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Abstract
In this paper we describe our system for
SemEval-2018 Task 7 on classification of se-
mantic relations in scientific literature for
clean (subtask 1.1) and noisy data (subtask
1.2). We compare two models for classifica-
tion, a C-LSTM which utilizes only word em-
beddings and an SVM that also takes hand-
crafted features into account. To adapt to the
domain of science we train word embeddings
on scientific papers collected from arXiv.org.
The hand-crafted features consist of lexical
features to model the semantic relations as
well as the entities between which the rela-
tion holds. Classification of Relations using
Embeddings (ClaiRE) achieved an F1 score of
74.89% for the first subtask and 78.39% for
the second.

1 Introduction

The goal of SemEval-2018 Task 7 is to extract and
classify semantic relations between entities into
six categories that are specific to scientific liter-
ature (Gábor et al., 2018). In this work, we fo-
cus on the subtask of classifying relations between
entities in manually (subtask 1.1) and automati-
cally annotated and therefore noisy data (subtask
1.2). Given a pair of related entities, the task is to
classify the type of their relation among the fol-
lowing options: Compare, Model-Feature,
Part Whole, Result, Topic or Usage. Re-
lation types are explained in detail in the task de-
scription paper (Gábor et al., 2018). The follow-
ing sentence shows an example of a Result rela-
tion between the two entities combination meth-
ods and system performance:

Combination methods are an effec-
tive way of improving system perfor-
mance.

This sentence is a good example for two chal-
lenges we face in this task. First, almost half of

all entities consist of noun phrases which has to be
considered when constructing features. Secondly,
the vocabulary is domain dependent and therefore
background knowledge should be adopted.

Previous approaches for semantic relation clas-
sification tasks mainly employed two strategies.
Either they made use of a lot of hand-crafted fea-
tures or they utilized a neural network with as few
background knowledge as possible. The winning
system of an earlier SemEval challenge on relation
classification (Hendrickx et al., 2009) adopted the
first approach and achieved an F1 score of 82.2%
(Rink and Harabagiu, 2010). Later, other works
outperformed this approach by using CNNs with
and without hand-crafted features (Santos et al.,
2015; Xu et al., 2015) as well as RNNs (Miwa and
Bansal, 2016).

Approach We present two approaches that
use different levels of preliminary information.
Our first approach is inspired by the winning
method of the SemEval-2010 challenge (Rink and
Harabagiu, 2010). It models semantic relations
by describing the two entities, between which the
semantic relation holds, as well as the words be-
tween those entities. We call those in-between
words the context of the semantic relation. We
classify relations by using an SVM on lexical fea-
tures, such as part-of-speech tags. Additionally
we make use of semantic background knowledge
and add pre-trained word embeddings to the SVM,
as word embeddings have been shown to improve
performance in a series of NLP tasks, such as sen-
timent analysis (Kim, 2014), question answering
(Chen et al., 2017) or relation extraction (Dligach
et al., 2017). Besides using existing word embed-
dings generated from a general corpus, we also
train embeddings on scientific articles that better
reflect scientific vocabulary.

In contrast, our second approach relies on word
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embeddings only, which are fed into a convo-
lutional long-short term memory (C-LSTM) net-
work, a model that combines convolutional and
recurrent neural networks (Zhou et al., 2015).
Therefore no hand-crafted features are used. Be-
cause both CNN and RNN models have shown
good performance for this task, we assume that a
combination of them will positively impact clas-
sification performance compared to the individual
models.

By combining lexical information and domain-
adapted scientific word embeddings, our system
ClaiRE achieved an F1 score of 74.89% for the
first subtask with manually annotated data and
78.39% for the second subtask with automatically
annotated data.

2 Features

In this section, we describe the features which are
used in our two approaches. All sentences are first
preprocessed before constructing boolean lexical
features on the one hand and word embedding vec-
tors on the other. Both feature groups are based on
the entities of relations as well as the context in
which those entities appear.

Apart from the Compare relation, all relation
types are asymmetric, and therefore the distinction
between start and end entity of a relation is impor-
tant. If entities appear in reverse order, that means
the end entity of a relation appears first in the sen-
tence, this is marked by a direction feature which
is part of the data set.

In our entrance example, combination meth-
ods denotes the start entity, system performance
the end entity, and are an effective way of im-
proving the context.

