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Abstract

We present our submission to the Semeval
2018 task on emoji prediction. We used a ran-
dom forest, with an ensemble of bag-of-words,
sentiment and psycholinguistic features. Al-
though we performed well on the trial dataset
(attaining a macro f-score of 63.185 for En-
glish and 81.381 for Spanish), our approach
did not perform as well on the test data. We
describe our features and classification proto-
col, as well as initial experiments, concluding
with a discussion of the discrepancy between
our trial and test results.

1 Introduction

Written digital communication is increasingly per-
vaded by the use of emoji. Classic NLP sys-
tems are not well geared to handle them. Lin-
guists are still working out how to treat them
(Stark and Crawford, 2015; Danesi, 2016). Even
their users may disagree on meaning (Tigwell and
Flatla, 2016; Miller et al., 2016). A simple ap-
proach could be to ignore all emoji and concen-
trate on the words of a text, however this approach
may miss valuable meaning that can be obtained
by treating the emoji as semantic units.

The emoji prediction task (Barbieri et al., 2018,
2017), encourages research into the creation of
text classification systems which can identify
which emoji was present in a tweet. This could
lead to automated suggestion systems for emoji,
as well as improving the NLP communities under-
standing of how to deal with emoji computation-
ally.

2 Data Acquisition + Preprocessing

The dataset was compiled between October 2015
and May 2016 (Barbieri et al., 2018). Training,
trial, and test data emerge from a 80:10:10 split
based on chronological order. We followed the

Emoji top 5 words
love heart my family ve
obsessed wcw heaven foodporn view
lmao funny lmfao lol hilarious
pink breast sanfranciscoengagement loveal-
waysyje strides
lit fire mixtape heat flames
802-3037 dickensfranklin dickensofachrist-
mas bagsbycab 7171
sunglasses shades cool risky coolin
sparkle magical pixie magic getonshimmur
royals autism bbn autismspeaks forever-
royal
kisses kiss princessmailyana smooches
smooch
: :@ bvillain shredforaliving gdlfashion
merica usa ivoted imwithher election2016
sunshine sun sunny soakin beachin
purple endalz purplerain alzheimer’s relay
mividaesunatombola multi-level silver-
criketgentlemensclub azek wink
facts rns realtalk salute t3t
djsty cheesin braces strasberg fcpx
christmas merry christmastree tree tis
opus : :@ grigsby cred
martian neh silly cray jewelrydesigner

Table 1: The top 5 words according to our class occur-
rence features for each emoji.

organisers instructions to obtain the training data,
however we were only able to extract 491,486
tweets as some had been removed by their authors.
We tokenised the tweets using the NLTK tweet to-
keniser (Bird et al., 2009), but did not perform any
further normalisation.
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3 Features

3.1 Word-Class Occurrences

We created a set of features that describe which
words occur with each emoji. We created a map
describing how often each token occurred along-
side each class. Let V be the vocabulary in terms
of tokens. Let C be the number of total classes,
where each class represents one emoji. We cre-
ated a matrix M with size |V |×|C| such that each
element Mi,j indicates the number of times that to-
ken Vi occurs with class Cj . This allowed us to see
whether one token occurred mostly in the context
of one or two classes, or whether it occurred with
similar frequency across all classes. This metric is
similar to document frequency in information re-
trieval.

To further improve our metric, we applied a
normalisation transformation to the rows (scaling
each row by the total size of the row):

M ′
ij =

Mij

|C|∑
k=1

Mik

This method favoured lower frequency terms
(i.e., a hashtag that occurs only a few times with
one emoji), so we applied a further transformation
to multiply each row by the log frequency of oc-
currence of the token:

M ′′
ij = M ′

ij ×
|C|∑

k=1

lnMik

These features produced intuitive results. The
top words for a few select classes are as fol-
lows ( : love, heart, my, family; : sunglasses,
shades, cool; : christmas, merry, #christmas-
tree)

These features are at the token level, however
our classification labels are at the level of the sen-
tence. To convert these features to the sentence
level, we used two strategies: average and max.
We calculated the average vector as the mean of
all token vectors in a tweet. We calculated the max
vector by taking the highest value across all tokens
for each class. This led to 40 features (20 for av-
erage and 20 for max).

