
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 725–731
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

CRIM at SemEval-2018 Task 9: A Hybrid Approach to Hypernym
Discovery

Gabriel Bernier-Colborne
g.b.colborne@gmail.com

Caroline Barrière
caroline barriere@yahoo.ca

Abstract

This report describes the system developed by
the CRIM team for the hypernym discovery
task at SemEval 2018. This system exploits a
combination of supervised projection learning
and unsupervised pattern-based hypernym dis-
covery. It was ranked first on the 3 sub-tasks
for which we submitted results.

1 Introduction

The goal of the hypernym discovery task at Sem-
Eval 2018 is to predict the hypernyms of a query
given a large vocabulary of candidate hypernyms.
A query can be either a concept (e.g. cocktail or
epistemology) or a named entity (e.g. Craig An-
derson or City of Whitehorse). Two types of data
were provided to train the systems: a large unla-
beled text corpus and a small training set of exam-
ples comprising a query and its hypernyms. More
details on this task may be found in the task de-
scription paper (Camacho-Collados et al., 2018).

The system developed by the CRIM team for
the task of hypernym discovery exploits a com-
bination of two approaches: an unsupervised,
pattern-based approach and a supervised, projec-
tion learning approach. These two approaches are
described in Sections 2 and 3, then Section 4 de-
scribes our hybrid system and Section 5 presents
our results.

2 Pattern-Based Hypernym Discovery

Pattern-based approaches to relation extraction
have been discussed in the literature for quite some
time (see surveys by Auger and Barrière (2008)
and Nastase et al. (2013)). They can be used to dis-
cover various relations, including domain-specific
ones (Halskov and Barrière, 2008) and more gen-
eral ones, such as hypernymy. The pattern-
based approach to hypernym discovery was pi-
oneered by Hearst (1992), who defined specific

textual patterns (e.g. Y such as X) to mine hy-
ponym/hypernym pairs from corpora.

This approach is known to suffer from low re-
call because it assumes that hyponym/hypernym
pairs will occur together in one of these patterns,
which is often not the case. For instance, using the
training data of sub-task 1A, we found that the ma-
jority of training pairs never co-occur within the
same paragraph in corpus 1A, let alone within a
pattern that suggests hypernymy.

To increase recall, we extend the basic pattern-
based approach to hypernym discovery in two
ways. First, we identify co-hyponyms for each
query and add the hypernyms discovered for these
terms to those found for the query. These co-
hyponyms are identified using patterns, and fil-
tered based on distributional similarity using the
embeddings described in Section 3.3. Further-
more, we discover additional hypernyms using a
method based on the following assumptions: most
multi-word expressions are compositional, and the
prevailing head-modifier relation is hypernymy.

The co-hyponym patterns we use are limited to
enumeration patterns (e.g. X1, X2 and X3). For
hypernyms, we use an extended set of Hearst-like
patterns which we selected empirically (e.g. Y
such as X, Y other than X, not all Y are X, Y in-
cluding X, Y especially X, Y like X, Y for example
X, Y which includes X, X are also Y, X are all Y,
not Y so much as X).

Our pattern-based hypernym discovery algo-
rithm can be defined as follows: given a query q,

1. Create the empty set Q, which will contain
an extended set of queries.

2. Search for the co-hyponym patterns in the
corpus to discover co-hyponyms of q. Add
these to Q and store their frequency (number
of times a given co-hyponym was found us-
ing these patterns).

725



3. Score each co-hyponym q′ ∈ Q by multiply-
ing the frequency of q′ by the cosine similar-
ity of the embeddings of q and q′. Rank the
co-hyponyms in Q according to this score,
keep the top n,1 and discard the rest.

4. Add the original query q to Q.

5. Create the empty set of hypernyms Hq.

6. For each query q′ ∈ Q, search for the hyper-
nym patterns in the corpus to discover hyper-
nyms of q′. Add these to Hq.

7. Add the head of each term in Hq to this set,
as well as the head of the original query q.

8. Score each candidate c ∈ Hq by multiplying
its normalized frequency2 by the cosine simi-
larity between the embeddings of c and q, and
rank the candidates according to this score.

