kim (2014). The
proposed method reports the best results on CR,
whereas skip-thought does so for MR and SUBJ
datasets. An interesting future research direction
would be to combine feature-expansion method
and document-level embedding methods to further
improve the accuracy of short-text classification.

An example feature expansion is shown in Ta-
ble 5, where 6 cores are expanded by the over-
lapping version of the CP-decomposition method

5These methods have not been evaluated on the TR
dataset.
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Sentence: The film makes a strong case for the importance of the musicians in creating the motown sound.
Methods: Overlapping w/o coreness Overlapping w/ coreness

Cores: film strong case musicians creating sound motown

Peripheries:

tribeca
remakes
grossing
slasher
blaxploitation

willed
fliers
syllabic
roderick
oxidizing

neko
genitive
accusative
dative
eeml

remixers
trombonists
bandleaders
saxophonists
clarinetists

irritation
populating
abolishing
duopoly
soundscapes

puget
stereophonic
nootka
mcmurdo
blaster

discographer
gordy
supremes
stax
dozier

Table 5: An example of cores and top 5 peripheries chosen by overlapping CP-decomposition
with/without coreness (k = 5). This example sentence in TR is classified incorrectly using the method
without coreness (and the No Expansion baseline) but correctly after considering coreness.

(a) (b)

Figure 2: Number of expansion candidates for the proposed method. The marker for the best result for
each dataset is filled.

without using coreness and one core with the
proposed method. Top 5-ranked peripheries are
shown for each core, which are used as the ex-
pansion features. We see that many cores are
found without constraining the CP-decomposition
by coreness, introducing noisy expansions result-
ing in an incorrect prediction. On the other
hand, although by integrating coreness into the
CP-decomposition process we have only a single
matching core, motown, it is adequate for making
the correct prediction. motown is a music com-
pany, which is expanded by a more general pe-
riphery discographer, which is a type of music
performer, helping the final classification. Con-
sideration of coreness improves the classification
accuracy in both short-text classification as well
as DA.

In both Tables 1 and 2, the non-overlapping
version performs poorly compared to the over-
lapping counterpart. With non-overlapping CP-
decomposition, peripheries are not allowed to con-
nect to multiple cores. This results in producing a
large number of cores each with a small number

of peripheries, which does not help to overcome
the feature-sparseness because each core will be
expanded by a different periphery.

Figure 2 shows the effect of the number of
expansion candidates k on the performance of
the proposed overlapping CP-decomposition with
coreness. For short-text classification (Figure 2a),
the accuracy increases for k ≥ 100 (TR and CR
obtain the best for k = 1000). For DA (Figure 2b),
k ≤ 100 yields better performance in most of the
domain pairs (10 out of 12). For all 12 domain
pairs, the accuracy achieved a peak when k ≤ 500.

5 Conclusion

We proposed a novel algorithm for decompos-
ing a feature-relatedness graph into core-periphery
structures considering coreness of a feature. Our
experimental results show that the induced core-
periphery structures are useful for reducing the
feature-sparseness in short-text classification and
cross-domain sentiment classification tasks, as in-
dicated by their improved performance. We hope
this research will encourage the society to imply
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different CP decomposition methods with differ-
ent tasks in NLP.
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Abstract

Words are polysemous and multi-faceted,
with many shades of meanings. We sug-
gest that sparse distributed representations are
more suitable than other, commonly used,
(dense) representations to express these mul-
tiple facets, and present Category Builder, a
working system that, as we show, makes use of
sparse representations to support multi-faceted
lexical representations. We argue that the set
expansion task is well suited to study these
meaning distinctions since a word may be-
long to multiple sets with a different reason for
membership in each. We therefore exhibit the
performance of Category Builder on this task,
while showing that our representation captures
at the same time analogy problems such as
“the Ganga of Egypt” or “the Voldemort of
Tolkien”. Category Builder is shown to be
a more expressive lexical representation and
to outperform dense representations such as
Word2Vec in some analogy classes despite be-
ing shown only two of the three input terms.

1 Introduction

Word embeddings have received much attention
lately because of their ability to represent similar
words as nearby points in a vector space, thus sup-
porting better generalization when comparisons
of lexical items are needed, and boosting the ro-
bustness achieved by some deep-learning systems.
However, a given surface form often has multiple
meanings, complicating this simple picture. Arora
et al. (2016) showed that the vector corresponding
to a polysemous term often is not close to any of
that of its individual senses, thereby breaking the
similar-items-map-to-nearby-points promise. The
polysemy wrinkle is not merely an irritation but,
in the words of Pustejovsky and Boguraev (1997),
“one of the most intractable problems for language
processing studies”.

Our notion of Polysemy here is quite broad,
since words can be similar to one another along
a variety of dimensions. The following three pairs
each has two similar items: (a) {ring, necklace},
(b) {ring, gang}, and (c) {ring, beep}. Note that
ring is similar to all words that appear as second
words in these pairs, but for different reasons, de-
fined by the second token in the pairs. While this
example used different senses of ring, it is easy to
find examples where a single sense has multiple
facets: Clint Eastwood, who is both an actor and
a director, shares different aspects with directors
than with actors, and Google, both a website and
a major corporation, is similar to Wikipedia and
General Electric along different dimensions.

Similarity has typically been studied pairwise:
that is, by asking how similar item A is to item
B. A simple modification sharply brings to fore
the issues of facets and polysemy. This modifi-
cation is best viewed through the task of set ex-
pansion (Wang and Cohen, 2007; Davidov et al.,
2007; Jindal and Roth, 2011), which highlights the
similarity of an item (a candidate in the expansion)
to a set of seeds in the list. Given a few seeds (say,
{Ford, Nixon}), what else belongs in the set? Note
how this expansion is quite different from the ex-
pansion of {Ford, Chevy}, and the difference is
one of Similar How, since whether a word (say,
BMW or FDR) belongs in the expansion depends
not just on how much commonality it shares with
Ford but on what commonality it shares. Conse-
quently, this task allows the same surface form to
belong to multiple sets, by virtue of being similar
to items in distinct sets for different reasons. The
facets along which items are similar is implicitly
defined by the members in the set.

In this paper, we propose a context sensitive
version of similarity based on highlighting shared
facets. We do this by developing a sparse repre-
sentation of words that simultaneously captures all
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facets of a given surface form. This allows us to
define a notion of contextual similarity, in which
Ford is similar to Chevy (e.g., when Audi or BMW
is in the context) but similar to Obama when Bush
or Nixon is in the context (i.e., in the seed list).
In fact, it can even support multi-granular similar-
ity since while {Chevy, Chrysler, Ford} represent
the facet of AMERICAN CARS, {Chevy, Audi, Ford}
define that of CARS. Our contextual similarity is
better able to mold itself to this variety since it
moves away from the one-size-fits-all nature of co-
sine similarity.

We exhibit the strength of the representation
and the contextual similarity metric we develop by
comparing its performance on both set expansion
and analogy problems with dense representations.

2 Senses and Facets

The present work does not attempt to resolve
the Word Sense Disambiguation (WSD) problem.
Rather, our goal is to advance a lexical represen-
tation and a corresponding context sensitive sim-
ilarity metric that, together, get around explicitly
solving WSD.

Polysemy is intimately tied to the well-explored
field of WSD so it is natural to expect techniques
from WSD to be relevant. If WSD could neatly
separate senses, the set expansion problem could
be approached thus. Ford would split into, say,
two senses: Ford-1 for the car, and Ford-2 for the
president, and expanding {Ford, Nixon} could be
translated to expanding {Ford-2, Nixon}. Such a
representational approach is taken by many au-
thors when they embed the different senses of
words as distinct points in an embedding space
(Reisinger and Mooney, 2010; Huang et al., 2012;
Neelakantan et al., 2014; Li and Jurafsky, 2015).

Such approaches run into what we term the
Fixed Inventory Problem. Either senses are ob-
tained from a hand curated resource such as a dic-
tionary, or are induced from the corpus directly
by mapping contexts clusters to different senses.
In either case, however, by the time the final rep-
resentation (e.g., the embedding) is obtained, the
number of different senses of each term has be-
come fixed: all decisions have been made relating
to how finely or coarsely to split senses.

How to split senses is a hard problem: dictionar-
ies such as NOAD list coarse senses and split these
further into fine senses, and it is unclear what gran-
ularity to use: should each fine sense correspond

to a point in the vector space, or should, instead,
each coarse sense map to a point? Many authors
(Hofstadter and Sander, 2013, for example) dis-
cuss how the various dictionary senses of a term
are not independent. Further, if context clusters
map to senses, the word whale, which is seen both
in mammal-like contexts (e.g., “whales have hair”)
and water-animal contexts (“whales swim”), could
get split into separate points. Thus, the different
senses that terms are split into may instead be dis-
tinct facets. This is not an idle theoretical worry:
such facet-based splitting is evident in Neelakan-
tan et al. (2014, Table 3). Similarly, in the vec-
tors they released, november splits into ten senses,
likely based on facets. Once split, for subsequent
processing, the points are independent.