3.2 Sentiment

We employed Vader (Gilbert, 2014), a lexicon-
and rule-based sentiment detection system to de-

rive a set of sentiment features. Vader fash-
ions features, at sentence level, for positive, neu-
tral, and negative polarities ranging from 0 to
1 and representing intensity. It also produces a
combined sentiment score, with values between
-1 (negative) and 1 (positive), where values in
[−0.5, 0.5] denote neutrality.

3.3 Psycholinguistic Features

We used the MRC psycholinguistic norms (im-
agery, concreteness, familiarity, meaningfulness,
age of acquisition) (Coltheart, 1981) as token level
features. These were averaged to give tweet level
features in our classification scheme.

3.4 LIWC

We used the latest version of the Linguistic Inquiry
Word Count (Tausczik and Pennebaker, 2010) sys-
tem, LIWC2015, to produce a large set of features,
at sentence level, concerning emotional, cognitive,
and structural components derived from the texts.
As shown in Table 2, our experiments with those
features, arranged into different subsets, did not
produce any significant improvement; therefore,
we decided not to include those in our submis-
sions.

4 Results

We performed subset analyses to determine the
best feature grouping. In Table 2, we show our
results for different feature sets when training on
the training data and testing on the trial data.

We also optimised the number of trees in our
random forest, finding 225 to be the best value for
this parameter.

Table 3 shows the detailed classification re-
port (precision, recall, F1, and support, by
class), and Figure 1 displays the confusion
heatmap for our best submission on the En-
glish test dataset. Our system ranked 24th,
with a macro-averaged F1-score of 24.982
(n=48, median=23.919, min=2.038, max=35.991,
Q1=18.278, Q3=28.410).On the Spanish chal-
lenge, our best submission (using only the
average class-occurrence features) ranked 8th,
with a macro-averaged F1-score of 16.338
(n=21, median=14.912, min=3.896, max=22.364,
Q1=10.892, Q3=16.696) (see Table 4 and Figure
2 for detailed performance). For lack of space, we
restrict our subsequent error analysis and findings
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Features Macro F1
Avg class occurrence, Vader, Topic-20, Avg MRC 0.6299
Avg class occurrence 0.6273
Max class occurrence 0.6266
Vader 0.1290
Topic-20 0.1126
Avg MRC 0.4922
LIWC 0.0425
Vader, Topic-20, Avg MRC 0.3530
Avg class occurrence, Topic-20, Avg MRC 0.6295
Avg class occurrence, Vader, Avg MRC 0.6319
Avg class occurrence, Vader, Topic-20 0.6287
Avg class occurrence, Vader 0.6301
Vader, Avg MRC 0.5211
Avg class occurrence, Avg MRC 0.6287
Max class occurrence, Avg class occurrence, Vader, Avg MRC *0.6358
Max class occurrence, Avg class occurrence, Vader, Max MRC, Avg MRC 0.6352
Max class occurrence, Avg class occurrence, Vader, Max MRC 0.6355
Max class occurrence, Avg class occurrence, Vader, Avg MRC, LIWC 0.5400

Table 2: Analysis of different feature subsets. Score is reported as Macro F1 throughout. The best performing
feature subset (which we used in our experiments) is marked with an asterix.

Figure 1: Confusion Heatmap For English Test Data

to the English challenge. However, these gener-
alise to Spanish.

The F1-score on the test data was much lower
than that on the trial data (63.185). We hypoth-
esise that this discrepancy might be largely due
to (1) our system overfitting the training data and
to (2) a test dataset whose class distribution and
discriminant features differ in some measure from
those of training and trial.

