
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 894–897
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

Digital Operatives at SemEval-2018 Task 8: Using dependency features
for malware NLP

Chris Brew
Digital Operatives

chris.brew@digitaloperatives.com

Abstract
The four sub-tasks of SecureNLP build to-
wards a capability for quickly highlighting
critical information from malware reports,
such as the specific actions taken by a mal-
ware sample. Digital Operatives (DO) sub-
mitted to sub-tasks 1 and 2, using standard
text analysis technology (text classification for
sub-task 1, and a CRF for sub-task 2). Perfor-
mance is broadly competitive with other sub-
mitted systems on sub-task 1 and weak on sub-
task 2. The annotation guidelines for the in-
termediate sub-tasks create a linkage to the fi-
nal task, which is both an annotation challenge
and a potentially useful feature of the task. The
methods DO chose do not attempt to make use
of this linkage, which may be a missed oppor-
tunity. This motivates a post-hoc error analy-
sis. It appears that the annotation task is very
hard, and that in some cases both deep con-
ceptual knowledge and substantial surround-
ing context are needed in order to correctly
classify sentences.

1 Introduction

The SecureNLP challenge is motivated by (Lim
et al., 2017) and further described in (Phandi et al.,
2018), it aims to provide automation for malware
analysts who might otherwise be overwhelmed by
the task of finding key data in long threat reports.
The annotation guidelines used to create the task
ask analysts to include actions carried out by the
malware, but exclude actions carried out by the hu-
man designers of the malware. These actions are
related to the MAEC cybersecurity ontology (Kir-
illov et al., 2010). The guidelines include one sub-
stantial caveat:

As a general guide [for a positive an-
notation], the sentence should imply a
particular malware action or capability,
with reference to the list of attribute la-
bels. [i.e. the MAEC labels]

Sub-task 1 calls for a determination of relevance or
irrelevance to malware activity on a per-sentence
basis. However a number of issues make this diffi-
cult. See detail in (Lim et al., 2017). First, it is not
obvious what to do when a sentence describes mal-
ware activity but does not fit in with any MAEC
category. Second, the distinction between things
done by the malware and things done (or intended)
by its designers is not easy to maintain.

We describe the systems that we built for tasks
1 and 2 and use them to conduct ablation studies
and error analyses.

2 Digital Operatives Systems

The Digital Operatives submission used
spaCy (Honnibal and Johnson, 2015). to
generate features for each token, then aggregated
the features from the whole sentence. To estimate
performance, we used 5-fold cross-validation on
the combined training and development sets.

As an example, consider the word ”ago” in the
sentence:

”A few days ago we detected a watering hole
campaign in a website owned by one big industrial
company .”

We extract:

• the word itself

• the lemmatized form provided by spaCy,

• the orthographic shape (all lower case, repre-
sented as ”xxx”)

• the part-of-speech (”ADV”)

• the detailed part-of-speech (”RB”)

• Brown cluster (6442) (Brown et al., 1992)

• the fact that it does or does not look like a
URL

894



• the bigrams in which it participates (”days
ago” and ”ago we”)

• similar bigrams for lemma, Brown cluster
and shape.

• extract features from dependency links. Each
token has a head from which it depends, and
the relation that it holds to the head has a
name. The head of ”ago” is the verb ”de-
tected”, and the relation is ”advmod”. We
package this up into the feature detected-
ADVMOD-ago.

• features of the form X-advmod-Y where X
and Y are either both cluster ids or both or-
thographic shapes.

The result is passed to a passive aggressive
classifier (Crammer et al., 2006)1. This learner,
which is similar in cost and performance to a lin-
ear kernel SVM and to a number of other linear
classifiers, seems to be close to the best choice
from a large number of experiments. Grid search
was used to choose the C regularization parame-
ter for the classifier. On our 5 validation splits this
method had a mean f1 of 0.60 with standard de-
viation 0.045. Performance on the actual test set
was lower, at 0.52. This was rank 5 among the 11
submitted systems, well behind the top 2 systems
and slightly ahead of the organizers’ benchmark.