In contrast to such explicit, prior, splitting, in
the Category Builder approach developed here,
relevant contexts are chosen given the task at hand,
and if multiple facets are relevant (as happens, for
example, in {whale, dolphin, seal}, whose expan-
sion should rank aquatic mammals highest), all
these facets influence the expansion; if only one
facet is of relevance (as happens in {whale, shark,
seahorse}), the irrelevant facets get ignored.

3 Related Work

In this section, we situate our approach within the
relevant research landscape. Both Set Expansion
and Analogies have a long history, and both de-
pend on Similarity, with an even longer history.

3.1 Set Expansion

Set Expansion is the well studied problem of ex-
panding a given set of terms by finding other se-
mantically related terms. Solutions fall into two
large families, differing on whether the expansion
is based on a preprocessed, limited corpus (Shen
et al., 2017, for example) or whether a much larger
corpus (such as the entire web) is accessed on de-
mand by making use of a search engine such as
Google (Wang and Cohen, 2007, for example).

Each family has its advantages and disadvan-
tages. “Open web” techniques that piggyback on
Google can have coverage deep into the tail. These
typically rely on some form of Wrapper Induc-
tion, and tend to work better for sets whose in-
stances show up in lists or other repeated structure
on the web, and thus perform much better on sets
of nouns than on sets of verbs or adjectives. By
contrast, “packaged” techniques that work off a
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preprocessed corpus are faster (no Google lookup
needed) and can work well for any part of speech,
but are of course limited to the corpus used. These
typically use some form of distributional similar-
ity, which can compute similarity between items
that have never been seen together in the same
document; approaches based on shared member-
ships in lists would need a sequence of overlap-
ping lists to achieve this. Our work is in the “pack-
aged” family, and we use sparse representations
used for distributional similarity.

Gyllensten and Sahlgren (2018) compares two
subfamilies within the packaged family: central-
ity-based methods use a prototype of the seeds
(say, the centroid) as a proxy for the entire seed
set and classification-based methods (a strict su-
perset), which produce a classifier by using the
seeds. Our approach is classification-based.

It is our goal to be able to expand nuanced
categories. For example, we want our solution
to expand the set {pluto, mickey}—both Disney
characters—to other Disney characters. That is,
the context mickey should determine what is con-
sidered ‘similar’ to pluto, rather than being biased
by the more dominant sense of pluto, to determine
that neptune is similar to it. Earlier approaches
such as Rong et al. (2016) approach this problem
differently: they expand to both planets and Dis-
ney characters, and then attempt to cluster the ex-
pansion into meaningful clusters.

3.2 Analogies

Solving analogy problems usually refers to pro-
portional analogies, such as hand:glove::foot:?.
Mikolov et al. (2013) showed how word embed-
dings such as Word2Vec capture linguistic regu-
larities and thereby solve this. Turney (2012) used
a pair of similarity functions (one for function and
one for domain) to address the same problem.

There is a sense, however, that the problem is
overdetermined: in many such problems, people
can solve it even if the first term is not shown.
That is, people easily answer “What is the glove
for the foot?”. People also answer questions such
as “What is the Ganga of Egypt?” without first
having to figure out the unprovided term India (or
is the missing term Asia? It doesn’t matter.) Hof-
stadter and Sander (2013) discuss how our ability
to do these analogies is central to cognition.

The current work aims to tackle these non-
proportional analogies and in fact performs bet-

ter than Word2Vec on some analogy classes used
by Mikolov et al. (2013), despite being shown one
fewer term.

The approach is rather close to that used by Tur-
ney (2012) for a different problem: word com-
pounds. Understanding what a dog house is can
be phrased as “What is the house of a dog?”, with
kennel being the correct answer. This is solved
using the pair of similarity functions mentioned
above. The evaluations provided in that paper
are for ranking: which of five provided terms is
a match. Here, we apply it to non-proportional
analogies and evaluate for retrieval, where we are
ranking over all words, a significantly more chal-
lenging problem.

To our knowledge, no one has presented a com-
putational model for analogies where only two
terms are provided. We note, however, that Linzen
(2016) briefly discusses this problem.

3.3 Similarity

Both Set Expansion and Analogies depend on a
notion of similarity. Set Expansion can be seen
as finding items most similar to a category, and
Analogies can be seen as directly dependent on
similarities (e.g., in the work of Turney (2012)).

Most current approaches, such as word embed-
dings, produce a context independent similarity. In
such an approach, the similarity between, say, king
and twin is some fixed value (such as their cosine
similarity). However, depending on whether we
are talking about bed sizes, these two items are ei-
ther closely related or completely unrelated, and
thus context dependent.

Psychologists and Philosophers of Language
have long pointed out that similarity is subtle.
It is sensitive to context and subject to prim-
ing effects. Even the very act of categorization
can change the perceived similarity between items
(Goldstone et al., 2001). Medin et al. (1993, p.
275) tell a story, from the experimental psychol-
ogy trenches, that supports representation morph-
ing when they conclude that “the effective rep-
resentations of constituents are determined in the
context of the comparison, not prior to it”.

Here we present a malleable notion of similar-
ity that can adapt to the wide range of human cat-
egories, some of which are based on narrow, su-
perficial similarities (e.g., BLUE THINGS) while oth-
ers share family resemblances (à la Wittgenstein).
Even in a small domain such as movies, in differ-
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ent contexts, similarity may be driven by who the
director is, or the cast, or the awards won. Fur-
thermore, to the extent that the contexts we use
are human readable, we also have a mechanism
for explaining what makes the terms similar.

There is a lot of work on the context-
dependence of human categories and similarities
in Philosophy, in Cognitive Anthropology and
in Experimental Psychology (Lakoff, 1987; Ellis,
1993; Agar, 1994; Goldstone et al., 2001; Hof-
stadter and Sander, 2013, for example, survey
this space from various theoretical standpoints),
but there are not, to our knowledge, unsupervised
computational models of these phenomena.

4 Representations and Algorithms

This section describes the representation and cor-
responding algorithms that perform set expansion
in Category Builder (CB).

4.1 Sparse Representations for Expansion

We use the traditional word representation that
distributional similarity uses (Turney and Pantel,
2010), and that is commonly used in fields such
as context sensitive spelling correction and gram-
matical correction (Golding and Roth, 1999; Ro-
zovskaya and Roth, 2014); namely,words are asso-
ciated with some ngrams that capture the contexts
in which they occur – all contexts are represented
in a sparse vector corresponding to a word. Fol-
lowing Levy and Goldberg (2014a), we call this
representation explicit.

Generating Representations. We start with
web pages and extract words and phrases from
these, as well as the contexts they appear in. An
aggregation step then calculates the strengths of
word to context and context to word associations.

Vocabulary. The vocabulary is made up of
words (nouns, verbs, adjectives, and adverbs) and
some multi-word phrases. To go beyond words,
we use a named entity recognizer to find multi-
word phrases such as New York. We also use one
heuristic rule to add certain phrasal verbs (e.g.,
take shower), when a verb is directly followed by
its direct object. We lowercase all phrases, and
drop those phrases seen infrequently. The set of
all words is called the vocabulary, V .

Contexts. Many kinds of contexts have been
used in literature. Levy (2018) provides a compre-
hensive overview. We use contexts derived from
syntactic parse trees using about a dozen heuris-

tic rules. For instance, one rule deals with nouns
modified by an adjective, say, red followed by
car. Here, one of the contexts of car is MODI-
FIEDBY#RED, and one of the contexts of red is
MODIFIES#CAR. Two more examples of contexts:
OBJECTOF#EAT and SUBJECTOF#WRITE. The
set of all contexts is denoted C.

The Two Vocabulary⇔Context matrices. For
vocabulary V and contextsC, we produce two ma-
trices, MV→C and MC→V . Many measures of as-
sociation between a word and a context have been
explored in the literature, usually based on some
variant of pointwise mutual information.

PPMI (Positive PMI) is the typically used mea-
sure. If P (w), P (c) and P (w, c) respectively rep-
resent the probabilities that a word is seen, a con-
text is seen and the word is seen in that context,
then

PMI(w, c) = log
P (w, c)

P (w)P (c)
(1)

PPMI(w, c) = max(0,PMI(w, c)) (2)

PPMI is widely used, but comments are in order
regarding the ad-hocness of the “0” in Equation 2.
There is seemingly a good reason to choose 0 as
a threshold: if a word is seen in a context more
than by chance, the PMI is positive, and a 0 thresh-
old seems sensible. However, in the presence of
polysemy, especially lopsided polysemy such as
Cancer (disease and star sign), a “0” threshold is
arbitrary: even if every single occurrence of the
star sign sense of cancer was seen in some con-
text c (thereby crying out for a high PMI), be-
cause of the rarity of that sense, the overall PMI
between c and (non-disambiguated) Cancer may
well be negative. Relatedly, Shifted PPMI (Levy
and Goldberg, 2014b) uses a non-0 cutoff.