2.1 Preprocessing

Early experiments showed that it is beneficial to
filter the vocabulary of our data and reduce noise
by leaving out infrequent context words. The best
setting was found to be a frequency threshold of
5 on lemmatized words. Therefore we discard a
context word if its lemma appears less than 5 times
in the corpus of the respective subtask.

2.2 Context features

First we will explain feature construction based on
the context of a relation. Abbreviations for fea-
ture names are denoted in brackets. Context is
defined as the words between two entities. Early

tests showed that using those words described the
relation better than the words surrounding the re-
lation entities.

Lexical We construct several lexical boolean
features which are illustrated in Table 1. First
we apply a bag of words (bow) approach where
each lemmatized word forms one boolean feature,
which for example takes 1 as value if the lemma
improve is present and 0 if it is not. Second we de-
termine whether the context words contain certain
part-of-speech (POS) tags (pos), such as VERB.
POS-tagging was done with the help of SpaCy1

(v.2.0.2). To represent the structure of the con-
text phrase we add a path of POS tags feature,
which contains the order in which POS tags appear
(pospath). The distance feature depicts whether
the POS-path and therefore the context phrase has
a certain length (dist).

Additionally we add background knowledge by
extracting the top-level Levin classes of intermedi-
ary verbs from VerbNet2 (lc), a verb lexicon com-
patible with WordNet. It contains explicitly stated
syntactic and semantic information, using Levin
verb classes to systematically construct lexical en-
tries (Schuler, 2005). For example the verb im-
prove belongs to class 45.4, which is described
by Levin as consisting of “alternating change of
state“ verbs.3

Embeddings Aside from lexical features we
also use word embedding vectors to leverage in-
formation from the context of entities (c). For
each filtered context word we extract its word em-
beddding from a pre-trained corpus, where out-of-
vocabulary words (OOV) are represented by the
zero vector. The individual word vectors are later
applied to train a C-LSTM.

In contrast, for use in an SVM we found it ben-
eficial to represent the context embedding features
as the average over all context word embeddings.

2.3 Entity features

In the second set of features, we model the relation
entities themselves as they may be connected to
a certain relation class. For example, the token
performance or one form of it mostly appears as
an end entity of a Result relation, and in the rare

1https://spacy.io/
2http://verbs.colorado.edu/˜mpalmer/

projects/verbnet.html
3http://www-personal.umich.edu/

˜jlawler/levin.verbs
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Example Sentence: Combination methods are an effective way of improving system performance.

Lexical Feature Set Exemplary Boolean Features

BagOfWords (bow) an, be, effective, improve, of, way
POS tags (pos) ADJ, ADP, DET, NOUN, VERB
POS path (pospath) VDANAV
Distance (dist) 6
Levin classes (lc) 45

Entities without order (ents) combination methods, methods, system performance, performance
Start entity (startEnt) combination methods, methods
End entitiy (endEnt) system performance, performance
Similarity (sim100) 0.43
Similarity bucket (simb) q50

Table 1: Examples for lexical context and entity features.

case when it represents a start entity, it is almost
always part of a Compare relation. Therefore we
leverage information about entity position for the
creation of lexical and embedding entity features.

Lexical For the creation of boolean lexical fea-
tures, we first take the lowercased string of each
entity and construct up to three distinct features
from it. One feature which marks its general ap-
pearance in the corpus without order (ents) and
one each if it occurs as start (startEnt) or end
(endEnt) entity of a relation, taking its direction
into account. Additionally we add the head noun
to the respective feature set if the entity consists of
a nominal phrase to create greater overlap between
instances.

Furthermore we measure the semantic similar-
ity of the relation entities using the cosine of the
corresponding word embedding vectors (sim100).
While the cosine takes every value from [-1, 1] in
theory, we cut off after two digits to reduce the fea-
ture space and get 99 boolean similarity features
for our corpus. To again enable learning across
instances we additionally discretize the similar-
ity range and form another five boolean similar-
ity features (simb) that capture into which of the
following buckets the similarity score falls: q0 =
[−1, 0), q25 = [0, 0.25), q50 = [0.25, 0.5), q75 =
[0.5, 0.75), q100 = [0.75, 1] (values below zero
are very rare in this corpus).