Our system classifies each sentence in isolation.
No attempt was made to establish the referents of
pronouns.

For sub-task 2 we used CRFsuite (Okazaki,
2007) to implement a linear-chain conditional ran-
dom field. Per-word features were: the lower-
cased word and its part-of-speech tag; a two-letter
prefix of the word; two- and three-letter character
prefixes of the word; shape indicators for whether
the word is numeric, title-case or upper-case; indi-
cators for whether the word is beginning or end of
sentence; the nltk part of speech of previous and
subsequent words, if present; the shape indicators
of previous and subsequent words, if present. We
would have preferred to use features from spaCy,
as in task 1, but did not overcome tokenization dif-
ferences in time. This system was not competitive,
with an F-score of 0.16 and a ranking of 9th. The
best system had an F1 score of 0.39.

1In scikit-learn’s implementation (Pedregosa et al.,
2011)

precision recall f1-score sup
irrelevant 0.96 0.83 0.89 528
relevant 0.44 0.79 0.57 90

avg / total 0.88 0.83 0.84 618

Table 1: F1-scores using only lemmas and dependen-
cies between lemmas.

2.1 Ablation study

The submitted system used all the features gener-
ated by spaCy. We augmented this with ablation
studies in which only subsets of the features were
used. The best performance came using only un-
igrams and bigrams derived from lemmas, along
with dependency features derived from lemmas.
Ablation actually improved performance over the
submission, as shown in table 1. Presumably,
these features give the sparse linear classifier an
appropriate level of generality. There are 89 false
positives in the complete test set and 19 false neg-
atives. There are only 71 true positives.

3 Task analysis

MAEC labels classify malware along several di-
mensions. We focus on a tractable subset that can
be assigned to Actions and that describe capa-
bilities of malware. Table 2 lists these labels.

3.1 Error analysis

We carried out our own annotation of the 112 ex-
amples from the test set for which our system did
not agree with the organizers annotations. To these
we added a further 111 randomly chosen examples
from the test set, for which our system did agree.
We assessed each of these examples against the 20
categories from table 2, There were differences of
judgment between our annotations and those of the
organizers. Potential reasons for this include sim-
ple errors, misunderstandings, and consequences
of the linkage between sub-task 1 and sub-task 4.

Table 4 shows performance when using the new
annotations. There are now 72 false positives in
the complete test set and 13 false negatives. True
positives now slightly outnumber false positives,
at 88. It is of course possible that some of our
annotations are unintentionally biased in our fa-
vor. See table 3. In future work, it may be benefi-
cial to apply the crowdsourcing methods and care-
ful evaluation of annotation found in, for example,
(Snow et al., 2008).

895



Number Capability Example Frequency
000 anti-behavioral analysis avoid detection and frustrate analysis, 36
001 anti-code analysis XOR 0xAA applied on top of it, 36
002 anti-detection making its open ports invisible to scan-

ners.
240

003 anti-removal block access to where the rootkit keeps its
file

5

004 availability violation DDoS attacks were launched 28
005 command and control C & C proxies talk to [other] proxies 580
006 data exfiltration exfiltrate data back to the C&C server 189
007 data theft extract Internet Explorer passwords 186
008 destruction collects file names and overwrites them 63
009 fraud smart meters could be manipulated 7
010 infection/propagation infected via a multi-stage attack 525
011 integrity violation attacker can hijack the network 85
012 machine access/control control the keyboard and mouse. 245
013 persistence the malware creates a registry key 57
014 privilege escalation achieve admin privileges 23
015 probing malware checks if an old versn is installed 77
016 remote machine manipulation the malware will access network shares 13
017 secondary operation The dropper installs a second file 280
018 security degradation bypass User Account Control (UAC) 33
019 spying Babar is able to sniff all keystrokes 128

Table 2: Malware capability labels. Note that the frequency distribution is highly skewed. Examples are edited to
fit.