Another well known problem with PPMI is its
large value when the word or the context is rare,
and even a single occurrence of a word-context
pair can bloat the PMI (see Role and Nadif, 2011,
for fixes that have been proposed). We introduce
a new variant we call Asymmetric PMI, which
takes frequency into account by adding a second
log term, and is asymmetric because in general
P (w|c) 6= P (c|w):

APMI(w, c) = PMI(w, c) + log
P (w, c)

P (w)

= log
P (w, c)2

P (w)2P (c)

(3)

268



This is asymmetric because APMI(c, w) has
P (c) in the denominator of the extra log term.

What benefit does this modification to PMI pro-
vide? Consider a word and two associated con-
texts, c1 and c2, where the second context is sig-
nificantly rarer. Further, imagine that the PMI of
the word with either feature is the same. The word
would have been seen in the rarer context only a
few times, and this is more likely to have been a
statistical fluke. In this case, the APMI with the
more frequent term is higher: we reward the fact
that the PMI is high despite its prevalence; this is
less likely to be an artifact of chance.

Note that the rearranged expression seen in
the second line of Equation 3 is reminiscent of
PPMI0.75 from Levy et al. (2015).

The second log term in APMI is always nega-
tive, and we thus shift all values by a constant k
(chosen based on practical considerations of data
size: the smaller the k, the larger the size of the
sparse matrices; based on experimenting with vari-
ous values of k, it appears that expansion quality is
not very sensitive to k). Clipping this shifted value
at 0 produces Asymmetrical PPMI (APPMI):

APPMI(w, c) = max(0,APMI(w, c) + k) (4)

The two matrices thus produced are shown in
Equation 5. If we use PPMI instead of APPMI,
these are transposes of each other.

MV→Cw,c = APPMI(w, c)

MC→Vc,w = APPMI(c, w)
(5)

4.2 Focused Similarity and Set Expansion

We now come to the central idea of this paper:
the notion of focused similarity. Typically, simi-
larity is based on the dot product or cosine simi-
larity of the context vectors. The pairwise simi-
larity among all terms can be expressed as a ma-
trix multiplication as shown in Equation 6. Note
that if we had used PPMI in Equation 5, the ma-
trices would be each other’s transposes and each
entry in SimMatrix in Equation 6 would be the
dot-product-based similarity for a word pair.

SimMatrix =MC→VMV→C (6)

We introduce context weighting by inserting a
square matrix W between the two (see Equation
7). Similarity is unchanged if W is the identity
matrix. IfW is a non-identity diagonal matrix, this

is equivalent to treating some contexts as more im-
portant than others. It is by appropriately choosing
weights in W that we achieve the context depen-
dent similarity. If, for instance, all contexts other
than those indicative of cars are zeroed out in W ,
ford and obama will have no similarity.

SimMatrix =MC→VWMV→C (7)

4.3 Set Expansion via Matrix Multiplication

To expand a set of k seeds, we can construct the
k-hot column vector S with a 1 corresponding to
each seed, and a 0 elsewhere. Given S, we calcu-
late the focus matrix, WS . Then the expansion E
is a column vector that is just:

E =MC→VWSM
V→CS (8)

The score for a term in E is the sum of its fo-
cused similarity to each seed.

4.4 Motivating Our Choice of W

When expanding the set {taurus, cancer}—the set
of star signs, or perhaps the constellations—we are
faced with the presence of a polysemous term with
a lopsided polysemy. The disease sense is much
more prevalent than the star sign sense for cancer,
and the associated contexts are also unevenly dis-
tributed. If we attempt to use Equation 8 with the
identity matrix W , the expansion is dominated by
diseases.

The contexts we care about are those that are
shared. Note that restricting ourselves to the in-
tersection is not sensible, since if we are given
a dozen seeds it is entirely possible that they
share family resemblances and have a high pair-
wise overlap in contexts between any two seeds
but where there are almost no contexts shared by
all. We thus require a soft intersection, and this we
achieve by downweighting contexts based on what
fraction of the seeds are associated with that con-
text. The parameter ρ described in the next section
achieves this.

This modification helps, but it is not enough.
Each disease-related context for cancer is now
weakened, but their large number causes many
diseases to rank high in the expansion. To address
this, we can limit ourselves to only the top n con-
texts (typically, n = 100 is used). This way, if
the joint contexts are highly ranked, the expansion
will be based only on such contexts.
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input : S ⊂ V (seeds), ρ ∈ R (limited
support penalty), n ∈ N (context
footprint)

output: The diagonal matrix W .

1 for c ∈ C do
2 // Activation of the context.
3 a(c)←∑

w∈SM
V→C
w,c

4 // Fraction of S with context active
5 f(c)← fraction with MV→C∗,c > 0

6 // Score of context
7 s(c)← f(c)ρa(c)

8 end
9 Sort contexts by score s(c)

10 for c ∈ C do
11 if c one of n top-scoring contexts

then
12 Wc,c = f(c)ρ

13 end
14 end
Algorithm 1: Calculating context focus

The {taurus, cancer} example is useful to point
out the benefits of an asymmetric association mea-
sure. Given cancer, the notion of star sign is not
highly activated, and rightly so. If w is cancer and
c is BORN UNDER X, then PPMI(w, c) is low
(as is APPMI(w, c)). However, APPMI(c, w)
is quite high, allowing us to highly score cancer
when expanding {taurus, aries}.

4.5 Details of Calculating W

To produce W , we provide the seeds and two pa-
rameters: ρ ∈ R (the limited support penalty) and
n ∈ N (the context footprint). Algorithm 1 pro-
vides the pseudo-code.

First, we score contexts by their activation (line
3). We penalize contexts that are not supported by
all the seeds: we produce the score by multiply-
ing activation by fρ, where f is the fraction of the
seeds supporting that context (lines 5 and 7). Only
the n top scoring contexts will have non-zero val-
ues in W , and these get the value fρ.

This notion of weighting contexts is similar to
that used in the SetExpan framework (Shen et al.,
2017), although the way they use it is different
(they use weighted Jaccard similarity based on
context weights). Their algorithm for calculating
context weights is a special case of our algorithm,
with no notion of limited support penalty, that is,
they use ρ = 0.

4.6 Sparse Representations for Analogies

To solve the analogy problem “What is the Ganga
of Egypt?” we are looking for something that is
like Ganga (this we can obtain via the set expan-
sion of the (singleton) set {Ganga}, as described
above) and that we see often with Egypt, or to
use Turney’s terminology, in the same domain as
Egypt.

To find terms that are in the same domain as
a given term, we use the same statistical tools,
merely with a different set of contexts. The con-
text for a term is other terms in the same sen-
tence. With this alternate definition of context, we
produce DC→V exactly analogous to MC→V from
Equation 5.

However, if we define DV→C analogous to
MV→C and use these matrices for expansion, we
run into unintended consequences since expand-
ing {evolution} provides not what things evolu-
tion is seen with, but rather those things that cooc-
cur with what evolution co-occurs with. Since,
for example, both evolution and number co-occur
with theory, the two would appear related. To get
around this, we zero out most non-diagonal entries
inDV→C . The only off diagonal entries that we do
not zero out are those corresponding to word pairs
that seem to share a lemma (which we heuristi-
cally define as “share more than 80% of the pre-
fix”. Future work will explore using lemmas). An
example of a pair we retain is india and indian),
since when we are looking for items that co-occur
with india we actually want those that occur with
related words forms. An illustration for why this
matters: India and Rupee occur together rarely
(with a negative PMI) whereas Indian and Rupee
have a strong positive PMI.

4.7 Finding Analogies

To answer “What is the Ganga of Egypt”, we use
Equation 8 on the singleton set {ganga}, and the
same equation (but with DV→C and DC→V ) on
{egypt}. We intersect the two lists by combining
the score of the shared terms in squash space (i.e.,
if the two scores are m and d, the combined score
is

100m

99 +m
+

100d

99 + d
(9)
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5 Set Expansion Experiments and
Evaluation

5.1 Experimental Setup

We report data on two different corpora.
The Comparison Corpus. We begin with

20 million English web pages randomly sampled
from a set of popular web pages (high pagerank
according to Google). We run Word2Vec on the
text of these pages, producing a 200 dimensional
embeddings. We also produce MV→C and MC→V

according to Equation 5. We use this corpus to
compare Category Builder with Word2Vec-based
techniques. Note that these web-pages may be
noisier than Wikipedia. Word2Vec was chosen be-
cause it was deemed “comparable”: mathemati-
cally, it is an implicit factorization of the PMI ma-
trix (Levy and Goldberg, 2014b).

Release Corpus. We also ran Category Builder
on a much larger corpus. The generated matri-
ces are restricted to the most common words and
phrases (around 200,000). The matrices and asso-
ciated code are publicly available1.

Using Word2Vec for Set Expansion. Two
classes of techniques are considered, representing
members of both families described by Gyllensten
and Sahlgren (2018). The centroid method finds
the centroid of the seeds and expands to its neigh-
bors based on cosine similarity. The other meth-
ods first find similarity of a candidate to each seed,
and combines these scores using arithmetic, geo-
metric, and harmonic means.

Mean Average Precision (MAP). MAP com-
bines both precision and recall into a sin-
gle number. The gold data to evaluate
against is presented as sets of synsets, e.g.,
{{California,CA}, {Indiana, IN}, . . .}.