Embeddings Similar to the context features we
also want to add word embeddings of entities to
our entity feature set. This is not straighforward
as more than 44% of all entities consist of nomi-
nal phrases, while a word embedding usually cor-
responds to a single word. By way of comparison,
the proportion of nominals in the relation classifi-
cation corpus of the SemEval-2010 challenge was

only 5%. Thus we tested different strategies to ob-
tain a word embedding for nominal phrases and
found that averaging over the individual word vec-
tors of the phrase yielded the best results for this
task. These word embeddings for start (es) and
end (ee) entities of relations were then presented
to our two classification methods, which will be
described in detail in the following section.

3 Classification Methods

We utilize two different models for classifying se-
mantic relations: an SVM which incorporates both
the lexical and embedding features described in
Section 2 and a Convolutional Long Short Term
Memory (C-LSTM) neural network that only uses
word embedding vectors

To fully exploit our hand-crafted lexical fea-
tures we employ a traditional classifier. In compar-
ison to Naive Bayes, Decision Trees and Random
Forests we found a Support Vector Machine to per-
form best for this task. Instead of utilizing the de-
cision function of the SVM to predict test labels
we decided to make use of the probability esti-
mates according to Wu et al. (2004) as this proved
to be more successful. As mentioned before, the
lexical features are fed into the SVM as boolean
features whereas the word embeddings are nor-
malized using MinMax-Scaling to the range [0, 1]
to make it easier for the SVM to handle both fea-
ture groups.

In contrast to SVM, neural network models do
not necessarily rely on handcrafted features and
are therefore faster to implement. We experiment
with standard C-LSTM (Zhou et al., 2015) which
extracts a sentence representation by combining
one-dimensional convolution and an LSTM net-
work and uses the representation to perform a clas-
sification.
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label subtask 1.1 subtask 1.2 total

COMPARE 95 ( 8%) 41 ( 3%) 136 ( 5%)
MODEL-F. 326 (27%) 174 (14%) 500 (20%)
PART W. 234 (19%) 196 (16%) 430 (17%)
RESULT 72 ( 6%) 123 (10%) 195 ( 8%)
TOPIC 18 ( 1%) 243 (20%) 261 (11%)
USAGE 483 (39%) 468 (38%) 951 (38%)

Table 2: Distribution of class labels for training data
as absolute and relative values.

4 Evaluation

After describing the two models we employ for re-
lation classification, we now portray the data set
we use and present results for both SVM and C-
LSTM as micro-F1 and macro-F1. The latter is
the official evaluation score of the SemEval Chal-
lenge. We describe the experimental setup for both
models and compare different feature sets and pre-
trained embeddings.

4.1 Data and Background Knowledge
We evaluate our approach on a set of scientific ab-
stracts, Dtest. It consists of 355 semantic relations
for each subtask which are similarly distributed as
its respective training data set. As training data we
received 350 abstracts of scientific articles per sub-
task, which resulted in 1228 labeled training rela-
tions for subtask 1.1 and 1245 training instances
for subtask 1.2 (c.f. Table 2). We combine data
sets of both subtasks for training, resulting in 2473
training examples in total (Dtrain).

Background Knowledge In our experiments,
we compare different pre-trained word embed-
dings as a source of background knowledge. As
a baseline, we employ a publicly available set of
300-dimensional word embeddings trained with
GloVe (Pennington et al., 2014) on the Common
Crawl data4 (CC). To better reflect the semantics
of scientific language, we trained our own scien-
tific embeddings using word2vec (Mikolov et al.,
2013) on a large corpus of papers collected from
arXiv.org5 (arXiv).

In order to create the scientific embeddings, we
downloaded LATEX sources for all papers published
in 2016 on arXiv.org using the provided dumps.6

After originally trying to extract the plain text
from the sources, we found that it was more fea-
sible to first compile the sources to pdf (exclud-

4http://commoncrawl.org/
5https://arxiv.org
6https://arxiv.org/help/bulk_data

context + entities
data macro F1 micro F1 macro F1 micro F1

1.1 44.35 58.87 50.30 65.63
+1.2 47.43 61.69 64.38 69.30

CC 51.79 65.07 72.47 74.93
arXiv 52.15 65.92 74.89 76.90

Table 3: SVM results for subtask 1.1.

context + entities
data macro F1 micro F1 macro F1 micro F1

1.2 67.25 69.75 72.48 80.39
+1.1 64.54 69.30 74.69 83.10

CC 62.64 70.70 75.87 84.79
arXiv 63.07 70.70 78.39 83.10

Table 4: SVM results for subtask 1.2.

ing all graphics etc.) and then use pdftotext7 to
convert the documents to plain text. This resulted
in a dataset of about 166 000 papers. Using gen-
sim (Řehůřek and Sojka, 2010), for each docu-
ment we extracted tokens of minimum length 1
with the wikicorpus tokenizer and used word2vec
to train 300-dimensional word embeddings on the
data. We kept most hyper-parameters at their de-
fault values, but limited the vocabulary to words
occurring at least 100 times in the dataset, reduc-
ing for example the noise introduced by artifacts
from equations.