Although the pattern-based search for both co-
hyponyms and hypernyms can find terms not in-
cluded in the provided vocabulary (which could
also be useful), we discarded out-of-vocabulary
terms because we had not learned embeddings for
them.

3 Learning Projections for Hypernym
Discovery

Several supervised learning approaches based on
word embeddings have recently been developed
for the task of hypernym detection and the related
task of hypernym discovery (Camacho-Collados,
2017). The general idea is to learn a function that
takes as input the word embeddings of a query q
and a candidate hypernym h and outputs the like-
lihood that there is a hypernymy relationship be-
tween q and h. To discover hypernyms for a given
query q (rather than classify a given pair of words),
we apply this decision function to all candidate hy-
pernyms, and select the most likely candidates (or
all those classified as hypernyms).

This decision function can be learned in a su-
pervised fashion using examples of pairs of words
that are related by hypernymy and pairs that are
not. The supervised model can take as input a
combination of the embeddings of q and h, and
different ways of combining the embeddings for
this purpose have been used (Baroni et al., 2012;

1We set n = 5 empirically.
2Frequencies were normalized in the range [0.05, 1.0].

Roller et al., 2014; Weeds et al., 2014). In related
work, models have been proposed that learn to
project the embedding of q such that its projection
is close to that of its hypernym h (Fu et al., 2014;
Yamane et al., 2016; Espinosa-Anke et al., 2016).
This has been termed projection learning (Ustalov
et al., 2017). The decision function is then based
on how close the projection of q is to a given can-
didate h.

Fu et al. (2014) introduced a model that learns
multiple projection matrices representing different
kinds of hypernymy relationships. In this model,
each (q, h) pair is first assigned to a cluster based
on their vector offsets, then projection matrices are
learned for each cluster. Based on this work, Ya-
mane et al. (2016) proposed a model that jointly
learns the clusters and projection matrices.

We use a similar method to learn projections
for hypernym discovery, but our approach dif-
fers from that of Yamane et al. (2016) in sev-
eral ways: our model performs a soft clustering
of query-hypernym pairs rather than a hard clus-
tering, and we modified the training algorithm in
several ways.

3.1 The Model
Given a query q and a candidate hypernym h, the
model retrieves their embeddings eq, eh ∈ Rd×1

using a lookup table. These embeddings were
learned beforehand on a large unlabeled text cor-
pus (i.e. the corpora provided for this task).
The embedding eq is then multiplied by a 3-D
tensor containing k square projection matrices
φi ∈ Rd×d for i ∈ {1, . . . , k}, producing a ma-
trix P ∈ Rk×d containing the projections of eq:

Pi = (φi · eq)T (1)

The model then checks how close each of the k
projections of eq are to eh by taking the dot prod-
uct:

s = P · eh (2)

The column vector s ∈ Rk×1 is then fed to
an affine transformation and a sigmoid activation
function (in other words, a logistic regression clas-
sifier) to obtain an estimate of the likelihood that q
and h are related by hypernymy:

y = σ(W · s+ b) (3)

To discover the hypernyms of a given query, we
compute the likelihood y for all candidates and se-
lect the top-ranked ones.

726



3.2 The Training Algorithm

We train the model using negative sampling: for
each positive example of a (query, hypernym) pair
in the training data, we generate a fixed number
m of negative examples by replacing the hyper-
nym with a word randomly drawn from the vocab-
ulary.3 We then train the model to output a likeli-
hood (y) close to 1 for positive examples and close
to 0 for negative examples. This is accomplished
by minimizing the binary cross-entropy of the pos-
itive and negative training examples. For a partic-
ular example, this is computed as follows:

H(q, h, t) = t× log(y) + (1− t)× log(1− y)

where q is a query, h is a candidate hypernym, t
is the target (1 for positive examples, 0 for neg-
ative), and y is the likelihood predicted by the
model. If we sum H for every example in the
training set D (containing both the positive and
negative examples), we obtain the cost function
J =

∑
(q,h,t)∈DH(q, h, t). This function is min-

imized by gradient descent, using the Adam opti-
mizer4 (Kingma and Ba, 2014).