An expansion L consists of an ordered list of
terms (which may include the seeds). Define
Preci(L) to be the fraction of items in the first i
items inL that belong to at least one golden synset.
We can also speak of the precision at a synset,
PrecS(L) = Precj(L), where j is the smallest
index where an element in S was seen in L. If
no element in the synset S was ever seen, then
PrecS = 0. MAP(L) = avg(PrecS(L)) is the
average precision over all synsets.

Generalizations of MAP. While MAP is an ex-
cellent choice for closed sets (such as U.S. STATES),
it is less applicable to open sets (say, POLITICAL

1https://github.com/google/categorybuilder

IDEOLOGIES or SCIENTISTS). For such cases, we pro-
pose a generalization of MAP that preserves its at-
tractive properties of combining precision and re-
call while accounting for variant names. The pro-
posed score is MAPn(L), which is the average of
precision for the first n synsets seen. That it is a
strict generalization of MAP can be seen by ob-
serving that in the case of US STATES, MAP(L) ≡
MAP50(L).

5.2 Evaluation Sets

We produced three evaluation sets, two closed
and one open. For closed sets, following Wang
and Cohen (2007), we use US States and Na-
tional Football League teams. To increase the dif-
ficulty, for NFL teams, we do not use as seeds
dismabiguated names such as Detroit Lions or
Green Bay Packers, instead using the polysemous
lions and packers. The synsets were produced by
adding all variant names for the teams. For exam-
ple, Atlanta Falcons are also known as falcs, and
so this was added to the synset.

For the open set, we use verbs that indicate
things breaking or failing in some way. We chose
ten popular instances (e.g., break, chip, shatter)
and these act as seeds. We expanded the set by
manual evaluation: any correct item produced by
any of the evaluated systems was added to the list.
There is an element of subjectivity here, and we
therefore provide the lists used (Appendix A.1).

5.3 Evaluation

For each evaluation set, we did 50 set expansions,
each starting with three randomly selected seeds.

Effect of ρ and APPMI. Table 1 reveals that
APPMI performs better than PPMI — signifi-
cantly better on two sets, and slightly worse on
one. Penalizing contexts that are not shared by
most seeds (i.e., using ρ > 0) also has a marked
positive effect.

Effect of n. Table 2 reveals a curious effect. As
we increase n, for US STATES, performance drops
somewhat but for BREAK VERBS it improves quite a
bit. Our analysis shows that pinning down what
a state is can be done with very few contexts,
and other shared contexts (such as LIVE IN X)
are shared also with semantically related entities
such as states in other countries. At the other end,
BREAK VERBS is based on a large number of shared
contexts and using more contexts is beneficial.
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Technique US NFL Break
States Teams Verbs

W2V HM .858 .528 .231
W2V GM .864 .589 .273
W2V AM .852 .653 .332
W2V Centroid .851 .646 .337
CB:PPMI; ρ = 0 .918 .473 .248
CB:PPMI; ρ = 3 .922 .612 .393
CB:APPMI; ρ = 0 .900 .584 .402
CB:APPMI; ρ = 3 .907 .735 .499
CB:Release Data† .959 .999 .797

Table 1: MAP scores on three categories. The first four
rows use various techniques with Word2Vec. The next
four demonstrate Category Builder built on the same
corpus, to show the effect of ρ and association measure
used. For all four Category Builder rows, we used n =
100. Both increasing ρ and switching to APPMI can be
seen to be individually and jointly beneficial. †The last
line reports the score on a different corpus, the release
data, with APPMI and ρ = 3, n = 100.

5 10 30 50 100 500
US States .932 .925 .907 .909 .907 .903
NFL .699 .726 .731 .734 .735 .733
Break Verbs .339 .407 .477 .485 .496 .511

Table 2: Effect of varying n. APPMI with ρ = 3.

5.4 Error Analysis.

Table 3 shows the top errors in expansion. The
kinds of drifts seen in the two cases are revealing.
Category Builder picks up word fragments (e.g.,
because of the US State New Mexico, it expanded
states to include Mexico). It sometimes expands
to a hypernym (e.g., province) or siblings (e.g.,
instead of Football teams sometimes it got other
sport teams). With Word2Vec, we see similar er-
rors (such as expanding to the semantically similar
southern california).

5.5 Qualitative Demonstration

Table 4 shows a few examples of expanding cate-
gories, with ρ = 3, n = 100.

Table 5 illustrates the power of Category
Builder by considering a a synthetic corpus pro-
duced by replacing all instances of cat and denver
into the hypothetical CatDenver. This illustrates
that even without explicit WSD (that is, separat-
ing CatDenver to its two “senses”, we are able
to expand correctly given an appropriate context.
To complete the picture, we note that expanding
{kitten, dog} as well as {atlanta, phoenix} con-
tains CatDenver, as expected.

Set Method Top Errors

US States W2V southern california; east tennessee;
seattle washington

CB carolina; hampshire; dakota; on-
tario; jersey; province

NFL W2V hawks; pelicans; tigers; nfl; quar-
terbacks; sooners

CB yankees; sox; braves; mets; knicks;
rangers, lakers

Table 3: Error analysis for US States and NFL. Arith-
metic Mean method is used for W2V and ρ = 3 and
APPMI for Category Builder

Seeds CB Expansion, ρ = 3, n = 100
ford,
nixon

nixon, ford, obama, clinton, bush, richard
nixon, reagan, roosevelt, barack obama, bill
clinton, ronald reagan, w. bush, eisenhower

ford,
chevy

ford, chevy, chevrolet, toyota, honda, nissan,
bmw, hyundai, volkswagen, audi, chrysler,
mazda, volvo, gm, kia, subaru, cadillac

ford,
depp

ford, depp, johnny depp, harrison ford, di-
caprio, tom cruise, pitt, khan, brad pitt, hanks,
tom hanks, leonardo dicaprio

safari,
trip†

trip, safari, tour, trips, cruise, adventure, ex-
cursion, vacation, holiday, road trip, expedi-
tion, trek, tours, safaris, journey,

safari,
ie†

safari, ie, firefox, internet explorer, chrome,
explorer, browsers, google chrome, web
browser, browser, mozilla firefox

Table 4: Expansion examples using Category Builder
so as to illustrate its ability to deal with Polysemy. †

For these examples, ρ = 5

6 Analogies

6.1 Experimental Setup

We evaluated the analogy examples used by
Mikolov et al. (2013). Category Builder eval-
uation were done by expanding using syntactic
and sentence-based-cooccurrence contexts as de-
tailed in Section 4.6 and scoring items according
to Equation 9. For evaluating using Word2Vec, the
standard vector arithmetic was used.

In both cases, the input terms from the prob-
lem were removed from candidate answers (as was
done in the original paper). Linzen (2016) pro-
vides analysis and rationales for why this is done.

6.2 Evaluation

Table 6 provides the evaluations. A few words
are in order for the difference between the pub-
lished scores for Word2Vec analogies elsewhere
(e.g., Linzen, 2016). Their reported numbers for
common capitals were around 91%, as opposed to
around 87% here. Where as Wikipedia is typically
used as a corpus, that was not the case here. Our
corpus is noisier, and may not have the same level
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Seeds CB Expansion, ρ = 3, n = 100
CatDenver,
dog

dogs, cats, puppy, pet, rabbit, kitten, ani-
mal, animals, pup, pets, puppies, horse

CatDenver,
phoenix

chicago, atlanta, seattle, dallas, boston,
portland, angeles, los angeles

CatDenver,
TigerAndroid

cats, lion, dog, tigers, kitten, animal,
dragon, wolf, dogs, bear, leopard, rabbit

Table 5: Expansion examples with synthetic polysemy
by replacing all instances of cat and denver into the
hypothetical CatDenver (similarly, TigerAndroid). A
single other term is enough to pick out the right sense.

a:b::c:? Harder :b::c:?(a withheld)
Method W2V CB:APPMI
Corpus Comp Comp Release†

common capitals .872 .957 .941
city-in-state .657 .972 .955
currency .030 .037 .122
nationality .515 .615 .655
world capitals .472 .789 .668
family .617 .217 .306

Table 6: Performance on Analogy classes from
Mikolov et al. (2013). The first two columns are de-
rived from the same corpus, whereas the last column
reports numbers on the data we will release. For cate-
gory builder, we used ρ = 3, n = 100

of country-based factual coverage as Wikipedia,
and almost all non-grammar based analogy prob-
lems are of that nature.

A second matter to point out is why grammar
based rows are missing from Table 6. Grammar
based analogy classes cannot be solved with just
two terms. For boy:boys::king:?, dropping the first
term boy takes away information crucial to the
solution in a way that dropping the first term of
US:dollar::India:? does not. The same is true for
the family class of analogies.

6.3 Qualitative Demonstration
Table 7 provides a sampler of analogies solved us-
ing Category Builder.

7 Limitations

Much work remains, of course. The analogy work
presented here (and also the corresponding work
using vector offsets) is no match for the sub-
tlety that people can bring to bear when they see
deep connections via analogy. Some progress here
could come from the ability to discover and use
more semantically meaningful contexts.