Example DO SN MAEC
A screenshot of the desktop is saved into the
C:\\ProgramData\\Mail\\MailAg\\scs.jpg
file .

0 1 spying?

As you can see this powershell script simply extracts an-
other VBScript and executes it .’,

0 1

Cozyduke was used throughout these attacks to harvest and
exfiltrate sensitive information to the attackers .

1 0 exfiltration

Cozyduke will periodically contact these websites to re-
trieve task information to be executed on the local machine
.

0 1 C&C

Execute contents in unlabeled textbox1 as a SQL query and
return binary data to adversary.

0 1 exfiltration

The malware hides behind numerous layers of encryption
and obfuscation and is capable of quietly stealing and ex-
filtrating sensitive information such as email from the vic-
tim’s computer

1 0 anti-detection,data theft

To communicate with the C&C - server , the Trojan makes
use of asymmetric encryption with a hardcoded pair of pri-
vate and public keys .

1 0 c&c

Table 3: Sample annotation disagreements. The column labeled DO reflects our classification, SN represents that
given by the SecureNLP organizers. The column labeled MAEC gives detail on the capability that DO thinks is
being described. When we feel confident that one of the annotations for a sentence is clearly right, it is shown in
bold. If not, neither is bold.

896



P R F1 sup
irrelevant 0.97 0.86 0.91 517
relevant 0.55 0.87 0.67 101

avg / total 0.90 0.86 0.87 618

Table 4: Performance against DO’s (possibly uninten-
tionally biased) annotations.

4 Discussion and conclusions

We suspected that the secure NLP task is difficult
(Lim et al., 2017). Results bear this out:

• Our post-hoc annotation study suggests that
it is indeed difficult to distinguish between
things done by attackers and things done by
malware.

• Often, the system described is distributed,
consisting of downloaded malware, websites
and C&C servers. The MAEC classification
and the SecureNLP annotation guidelines
emphasize measurable properties of malware
samples. This puts tension into the annota-
tion scheme and may well be a contributor to
annotation errors.

• A more extensive effort using multiple anno-
tators and reformulated guidelines could be
beneficial.

• With the technology that we used, analysts
relying on the classifier’s judgment as a filter
will still need to read approximately double
the number of sentences that actually contain
relevant information, and will miss 10% to
20% of the relevant material, which the clas-
sifier regards as irrelevant.

Acknowledgments

Thanks to Nathan Landon and colleagues at Digi-
tal Operatives for resources, feedback and encour-
agement. Particular thanks to Jordan Bryant for
detailed discussions. This work was funded, in
part, by IARPA’s Cyber-attack Automated Uncon-
ventional Sensor Environment (CAUSE) program.
Judgments and opinions are our own. Thanks to
two anonymous reviewers for thoughtful sugges-
tions on how to improve the paper.

References
Peter F. Brown, Peter V. deSouza, Robert L. Mer-

cer, Vincent J. Della Pietra, and Jenifer C. Lai.

1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. On-
line passive-aggressive algorithms. J. Mach. Learn.
Res., 7:551–585.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2010. Malware attribute enumeration and
characterization. Technical report, The MITRE Cor-
poration.

Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu, and
Chen Hui Ong. 2017. Malwaretextdb: A database
for annotated malware articles. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1557–1567, Vancouver, Canada. Association
for Computational Linguistics.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (CRFs).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Peter Phandi, Amila Silva, and Wei Lu. 2018.
Semeval-2018 Task 8: Semantic Extraction from
CybersecUrity REports using Natural Language
Processing (SecureNLP). In Proceedings of
International Workshop on Semantic Evaluation
(SemEval-2018), New Orleans, LA, USA.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast—but is it
good?: Evaluating non-expert annotations for nat-
ural language tasks. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 254–263, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

897