A few details of the setup we use for training
are worth mentioning:

• We use a fixed number of projections (k)
rather than the dynamic clustering algorithm
of Yamane et al. (2016). For our official runs,
we used k = 24.

• The word embeddings are normalized to unit-
length before training.

• For the initialization of the projection matri-
ces, we add random noise to an identity ma-
trix, which means that at first, the projections
of a query are simply k randomly corrupted
copies of the query’s embedding.

• We train the model on random mini-batches
containing 32 positive examples and 32 ×m
negative examples (m being the number of
negative examples).

• Dropout is applied to the embeddings eq and
eh and the query projections P . For regular-
ization, we also use gradient clipping, as well
as early stopping.

3Different ways of selecting the negative examples for this
purpose have been proposed. See Ustalov et al. (2017).

4We use β1 = β2 = 0.9.

• We sample positive examples using a func-
tion based on the frequency of the hypernyms
in the training data, such that we subsample
(q, h) pairs where h occurs often in the train-
ing data. The probability of sampling (q, h)
is given by:

P (q, h) =

√
minh′∈D(freq(h′))

freq(h)

where freq(h) returns the frequency of h in
the training data.5

• The word embeddings are optimized (or
“fine-tuned”) during training.

• We use a multi-task learning setup whereby
we train two separate logistic regression clas-
sifiers, each with their own parameters W
and b, and use one for queries that are named
entities, and the other for queries that are con-
cepts.6 The rest of the parameters (i.e. the
projection matrices φ) are shared.

The various hyperparameters mentioned above
were tuned on the trial set (i.e. development set)
provided for sub-task 1A.

3.3 The Word Embeddings
We learned term embeddings for all queries and
candidates using the pre-tokenized corpora pro-
vided for sub-tasks 1A, 2A, and 2B. We pre-
processed the corpora by converting all charac-
ters to lower case and replacing multi-word terms
found in the vocabulary (candidates and lower-
cased queries) with a single token, starting with
trigrams, then bigrams.7 We then used the skip-
gram algorithm with negative sampling (Mikolov
et al., 2013) to learn the embeddings.

3.4 Data Augmentation
For one of our 2 runs, we experimented with a
method to add synthetic examples to the positive
examples in the training set provided (D). This

5On the training data of subtask 1A, this produces a sam-
pling probability of 0.06 for the most frequent hypernym
(person), while the least frequent hypernyms have a sampling
probability of 1.

6Multi-task learning was not used on subtask 2A, because
all queries were concepts.

7It is worth noting that a small number of candidates (e.g.
less than 0.1% of candidates on corpus 1A) had a frequency
of 0 in this preprocessed corpus, so we could not train an
embedding for these candidates. These appear to be terms
that always occur within a longer candidate.

727



was meant to provide additional training data and
avoid overfitting the embeddings of the words in
the training set. We use 2 heuristics to generate
these synthetic examples:

1. Given a positive example (q, h) ∈ D, add
(q′, h) to the positive examples, where q′ is
the nearest neighbour of q, based on the co-
sine similarity of the embeddings of all the
words in the vocabulary. This was motivated
by the observation that nearest neighbours
were often co-hyponyms.

2. Given a query q and the set Hq containing
the hypernyms of q according to the train-
ing data, compute the α nearest neighbours
of each hypernym in Hq, and for each neigh-
bour that is shared by at least 2 of the hyper-
nyms in Hq, add that neighbour to Hq.8

Negative examples are generated for each of the
synthetic examples, as with the actual positive ex-
amples in the training set.

4 Hybrid Hypernym Discovery

Our hybrid approach to hypernym discovery com-
bines supervised projection learning and unsuper-
vised pattern-based hypernym discovery (see Sec-
tions 2 and 3). To combine the outputs of the 2
systems, we take the top 100 candidates accord-
ing to each,9 normalize their scores and sum them,
then rerank the candidates according to this new
score. This reranking function favours candidates
found by both systems, but also gives a chance to
strong candidates found by a single system.