There is currently no mechanism to automati-
cally choose n and ρ. Standard settings of n =
100 and ρ = 3 work well for the many appli-
cations we use it for, but clearly there are cate-

term1 term2 What is the term1 of term2?
voldemort tolkien sauron
voldemort star wars vader

ganga egypt nile
dollar india rupee

football india cricket
civic toyota corolla

Table 7: A sampler of analogies solved by Category
Builder.

gories that benefit from very small n (such as BLUE

THINGS) or very large n. Similarly, as can be seen
in Equation 9, analogy also uses a parameter for
combining the results, with no automated way yet
to choose it. Future work will prioritize this.

The current work suggests, we believe, that it
is beneficial to not collapse the large dimensional
sparse vector space that implicitly underlies many
embeddings. Having the ability to separately ma-
nipulate contexts can help differentiate between
items that differ on that context. That said, the
smoothing and generalization that dimensionality
reduction provides has its uses, so finding a com-
bined solution might be best.

8 Conclusions

Given that natural categories vary in their degree
of similarities and their kinds of coherence, we be-
lieve that solutions that can adapt to these would
perform better than context independent notions of
similarity.

As we have shown, Category Builder displays
the ability to implicitly deal with polysemy and
determine similarity in a context sensitive manner,
as exhibited in its ability to expand a set by latch-
ing on to what is common among the seeds.

In developing it we proposed a new measure
of association between words and contexts and
demonstrated its utility in set expansion and a hard
version of the analogy problem. In particular, our
results show that sparse representations deserve
additional careful study.
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A Supplemental Material

A.1 Lists Used in Evaluating Set Expansion

US States. Any of the 50 states could be used as
a seed. The 50 golden synsets were the 50 pairs
of state name and abbreviation (e.g., {California,
CA}).

NFL Teams. Any of the first terms
in these 32 synsets could be used as a
seed. The golden synsets are: {Bills, Buf-
falo Bills}, {Dolphins, Miami Dolphins, Phins},
{Patriots, New England Patriots, Pats}, {Jets,
New York Jets}, {Ravens, Baltimore Ravens},
{Bengals, Cincinnati Bengals}, {Browns, Cleve-
land Browns}, {Steelers, Pittsburgh Steelers},
{Texans, Houston Texans}, {Colts, Indianapo-
lis Colts}, {Jaguars, Jacksonville Jaguars, Jags},
{Titans, Tennessee Titans}, {Broncos, Den-
ver Broncos}, {Chiefs, Kansas City Chiefs},
{Chargers, Los Angeles Chargers}, {Raiders,
Oakland Raiders}, {Cowboys, Dallas Cowboys},
{Giants, New York Giants}, {Eagles, Philadel-
phia Eagles}, {Redskins, Washington Redskins},
{Bears, Chicago Bears}, {Lions, Detroit Lions},
{Packers, Green Bay Packers}, {Vikings, Min-
nesota Vikings, Vikes}, {Falcons, Atlanta Falcons,
Falcs}, {Panthers, Carolina Panthers}, {Saints,
New Orleans Saints}, {Buccaneers, Tampa Bay
Buccaneers, Bucs}, {Cardinals, Arizona Cardi-
nals}, {Rams, Los Angeles Rams}, {49ers, San
Francisco 49ers, Niners}, and {Seahawks, Seattle
Seahawks}

Break Verbs. Seeds are chosen from among
these ten items: break, chip, shatter, rot, melt,
scratch, crush, smash, rip, fade. Evaluation is
done for MAP30 (see Section 5.1). The follow-
ing items are accepted in the expansion: break
up, break down, tip over, splinter, tear, come off,

crack, disintegrate, deform, crumble, burn, dis-
solve, bend, chop, stain, destroy, smudge, tarnish,
explode, derail, deflate, corrode, trample, ruin,
suffocate, obliterate, topple, scorch, crumple, pul-
verize, fall off, cut, dry out, split, deteriorate, hit,
blow, damage, wear out, peel, warp, shrink, evap-
orate, implode, scrape, sink, harden, abrade, un-
hinge, erode, calcify, vaporize, sag, shred, de-
grade, collapse, annihilate. In the synsets, we also
added the morphological variants (e.g., {break,
breaking, broke, breaks}).

A.2 Word2Vec Model Details
The word2vec model on the “comparison corpus”
created 200 dimensional word embeddings. We
used a skip-gram model with a batch size of 100,
a vocabulary of 600k ngrams, and negative sam-
pling with 100 examples. It was trained using a
learning rate of 0.2 with Adagrad optimizer for 70
million steps.
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Abstract

Tree-structured LSTMs have shown advan-
tages in learning semantic representations by
exploiting syntactic information. Most exist-
ing methods model tree structures by bottom-
up combinations of constituent nodes using the
same shared compositional function and often
making use of input word information only.
The inability to capture the richness of com-
positionality makes these models lack expres-
sive power. In this paper, we propose multi-
plicative tree-structured LSTMs to tackle this
problem. Our model makes use of not only
word information but also relation information
between words. It is more expressive, as dif-
ferent combination functions can be used for
each child node. In addition to syntactic trees,
we also investigate the use of Abstract Mean-
ing Representation in tree-structured models,
in order to incorporate both syntactic and se-
mantic information from the sentence. Experi-
mental results on common NLP tasks show the
proposed models lead to better sentence repre-
sentation and AMR brings benefits in complex
tasks.

1 Introduction

Learning the distributed representation for long
spans of text from its constituents has been a
crucial step of various NLP tasks such as text
classification (Zhao et al., 2015; Kim, 2014), se-
mantic matching (Liu et al., 2016), and machine
translation (Cho et al., 2014). Seminal work
uses recurrent neural networks (RNN) (Elman,
1990), convolutional neural networks (Kalchbren-
ner et al., 2014), and tree-structured neural net-
works (Socher et al., 2011; Tai et al., 2015) for
sequence and tree modeling. Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) networks are a type of recurrent neural net-

∗ Work done as an intern at Amazon.
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Figure 1: Topology of sequential LSTM and
TreeLSTM: (a) nodes in sequential LSTM and (b)
nodes in tree-structured LSTM

work that are capable of learning long-term de-
pendencies across sequences and have achieved
significant improvements in a variety of sequence
tasks. LSTM has been extended to model tree
structures (e.g., TreeLSTM) and produced promis-
ing results in tasks such as sentiment classification
(Tai et al., 2015; Zhu et al., 2015) and relation ex-
traction (Miwa and Bansal, 2016).

Figure 1 shows the topologies of the con-
ventional chain-structured LSTM (Hochreiter and
Schmidhuber, 1997) and the TreeLSTM (Tai et al.,
2015), illustrating the input (x), cell (c) and hid-
den node (h) at a time step t. The key difference
between Figure 1 (a) and (b) is the branching fac-
tor. While a cell in the sequential LSTM only de-
pends on the single previous hidden node, a cell in
the tree-structured LSTM depends on the hidden
states of child nodes.

Despite their success, the tree-structured mod-
els have a limitation in their inability to fully cap-
ture the richness of compositionality (Socher et al.,
2013a). The same combination function is used
for all kinds of semantic compositions, though the
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compositions have different characteristics in na-
ture. For example, the composition of the ad-
jective and the noun differs significantly from the
composition of the verb and the noun.

To alleviate this problem, some researchers
propose to use multiple compositional functions,
which are predefined according to some parti-
tion criterion (Socher et al., 2012, 2013a; Dong
et al., 2014). Socher et al. (2013a) defined dif-
ferent compositional functions in terms of syntac-
tic categories, and a suitable compositional func-
tion is selected based on the syntactic categories.
Dong et al. (2014) introduced multiple composi-
tional functions and a proper one is selected based
on the input information. These models accom-
plished their objective to a certain extent but they
still face critical challenges. The predefined com-
positional functions cannot cover all the compo-
sitional rules and they add much more learnable
parameters, bearing the risk of overfitting.

In this paper, we propose multiplicative TreeL-
STM, an extension to the TreeLSTM model, which
injects relation information into every node in the
tree. It allows the model to have different semantic
composition matrices to combine child nodes. To
reduce the model complexity and keep the number
of parameters manageable, we define the compo-
sition matrices using the product of two dense ma-
trices shared across relations, with an intermediate
diagonal matrix that is relation dependent.

Though the syntactic-based models have shown
to be promising for compositional semantics, they
do not make full use of the linguistic informa-
tion. For example, semantic nodes are often the
argument of more than one predicate (e.g., coref-
erence) and it is generally useful to exclude se-
mantically vacuous words like articles or comple-
mentizers, i.e., leave nodes unattached that do not
add further meaning to the resulting representa-
tions. Recently, Banarescu et al. (2013) introduced
Abstract Meaning Representation (AMR), single
rooted, directed, acyclic graphs that incorporate
semantic roles, correference, negation, and other
linguistic phenomena. In this paper, we investigate
a combination of the semantic process provided by
TreeLSTM model with the lexical semantic rep-
resentation of the AMR formalism. This differs
from most of existing work in this area, where
syntactic rather than semantic information is in-
corporated to the tree-structured models. We seek
to answer the question: To what extent can we do

better with AMR as opposed to syntactic represen-
tations, such as constituent and dependency trees,
in tree-structured models?