4.2 Parameters and Results
After an extensive grid search per cross validation
the best parameters for the SVM were found to be
a rbf-kernel with C = 100 and γ = 0.001 for both
tasks.

Results of the SVM for subtask 1.1. are shown
in Table 3. Adding entity features proves to be
very beneficial compared to using only context
features, as we could improve macro-F1 by 12
points on average. Results are further improved
by enlarging the data set with the training samples
of subtask 1.2 and by adding word embeddings to
the feature set. While adding the CC embeddings
enhances the micro-F1 by more than 4 points, our
domain-adapted arXiv embeddings prove to per-
form even better and deliver the best result with
a macro-F1 score of 74.89% and a micro-F1 of
76.90%.

Similar observations can be made for subtask
1.2., as is pictured in Table 4.

Due to space limitations we publish parameter
7https://poppler.freedesktop.org
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details and elaborate results for the C-LSTM on
arXiv.org (Hettinger et al., 2018). In comparison
to the SVM, which additionally uses hand-crafted
features, the C-LSTM achieves lower scores. For
arXiv embeddings it reaches a macro-F1 of 63.3%
for the first subtask and 68.0% for the second.

5 Discussion

We briefly discuss our approach during the train-
ing phase of the SemEval-Challenge and how label
distribution and evaluation measure influences our
results. Ahead of the final evaluation phase where
the concealed test data Dtest was presented to the
participants we were given a preliminary test par-
tition Dpre as part of the training data Dtrain. To
be able to estimate our performance we evaluated
it on Dpre as well as for a 10-fold stratified cross
validation setting. We chose this procedure to be
sure to pick the best system for submission at the
challenge.

As some classes were strongly underrepre-
sented in the training corpus and Dpre, we as-
sumed that this is also true for the final test set
Dtest. When in doubt we therefore chose to opti-
mize according toDpre as cross validation is based
on a slightly more balanced data set (of train data
for subtask 1.1 + 1.2). The best system we sub-
mitted for subtask 1.1 of the challenge achieved a
macro-F1 of 75.05% on Dpre during the training
phase which shows that we were able to estimate
our final result pretty closely.

During training we also noticed that for heavily
skewed class distributions as in this case, macro-
F1 as an evaluation measure strongly depends on
a good prediction of very small classes. For exam-
ple, macro-F1 of subtask 1.1 increases by 5 points
if we correctly predict one Topic instance out of
three instead of none. Thus we pick a configura-
tion that optimizes the small classes.

We also omitted some lexical feature sets from
our system as performance on the temporary and
final test set showed that they did not improve re-
sults. These features were hypernyms of context
and entity tokens from WordNet and dependency
paths between entities. Using tf-idf normalization
instead of boolean for lexical features also wors-
ened our results.

6 Conclusion

In this paper, we described our SemEval-2018
Task 7 system to classify semantic relations in sci-

entific literature for clean (subtask 1.1) and noisy
(subtask 1.2) data. We constructed features based
on relation entities and their context by means of
hand-crafted lexical features as well as word em-
beddings. To better adapt to the scientific do-
main, we trained scientific word embeddings on
a large corpus of scientific papers obtained from
arXiv.org. We used an SVM to classify rela-
tions and additionally contrasted these results with
those obtained from training a C-LSTM model on
the scientific embeddings. We were able to ob-
tain a macro-F1 score of 74.89% on clean data
and rank 4th out of 28 and 78.39% on noisy data,
which resulted in a 6th place out of 20.

In future work, we will improve the tokeniza-
tion of the scientific word embeddings and also
take noun compounds into account, as they make
up a large part of the scientific vocabulary. We
will also investigate more complex neural network
based models, that can leverage additional infor-
mation, for example relation direction and POS
tags. Some minor changes we applied to the fea-
ture generation during the post-evaluation phase
and which further improved our results by more
than 2% are published on arXiv.org together with
more detailed evaluation (Hettinger et al., 2018).
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