5 Experiments and Results

We submitted 2 runs on 3 of the 5 sub-tasks: 1A
(general), 2A (medical), and 2B (music). The sys-
tem outputs its top 15 predictions in all cases. The
difference between the 2 runs is that for run 1, we
used data augmentation (see Section 3.4) to train
the supervised system – the same unsupervised
output was used for both runs. We also submitted
one run for cross-evaluation (training on 1A, but
testing on 2A or 2B). First, we added the queries
and candidates of 2A or 2B to those of 1A be-

8We use α = 2.
9Analyzing the individual and combined recall of the two

systems at various ranks indicated that using more than 100
candidates would not increase recall.

fore training embeddings on the corpus of 1A.10

These embeddings were used to train the super-
vised model on the 1A training data. We then com-
bined the predictions of the supervised and unsu-
pervised models on test set 2A/2B.11

A summary of our system’s results is shown in
Table 1. This table shows the mean average preci-
sion (MAP), mean reciprocal rank (MRR) and pre-
cision at rank 1 (P@1) of our system and those of
the 2 strongest baselines which were computed by
the task organizers. The first is a supervised base-
line12 and the second is based on the most frequent
hypernyms in the training data. For more details,
see (Camacho-Collados et al., 2018).

Our hybrid system was ranked 1st on all three
sub-tasks for which we submitted runs. As shown
in Table 1, the scores obtained using this system
are much higher than the strongest baselines for
this task. Furthermore, it is likely that we could
improve our scores on 2A and 2B, since we only
tuned the system on 1A.

If we compare runs 1 and 2 of our hybrid sys-
tem, we see that data augmentation improved our
scores slightly on 1A and 2B, and increased them
by several points on 2A.

Our cross-evaluation results are better than
the supervised baseline computed using the nor-
mal evaluation setup, so training our system on
general-purpose data produced better results on a
domain-specific test set than a strong, supervised
baseline trained on the domain-specific data.

Table 1 also shows the scores we would have
obtained on the test set if we had used only the
unsupervised (pattern-based) or supervised (pro-
jection learning) parts of our system. Note that the
unsupervised system outperformed all other unsu-
pervised systems evaluated on this task, and even
outperformed the supervised baseline on 2A.

Combining the outputs of the 2 systems im-
proves the best score of either system on all test
sets, sometimes by as much as 10 points.

Notice also that the results obtained using only
the supervised system indicate that data augmen-
tation had a positive effect on our 2A scores only
(compare runs 1 and 2), although our tests on the

10Several of the domain-specific queries that were added to
the vocab were not found in corpus 1A. We decided to only
use the output of the unsupervised system in these cases.

11Note that the unsupervised system used the corpora of
2A/2B, but no supervised learning was carried out on the
training data of 2A/2B.

12This is a “vanilla” version of TaxoEmbed (Espinosa-
Anke et al., 2016).

728



Test set 1A Test set 2A Test set 2B
MAP MRR P@1 MAP MRR P@1 MAP MRR P@1

Hybrid run 1 19.78 36.10 29.67 34.05 54.64 49.20 40.97 60.93 48.20
Hybrid run 2 19.54 35.94 29.67 31.54 46.19 41.40 40.88 60.18 47.60
Supervised run 1 19.09 34.53 28.33 30.63 44.18 40.00 38.24 53.45 38.20
Supervised run 2 19.11 34.99 28.80 28.51 37.63 34.40 39.95 57.34 43.00
Unsupervised 7.36 15.44 10.73 21.74 47.85 38.60 15.86 34.98 28.60
BaselineSUP 10.60 23.83 19.73 18.84 41.07 35.40 12.99 39.36 33.20
BaselineMFH 8.77 21.39 19.80 28.93 35.80 32.60 33.32 51.48 36.20
Hybrid cross-eval N/A N/A N/A 27.18 49.51 43.20 21.02 37.55 29.20
Supervised cross-eval N/A N/A N/A 22.89 38.30 30.60 16.80 29.28 19.20
BaselineSUP cross-eval N/A N/A N/A 11.66 23.83 17.20 6.31 16.54 9.60