We evaluate the proposed models on three com-
mon tasks: sentiment classification, sentence re-
latedness, and natural language inference. The re-
sults show that the multiplicative TreeLSTM mod-
els outperform TreeLSTM models on the same
tree structures. The results further suggest that us-
ing AMR as the backbone for tree-structured mod-
els is helpful in the complex task such as for longer
sentences in natural language inference but not in
sentiment classification, where lexical information
alone suffices.

In short, our contribution is twofold:

1. We propose the new multiplicative TreeL-
STM model that effectively learns distributed
representation of a given sentence from its
constituents, utilizing not only the lexical in-
formation of words, but also the relation in-
formation between the words.

2. We conduct an extensive investigation on
the usefulness of lexical semantic represen-
tation induced by AMR formalism in tree-
structured models.

2 Tree-Structured LSTM

A standard LSTM processes a sentence in a se-
quential order, e.g., from left to right. It esti-
mates a sequence of hidden vectors given a se-
quence of input vectors, through the calculation
of a sequence of hidden cell vectors using a gate
mechanism. Extending the standard LSTM from
linear chains to tree structures leads to TreeL-
STM. Unlike the standard LSTM, TreeLSTM al-
lows richer network topologies, where each LSTM
unit is able to incorporate information from multi-
ple child units.

As in standard LSTM units, each TreeLSTM
unit contains input gate ij , output gate oj , a mem-
ory cell cj , and hidden state hj for node j. Unlike
the standard LSTM, in TreeLSTM the gating vec-
tors and the memory cell updates are dependent
on the states of one or more child units. In addi-
tion, the TreeLSTM unit contains one forget gate
fjk for each child k instead of having a single for-
get gate. The transition equations of node j are as

277



follows:

h̃j =
∑

k∈C(j)

hk ,

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
,

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
,

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
,

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
,

cj = ij � uj +
∑

k∈C(j)

fjk � ck ,

hj = oj � tanh(cj) ,

(1)

where C(j) is the set of children of node j, k ∈
C(j) in fjk, σ is the sigmoid function, and � is
element-wise (Hadamard) product. W (∗), U (∗),
b(∗) are model parameters with ∗ ∈ {u, o, i, f}.1

3 Multiplicative Tree-Structured LSTM

Encoding rich linguistic analysis introduces many
distinct edge types or relations between nodes,
such as syntactic dependencies and semantic roles.
This opens up many possibilities for parametriza-
tion, but was not considered in most exist-
ing syntax-aware LSTM approaches, which only
make use of input node information.

In this paper, we fill this gap by proposing
multiplicative TreeLSTM, an extension to the
TreeLSTM model, injecting relation information
into every node in the tree. The multiplicative
TreeLSTM model, mTreeLSTM for short, intro-
duces more fined-grained parameters based on the
edge types. Inspired by the multiplicative RNN
(Sutskever et al., 2011), the hidden-to-hidden
propagation in mTreeLSTM contains a separately
learned transition matrix Whh for each possible
edge type and is given by

h̃j =
∑

k∈C(j)

W
r(j,k)
hh hk , (2)

where r(j, k) signifies the connection type be-
tween node k and its parent node j. This
parametrization is straightforward, but requires a
large number of parameters when there are many
edge types. For instance, there are dozens of syn-
tactic edge types, each corresponding to a Stanford
dependency label.

1 In Tai et al. (2015), the TreeLSTM defined in Eq. (1) was
referred to as child-sum TreeLSTM, which is a good choice
for trees with high branching factor.

To reduce the number of parameters and lever-
age potential correlation among fine-grained edge
types, we learned an embedding of the edge types
and factorized the transition matrix W

r(j,k)
hh by

using the product of two dense matrices shared
across edge types, with an intermediate diagonal
matrix that is edge-type dependent:

W
r(j,k)
hh =Whmdiag(Wmrejk)Wmh , (3)

where ejk is the edge-type embedding and is
jointly trained with other parameters. The map-
ping from hk to h̃j is then given by

mjk = (Wmrejk)� (Wmhhk) ,

h̃j =
∑

k∈C(j)

Whmmjk . (4)

The gating units – input gate i, output gate o, and
forget gate f – are computed in the same way as
in the TreeLSTM with Eq. (1).2

Multiplicative TreeLSTM can be applied to any
tree, where connection types between nodes are
given. For example, in dependency trees, the se-
mantic relations r(j, k) between nodes are pro-
vided by a dependency parser.

4 Tree-Structured LSTMs with Abstract
Meaning Representation

Tree-structured LSTMs have been applied suc-
cessfully to syntactic parse trees (Tai et al., 2015;
Miwa and Bansal, 2016). In this work, we look
beyond syntactic properties of the text and incor-
porate semantic properties to the tree-structured
LSTM model. Specifically, we utilize the network
topology offered by a tree-structured LSTM and
incorporate semantic features induced by AMR
formalism. We aim to address the following ques-
tions: In which tasks using AMR structures as the
backbone for the tree-structured LSTM is useful?
Furthermore, which semantic properties are use-
ful for the given task?

AMR is a semantic formalism where the mean-
ing of a sentence is encoded as a single rooted, di-
rected and acyclic graph (Banarescu et al., 2013).
For example, the sentence “A young girl is playing
on the edge of a fountain and an older woman is
not watching her” is represented as:

2In the rest of the paper, we use the term TreeLSTM in
a narrow sense to refer to the model corresponding to Eq.
(1) and the term tree-structured LSTM to include both TreeL-
STM and mTreeLSTM, unless specified otherwise.
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Figure 2: An AMR representing the sentence “A
young girl is playing on the edge of a fountain and
an older woman is not watching her”.

(a / and
:op1 (p / play-01

:ARG0 (g / girl
:mod (y / young))

:ARG1 (e / edge-01
:ARG1 (f / fountain)))

:op2 (w / watch-01
:ARG0 (w2 / woman

:mod (o / old))
:ARG1 g
:polarity -))

The same AMR can be represented as in Figure
2, in which the nodes in the graph (also called con-
cepts) map to words in the sentence and the edges
represent the relations between words. AMR con-
cepts consist of predicate senses, named entity an-
notations, and in some cases, simply lemmas of
English words. AMR relations consist of core se-
mantic roles drawn from the Propbank (Palmer
et al., 2005) as well as fine-grained semantic re-
lations defined specifically for AMR. Since AMR
provides a whole-sentence semantic representa-
tion, it captures long-range dependencies among
constituent words in a sentence. Similar to other
semantic schemes, such as UCCA (Abend and
Rappoport, 2013), GMB (Basile et al., 2012),
UDS (White et al., 2016), AMR abstracts away
from morphological and syntactic variability and
generalize cross-linguistically.

To use AMR structures in a tree-structured
LSTM, we first parse sentences to AMR graphs
and transform the graphs to tree structures. The
transformation follows the procedure used by
Takase et al. (2016), splits the nodes with an inde-
gree larger than one, which mainly present coref-
erential concepts, to a set of separate nodes, whose
indegrees exactly equal one. We use JAMR (Flani-
gan et al., 2014, 2016), a statistical semantic parser

trained on AMR bank, for AMR parsing.
On one hand, the AMR tree structure can be

used directly with the TreeLSTM architecture de-
scribed in Section 2, in which only node infor-
mation is utilized to encode sentences into cer-
tain fixed-length embedding vectors. On the other
hand, since AMR provides rich information about
semantic relations between nodes, the mTreeL-
STM architecture is more applicable due to its ca-
pability of modeling edges in the tree. We evaluate
both encoded vectors produced by TreeLSTM and
mTreeLSTM on AMR trees in Section 6.

5 Applications

In this section, we describe three specific models
that apply the mTreeLSTM architecture and the
AMR tree structures described above.

5.1 Sentiment Classification

In this task, we wish to predict the sentiment of
sentences, in which two sub-tasks are considered:
binary and fine-grained multiclass classification.
In the former, sentences are classified into two
classes (positive and negative), while in the latter
they are classified into five classes (very positive,
positive, neutral, negative, and very negative).

For a sentence x, we first apply tree-structured
LSTMs over the sentence’s parse tree to obtain the
representation hr at the root node r. A softmax
classifier is then used to predict the class ŷ of the
sentence, with p̂θ (y |x) = softmax

(
W (s)hr

)
,

where θ is the model parameters and ŷ =
argmaxy p̂θ (y |x). The cost function is the neg-
ative log-likelihood of the true sentiment class of
the sentence with L2 regularization.

5.2 Semantic Relatedness

Given a sentence pair, the goal is to predict an
integer-valued similarity score in {1, 2, ...,K},
where higher scores indicate greater degrees of
similarity between the sentences.

Following Tai et al. (2015), we first produce se-
mantic representation hL and hR for each sentence
in the pair using the described models over each
sentence’s parse trees. Then, we predict the sim-
ilarity score ŷ using additional feedforward lay-
ers that consider a feature vector xs consisting of
both distance and angle between the pair (hL, hR):
p̂θ = softmax

(
W (p) σ

(
W (s)xs

))
, ŷ = r>p̂θ,

where r> = [1, 2, . . . ,K]. Similar to Tai et al.
(2015), we define a sparse target distribution p
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such that the ground-truth rating y ∈ [1,K] equals
r>p and use the regularized KL-divergence from
p̂θ to p as the cost function.

5.3 Natural Language Inference (NLI)

In this task, the model reads two sentences (a
premise and a hypothesis), and outputs a judge-
ment of entailment, contradiction, or neutral, re-
flecting the relationship between the meanings of
the two sentences.

Following Bowman et al. (2016), we frame
the inference task as a sentence pair classifica-
tion. First we produce representations hP and
hH for the premise and hypothesis and then con-
struct a feature vector xc for the pair that con-
sists of the concatenation of these two vectors,
their difference, and their element-wise product.
This feature vector is then passed to a feed-
forward layer followed by a softmax layer to
yield a distribution over the three classes: p̂θ =
softmax

(
W (p)σ

(
W (c)xc

))
. The negative log-

likelihood of the true class labels for sentence pairs
is used as the cost function.

6 Experiments

6.1 Hyperparameters and Training

The model parameters are optimized using Ada-
Grad (Duchi et al., 2011) with a learning rate of
0.05 for the first two tasks, and Adam (Kingma
and Ba, 2015) with a learning rate of 0.001 for the
NLI task. The batch size of 25 was used for all
tasks and the model parameters were regularized
with a per-minibatch L2 regularization strength
of 10−4. The sentiment and inference classifiers
were additionally regularized using dropout with
a dropout rate of 0.5.

Following Tai et al. (2015) and Zhu et al.
(2015), we initialized the word embeddings with
300-dimensional GloVe vectors (Pennington et al.,
2014). In addition, we use the aligner provided by
JAMR parser to align the sentences with the AMR
trees and then generate the embedding by using
the GloVe vectors. The relation embeddings were
randomly sampled from an uniform distribution in
[−0.05, 0.05] with a size of 100. The word and
relation embeddings were updated during training
with a learning rate of 0.1.

We use one hidden layer and the same dimen-
sionality settings for sequential LSTM and tree-
structured LSTMs. LSTM hidden states are of size
150. The output hidden size is 50 for the related-

ness task and the NLI task. Each model is trained
for 10 iterations. (We did not observe better re-
sults with more iterations.) The same training pro-
cedure repeats 5 times with parameters being eval-
uated at the end of every iteration on the develop-
ment set. The model having the best results on the
development set is used for final tests.

For all sentences in the datasets, we parse
them with constituency parser (Klein and Man-
ning, 2003), dependency parser (Chen and Man-
ning, 2014), and AMR parser (Flanigan et al.,
2014, 2016) to obtain the tree structures. We
compare our mTreeLSTM model with two base-
lines: LSTM and TreeLSTM. We use the nota-
tion (C), (D), and (A) to denote the tree structures
that the models are based on, where they stand for
constituency trees, dependency trees, and AMR
trees, respectively. The code to reproduce the re-
sults is available at https://github.com/
namkhanhtran/m-treelstm.3

6.2 Sentiment Classification
For this task, we use the Stanford Sentiment Tree-
bank (Socher et al., 2013b) with the standard
train/dev/test splits of 6920/872/1821 for the bi-
nary classification sub-task, and 8544/1101/2210
for the fine-grained classification sub-task. We
used two different settings for training: root-level
and phrase-level. In the root-level setting, each
sentence is a data point, while in the phrase-level
setting, each phrase is reconstructed from nodes
in the parse tree and treated as a separate data
point. In the phrase-level setting we obtain much
more data for training, but the root-level setting is
closer to real-world applications. For AMR trees,
we only report results in the root-level setting, as
the annotation cost for the phrase-level setting is
prohibitively high. We evaluate our models and
baseline models at the sentence level.

Table 1 shows the main results for the sentiment
classification task. While LSTM model obtains
quite good performance in both settings, TreeL-
STM model on constituency tree obtains better re-
sults, especially in the phrase level setting, which
has more supervision. It confirms the conclu-
sion from Tai et al. (2015) that combining linguis-
tic knowledge with LSTM leads to better perfor-
mance than sequence models in this task. Table 1
also shows mTreeLSTM consistently outperforms

3The correctness of our implementation is also suggested
by the fact that we have reproduced the results of LSTM and
TreeLSTM in Tai et al. (2015), up to small variations.
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Model Phrase-level Root-level

5-class 2-class 5-class 2-class

LSTM 48.0 (1.0) 86.7 (0.7) 45.6 (1.1) 85.6 (0.5)

TreeLSTM(C) 49.8 (0.8) 87.9 (0.9) 46.3 (0.7) 85.8 (0.5)
TreeLSTM(D) 46.9 (0.2) 85.5 (0.4) 46.0 (0.3) 85.0 (0.4)
TreeLSTM(A) n/a n/a 44.4 (0.2) 82.9 (0.6)

mTreeLSTM(A) n/a n/a 45.2 (0.5) 83.2 (0.5)
mTreeLSTM(D) 47.5 (0.7) 85.7 (0.1) 46.7 (0.8) 85.7 (0.8)

Table 1: Accuracy on the Stanford Sentiment Tree-
bank dataset with standard deviation in parenthe-
ses (numbers in percentage)

.

TreeLSTM on the same tree structures in both set-
tings – Whenever a tree structure is applicable
to both mTreeLSTM and TreeLSTM, the perfor-
mance of mTreeLSTM with that tree structure is
better. That is, in phrase-level setting, mTreeL-
STM (D) outperforms TreeLSTM (D) and simi-
larly in root-level setting, mTreeLSTM (D) and
mTreeLSTM (A) perform better than TreeLSTM
(D) and TreeLSTM (A), respectively. It demon-
strates the effectiveness of the relation multipli-
cation mechanism and the importance of mod-
eling relation information. The TreeLSTM and
mTreeLSTM models with AMR trees do not per-
form well on this task. Synthetic information
along goes a long way in determining the senti-
ment of a sentence. Noisy sentences in this task
also impact the accuracy of the AMR parser.

We now dive deep into what the models learn,
by listing the composition matrices W r(j,k)

hh with
the largest Frobenius norms. These matrices have
learned larger weights, which are in turn being
multiplied with the child hidden states. That
child will therefore have more weight in the com-
posed parent vector. In decreasing order of Frobe-
nius norm, the relationship matrices for mTreeL-
STM on dependency trees are: conjunction, ad-
jectival modifier, object of a preposition, negation
modifier, verbal modifier. The relationship ma-
trices for mTreeLSTM on AMR trees are: nega-
tion (:polarity), attribute (:ARG3, :ARG2),
modifier (:mod), conjunction (:opN). The model
learns that verbal and adjective modifiers are more
important than nouns, as they tend to affect the
sentiment of sentences.

6.3 Sentence Relatedness

For this task, we use the Sentences Involving
Compositional Knowledge (SICK) dataset, con-

Model Pearson Spearman MSE

LSTM .841 (.004) .778 (.006) .304 (.003)

TreeLSTM (C) .849 (.005) .790 (.004) .286 (.010)
TreeLSTM (D) .863 (.003) .803 (.002) .260 (.005)
TreeLSTM (A) .842 (.002) .774 (.001) .299 (.005)

mTreeLSTM (A) .853 (.001) .788 (.001) .279 (.002)
mTreeLSTM (D) .872 (.004) .814 (.005) .244 (.007)

Table 2: Results on the SICK dataset for semantic
relatedness task with standard deviation in paren-
theses

sisting of 9927 sentence pairs with the standard
train/dev/test split of 4500/500/4927. Each pair is
annotated with a relatedness score y ∈ [1, 5], with
1 indicating the two sentences are completely un-
related, and 5 indicating they are very related. Fol-
lowing Tai et al. (2015), we use Pearson, Spear-
man correlations and mean squared error (MSE)
as evaluation metrics.

Our results are summarized in Table 2. The tree-
structured LSTMs, both TreeLSTM and mTreeL-
STM, reach better performance than the standard
LSTM. The model using dependency tree as the
backbone achieves best results. The mTreeL-
STM with AMR trees obtain slightly better results
than the TreeLSTM with constituency trees. The
multiplicative TreeLSTM models outperform the
TreeLSTM models on the same parse trees, illus-
trating again the usefulness of incorporating rela-
tion information into the model.

Similar to the previous experiment, we list
the composition matrices W r(j,k)

hh with the largest
Frobenius norms. The relationship matrices
for dependency trees include: indirect object,
marker for introducing a finite clause subordi-
nate to another clause, negation modifier, ad-
jectival modifier, phrasal verb particle, conjunc-
tion. The relationship matrices for AMR trees are:
patient (:ARG1), comparatives and superlatives
(:degree), agent (:ARG0), attribute (:ARG3),
medium (:medium), possession (:poss), man-
ner (:manner).