Table 1: Our system’s results on test sets 1A, 2A, and 2B. The runs we submitted are the hybrid runs. The
supervised and unsupervised runs were produced by using our 2 sub-systems separately. BaselineSUP is a strong,
supervised baseline and BaselineMFH is the most-frequent-hypernym baseline. Cross-evaluation results were
obtained by training the supervised system on 1A and evaluating on 2A or 2B.

trial set suggested it would also have a positive
effect on our 1A scores. Given this observation,
we find it somewhat surprising that run 1 is the
best on all 3 test sets when we use the hybrid sys-
tem. One possible explanation is that adding the
synthetic examples makes the errors of the super-
vised system more different from those of the un-
supervised system, and that this in turn makes the
ensemble method more beneficial, but we haven’t
looked into this.

5.1 Ablation Tests

To assess the influence of different aspects of the
supervised system and its training algorithm, we
carried out a few simple ablation tests on sub-
task 1A. The baseline for these tests is our super-
vised projection learning system – we did not ap-
ply pattern-based hypernym discovery for any of
these tests. We used the setup of run 1 (with data
augmentation) and used the trial set for early stop-
ping. We conducted the following tests (one by
one, without combining any of the ablations):

1. No subsampling: we sample positive exam-
ples uniformly from the training set.

2. No MTL: instead of multi-task learning
(MTL), we use a single classifier for both
named entities and concepts.

3. Random init: the weights of φ are initialized
randomly, instead of adding random noise to
an identity matrix.

4. Single projection: k = 1 instead of 24.

5. Single neg. example: m = 1 instead of 10.

6. Frozen embeddings: the word embeddings
are not fine-tuned during training.

The results obtained on test set 1A are shown in
Table 2.13 These results show that 2 of the tech-
niques we used, namely subsampling and multi-
task learning, actually harmed our system’s per-
formance on test set 1A, although our experiments
on the trial set suggested that they would be ben-
eficial. This may be due to the small size of the
trial set (i.e. 50 queries) or some difference in the
underlying distributions of the trial and test sets.

MAP MRR P@1
Baseline 19.05 34.36 27.93
No subsampling 19.47 35.56 29.33
No MTL 19.22 35.09 28.67
Random init 16.54 30.60 24.93
Single projection 12.88 26.50 23.33
Single neg. example 11.58 21.75 15.20
Frozen embeddings 8.01 17.15 11.67

Table 2: Results of ablation tests on test set 1A. The
baseline is our supervised system (run 1).

On the other hand, fine-tuning the word embed-
dings during training seems to be one of the keys
to the success of this approach, as are the use of
multiple projection matrices, and the sampling of

13Note that the baseline results are slightly different than
those shown in Table 1 for run 1 (supervised), because we re-
trained the model to get the results on the trial set, and a ran-
dom number generator used during training was not seeded
with a fixed value.

729



Query Predictions
Suzy Favor Hamilton athlete, sportsperson, person, competitor, sport, olympic sport, . . .
wicketkeeper cricketer, sportsperson, athlete, competitor, footballer, person, . . .
aquamarine stone, crystal, precious stone, pebble, gem, rock, gemstone, . . .
tenpence monetary unit, metal money, note of hand, person, silver coin, coin, . . .
vegetarian dessert, dish, recipe, veggie, food product, organic food, meal, salad, . . .
Local Group voluntary association, locale, coalition, club, country, mapmaking, . . .
Swarthmore university, college, educational institution, school, student, . . .
hypostasis figure of speech, intellection, philosophy, ordinary language, . . .

Table 3: Examples of predictions made by our system (run 1) on the test queries of 1A. Correct predictions are in
bold. Midline separates high-accuracy examples from low-accuracy examples.

multiple negative examples for each positive ex-
ample. The way we initialize φ also seems to have
helped quite a bit.

It is important to remember that a more thor-
ough exploration of hyperparameter space would
produce results very different from those of sim-
ple ablation tests such as these.

It is worth noting that our supervised model out-
performs the supervised baseline provided for this
task (see Table 1) even when it exploits a single
projection matrix, however the difference in scores
between these 2 systems is only 2 or 3 points, de-
pending on the evaluation metric.