6.4 Natural Language Inference

In this task, we first look at the SICK dataset de-
scribed in the previous section. In this setting each
sentence pair is classified into three labels, entail-
ment, contradiction, and neutral.

In addition to the standard test set, we also re-
port performances of our models on two different
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Model All LS Negation

LSTM 77.3 (0.5) 74.6 (1.4) 77.5 (0.4)

TreeLSTM (C) 79.0 (1.4) 78.1 (2.9) 85.3 (1.2)
TreeLSTM (D) 82.9 (0.3) 81.0 (2.6) 84.3 (1.2)
TreeLSTM (A) 82.6 (0.2) 84.0 (1.5) 88.2 (0.4)

mTreeLSTM (A) 83.3 (0.2) 85.3 (0.4) 88.5 (0.8)
mTreeLSTM (D) 84.0 (0.5) 81.6 (1.3) 87.8 (0.8)

Table 3: Accuracy on the SICK dataset for the NLI
task with standard deviation in parentheses (num-
bers in percentage)

subsets. The first subset, Long Sentence (LS), con-
sists of sentence pairs in the test set where the
premise sentence contains at least 18 words. We
hypothesize that long sentences are more difficult
to handle by sequential models as well as tree-
structured models. The second subset, Negation,
is a set of sentence pairs where negation words
(not, n’t or no) do not appear in the premise but
appear in the hypothesis. In the test set, 58.7% of
these examples are labeled as contradiction.

Table 3 summarizes the results of our mod-
els on different test sets. The mTreeLSTM mod-
els obtain highest results, followed by TreeLSTM
models. The standard LSTM model does not
work well on this task. The results reconfirm the
benefit of using the structure information of sen-
tences in learning semantic representations. In ad-
dition, Table 3 shows that TreeLSTM on depen-
dency trees and AMR trees outperform the mod-
els with constituency trees. The dependency trees
provide some semantic information, i.e., semantic
relations between words at some degrees, while
AMR trees present more semantic information.
The multiplicative TreeLSTM on AMR trees per-
form much better than other models on the LS and
Negation subsets. The results on the LS subset
shows that mTreeLSTM on AMR trees can han-
dle long-range dependencies in a sentence more
effectively. For example, only mTreeLSTM (A)
is able to predict the following example correctly:
Premise: The grotto with a pink interior is be-
ing climbed by four middle eastern children, three
girls and one boy.
Hypothesis: A group of kids is playing on a col-
orful structure.
Label: entailment

Similar to previous experiments, we list the
composition matrices with the largest Frobenius
norms to get some insights into what the mod-

Model Acc (%)

LSTM (Bowman et al., 2015) 77.6
Syntax TreeLSTM (Yogatama et al., 2017) 80.5
CYK TreeLSTM (Maillard et al., 2017) * 81.6
Gumbel TreeLSTM (Choi et al., 2018) 81.8
Gumbel TreeLSTM + leaf LSTM (Choi et al., 2018) 82.6

TreeLSTM (D) 81.0
mTreeLSTM (D) 81.9

Table 4: Results on the SNLI dataset. The first
group contains results of some best-performing
tree-structured LSTM models on this data. (*: a
preprint)

Model rDim # Params Acc (%)

TreeLSTM (A) n/a 301K 82.6

mTreeLSTM (A) 50 354K 82.7
mTreeLSTM (A) 75 358K 83.1
mTreeLSTM (A) 100 361K 83.6
mTreeLSTM (A) 200 376K 83.0

Table 5: Effects of the relation embedding size on
SICK dataset for the NLI task

els learn. The relationship matrices for mTreeL-
STM on dependency trees are: negation modifier,
nominal subject, adjectival modifier, direct object,
passive auxiliary, adverb modifier. These matri-
ces for mTreeLSTM on AMR trees are: attribute
(:ARG2), patient (:ARG1), conjunction (:opN),
location, negation (:polarity), domain. In
contrast to the sentiment classification task, where
adjectives are crucial, the model learns that sub-
jects and objects are important to determine the
meaning of sentences.

Furthermore, we evaluate our mTreeLSTM
model with SNLI (Stanford Natural Language In-
ference), a larger NLI dataset (Bowman et al.,
2015). It is composed of about 550K/10K/10K
sentence pairs in train/dev/test sets. We use de-
pendency tree as the backbone for tree-structured
LSTMs. All models in Table 4 use a hidden size
of 100 for a fair comparison. The table shows
that mTreeLSTM (D) outperforms many other
syntax-based TreeLSTM models including TreeL-
STM (D), reconfirming our conclusion drawn with
SICK.

6.5 Additional Tests and Discussions

Incorporating relation information in the tree-
structured LSTM increases model complexity. In
this experiment, we analyze the impact of the di-
mensionality of relation embedding on the model

282



Model # Params Acc (%)

TreeLSTM (D) 301K 82.9

addTreeLSTM (D) 361K 83.4
fullTreeLSTM (D) 1.1M 83.5
mTreeLSTM (D) 361K 84.0

Table 6: Comparison between different methods
using relation information on the SICK dataset for
the NLI task

size and accuracy. Table 5 shows the model with
the relation embedding size of 100 achieves the
best accuracy, while the overall impact of the em-
bedding size is mild. The multiplicative TreeL-
STM has only 1.2 times the number of weights
in TreeLSTM (with the same number of hidden
units). We did not count the number of parameters
in the embedding models since these parameters
are the same for all models.

Table 6 shows a comparison between mTreeL-
STM and two other plausible methods for inte-
grating relation information with TreeLSTM. In
addTreeLSTM, a relation is treated as an addi-
tional node input in the TreeLSTM model; In
fullTreeLSTM, the model corresponds to Eq. (2),
where each edge type has a separate transition
matrix. Both models achieve better results than
TreeLSTM, indicating the usefulness of relation
information. While addTreeLSTM and fullTreeL-
STM obtain comparable performances, mTreeL-
STM outperforms both of them. It is also to note
that the number of parameters of mTreeLSTM is
much less than those of fullTreeLSTM.

7 Other Related Work

There is a line of research that extends the standard
LSTM (Hochreiter and Schmidhuber, 1997) in or-
der to model more complex structures. Tai et al.
(2015) and Zhu et al. (2015) extended sequen-
tial LSTMs to tree-structured LSTMs by adding
branching factors. They showed such extensions
outperform competitive LSTM baselines on sev-
eral tasks such as sentiment classification and se-
mantic relatedness prediction (which is also con-
firmed in this paper). Li et al. (2015) further inves-
tigated the effectiveness of TreeLSTMs on various
tasks and discussed when tree structures are neces-
sary. Chen et al. (2017) combined sequential and
tree-structured LSTM for NLI and has achieved
state-of-the-art results on the benchmark dataset.
Their approach uses n-ary TreeLSTM based on

syntactic constituency parsers. In contrast, we fo-
cus more on child-sum TreeLSTM which is better
suited for trees with high branching factor.

Previous works have studied the use of relation
information. Dyer et al. (2015) considered each
syntactic relation as an additional node and in-
cluded its embedding to their composition func-
tion for dependency parsing. Peng et al. (2017)
introduced a different set of parameters for each
edge-type in their LSTM-based approach for re-
lation extraction. In contrast to these works, our
mTreeLSTM model incorporates relation informa-
tion via a multiplicative mechanism, which we
have shown is more effective and uses less param-
eters.

AMR has been successfully applied to a num-
ber of NLP tasks, besides the ones we considered
in this paper. For example, Mitra and Baral (2016)
made use of AMR to improve question answering;
Liu et al. (2015) utilized AMR to produce promis-
ing results toward abstractive summarization. Us-
ing AMR as the backbone in TreeLSTM has been
investigated in Takase et al. (2016). They incor-
porated AMR information by a neural encoder to
the attention-based summarization method (Rush
et al., 2015) and it performed well on headline
generation. Our work differs from these studies
in the sense that we aim to investigate how seman-
tic information induced by AMR formalism can
be incorporated to tree-structured LSTM models,
and study which properties introduced by AMR
turn out to be useful in various tasks. In this paper,
we use the start-of-the-art AMR parser provided
by Flanigan et al. (2016) which additionally pro-
vides the alignment between words and nodes in
the tree.

Though we have considered AMR in this paper,
we believe the conclusions we drew here largely
apply to other semantic schemes, such as GMB
and UCCA, as well. Abend and Rappoport (2017)
has recently noted that the differences between
these schemes are not critical, and the main dis-
tinguishing factors between them are their relation
to syntax, their degree of universality, and the ex-
pertise they require from annotators.

8 Conclusions

We presented multiplicative TreeLSTM, an exten-
sion of existing tree-structured LSTMs to incor-
porate relation information between nodes in the
tree. Multiplicative TreeLSTM allows different
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compositional functions for child nodes, which
makes it more expressive. In addition, we inves-
tigated how lexical semantic representation can be
used with tree-structured LSTMs. Experiments on
three common NLP tasks showed that multiplica-
tive TreeLSTMs outperform conventional TreeL-
STMs, illustrating the usefulness of relation infor-
mation. Moreover, with AMR as backbone, tree-
structured models can effectively handle long-
range dependencies.
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