We should also note that the supervised model is
prone to overfitting, and we found early stopping
to be particularly important.

5.2 Qualitative Analysis
We manually inspected the results of run 1 on
some of the 1A test queries to get a better idea
of the ability of the model to discover hypernyms,
and to identify potential sources of errors. Table 3
shows a few of these test cases. Below we will
outline a few of our observations, and will refer
repeatedly to examples in Table 3.

The model is indeed able to discover valid hy-
pernyms for both concepts and named entities. It
seems that it can even handle very low-frequency
queries in some cases (Suzy Favor Hamilton oc-
curs only 5 times in the corpus), but we have not
had the chance to investigate how sensitive the
model is to term frequency.

Lexical memorization (Levy et al., 2015) can
sometimes be observed. For example, person is
the most frequent hypernym in the 1A training
data, and the model often predicts this candidate
incorrectly, even when its other top predictions are
completely unrelated (e.g. tenpence).

The model can discover hypernyms of different

senses of the same query (e.g. aquamarine, for
which the top 15 predictions contain the valid hy-
pernyms spectral color and primary color), and
it sometimes discovers hypernyms for senses that
are not represented in the gold standard (e.g. there
is a college named Swarthmore, and hypostasis
has senses related to linguistics and philosophy). It
is likely that the senses that dominate the model’s
top predictions for a given query are its most fre-
quent senses in the corpus.

The case of vegetarian suggests that syntactic
ambiguity is a source of errors: the predicted hy-
pernyms include some that might be considered
valid for the query vegetarian food, where vege-
tarian is an adjective, but not for the noun vege-
tarian.

Lastly, the model sometimes confuses concepts
and named entities (e.g. Local Group, which
refers to a group of galaxies). Preserving the true
case of the characters in the corpus would mitigate
this issue.

6 Concluding Remarks

Our approach to hypernym discovery combines
a novel supervised projection learning algo-
rithm and an unsupervised pattern-based algo-
rithm which exploits co-hyponyms in its search for
hypernyms. This hybrid approach produced very
good results on the hypernym discovery task, and
was ranked first on all 3 sub-tasks for which we
submitted results.

Acknowledgments

This research was conducted while both authors
were affiliated with the Computer Research Insti-
tute of Montréal (CRIM), and was supported by
the Natural Sciences and Engineering Research
Council of Canada.

730



References
Alain Auger and Caroline Barrière. 2008. Pattern-

based approaches to semantic relation extraction:
A state-of-the-art. Terminology, Special Issue on
Pattern-based Approaches to Semantic Relation Ex-
traction, 14(1):1–19.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 23–32. Association for Computational Lin-
guistics.

José Camacho-Collados. 2017. Why we have
switched from building full-fledged taxonomies to
simply detecting hypernymy relations. CoRR,
abs/1703.04178.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Luis Espinosa-Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016. Su-
pervised distributional hypernym discovery via do-
main adaptation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 424–435.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 1199–1209.

Jakob Halskov and Caroline Barrière. 2008. Web-
based extraction of semantic relation instances for
terminology work. Terminology, 14(1):20–44.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics -
Volume 2, volume 2, pages 539–545. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional meth-
ods really learn lexical inference relations? In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
970–976.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Vivi Nastase, Preslav Nakov, Diarmuid Ó Séaghdha,
and Stan Szpakowicz. 2013. Semantic Relations Be-
tween Nominals. Morgan & Claypool, Toronto.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014.
Inclusive yet selective: Supervised distributional hy-
pernymy detection. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1025–
1036.

Dmitry Ustalov, Nikolay Arefyev, Chris Biemann, and
Alexander Panchenko. 2017. Negative sampling im-
proves hypernymy extraction based on projection
learning. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages
543–550, Valencia, Spain. Association for Compu-
tational Linguistics.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259. Dublin City University and Association
for Computational Linguistics.

Josuke Yamane, Tomoya Takatani, Hitoshi Yamada,
Makoto Miwa, and Yutaka Sasaki. 2016. Distribu-
tional hypernym generation by jointly learning clus-
ters and projections. In Proceedings of COLING
2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1871–
1879.

731