Figure 4 shows the class (i.e., emoji ranks)
distributions on trial and test data. With re-
spect to training (omitted here for brevity) and
trial data, the shape of the distributions match al-

Emo P R F1 %
35.23 62.97 45.18 21.6
27.9 25.51 26.65 9.66
33.0 50.64 39.96 9.07
20.41 4.18 6.94 5.21
51.71 45.16 48.21 7.43
10.36 5.7 7.36 3.23
19.63 13.33 15.88 3.99
30.49 17.06 21.88 5.5
24.81 6.33 10.08 3.1
17.45 4.09 6.62 2.35
26.34 37.99 31.11 2.86
60.64 52.8 56.45 3.9
32.76 40.47 36.21 2.53
26.28 6.46 10.37 2.23
13.27 5.59 7.87 2.61
28.65 20.34 23.79 2.49
13.45 5.2 7.5 2.31
59.81 72.43 65.52 3.09
37.89 21.1 27.11 4.83
8.68 3.47 4.95 2.02

Table 3: Detailed Precision, Recall, F-measure, and
Support for English Test Data
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Emo P R F1 %
32.54 48.44 38.93 21.41
27.77 30.82 29.22 14.08
42.11 53.77 47.23 14.99
8.84 5.4 6.7 3.52

11.13 11.28 11.21 5.14
20.0 11.08 14.26 3.97

30.93 43.32 36.09 3.07
13.48 9.49 11.14 4.53
11.26 9.44 10.27 1.8
47.63 35.61 40.76 4.24
16.26 9.73 12.18 3.39
15.12 3.15 5.21 4.13
3.03 0.85 1.33 2.35
7.88 4.74 5.92 2.74
3.51 2.15 2.67 0.93

20.42 9.38 12.85 4.16
18.93 18.4 18.66 2.12
1.56 0.75 1.01 1.34
6.4 3.83 4.79 2.09

Table 4: Detailed Precision, Recall, F-measure, and
Support for Spanish Test Data

Figure 2: Confusion Heatmap For Spanish Test Data

most perfectly. Also, to a large degree, they are
rank-preserving.1 This is in contrast to the class
distribution of the test data, which is not rank-
preserving, particularly for those labels in the long
tail (i.e., below the three most frequent).

From the classification report (Table 3) and the
confusion heatmap (Figure 1) on the test data,
one could infer, firstly, that our system revealed a
propensity for predicting the most frequent emoji,
particularly , , and (accounting for about
40% of the data), which can be noticed from
the consistent high values on the three left-most
columns of the heatmap. Consequently, those
within the surroundings of the peak of the class
distribution, almost consistently, had recall signif-
icantly higher than precision.

For the majority of lower-support emoji, the
system had a hard time in separating classes
and quite frequently opted for higher-support
ones. Secondly, it conflated classes into groups
which, intuitively, could be seen as clusters of
semantically-similar emoji, taking into account as-
pects such as emotions (e.g., joy), concepts (e.g.,
Christmas tree), and occasions (e.g., Christmas),
to mention a few.

For instance, most of those associated with af-
fection, elation, and other positive emotions and
emotional states (e.g., , , , , ) presented
extremely low recall and, frequently, were mis-
classfied as . As an example, had a recall
of 4.18%, with about 64% of its tweets predicted
incorrectly as .

Our system performed better at separating other
seemingly distinct clusters, such as sunny weather
( , ), patriotism/national holidays/travelling
( ), occasions/special events/holidays ( ), being
humorous ( , ), photography ( , ), to name a
few. For example, ’s recall was 37.99%, with
most of its misclassified instances (18%) being as-
signed to . Conversely, ’s recall was 21.1%,
with about 32% wrongly predicted as .

5 Conclusions

We presented a system for the prediction a single
emoji, out of a set of the twenty most-frequent,
for Twitter datasets for (1) English and (2) Span-
ish. Our best model was based on a random for-
est (n=225) employing an ensemble of (a) max-

1There a few discrepancies; for example, in the trial data’s
class distribution, contrary to the ranking in Figure 3, (14, )
occurs slightly more often than (13, ).
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Figure 3: Emoji Rankings For English (USA) and Spanish (ESP) (from (Barbieri et al., 2018))

Figure 4: Class Distributions For English Trial and Test Data. The x-axis shows the classes (i.e., the emoji ranks
in Figure 3), and the y-axis represents support (i.e., normalised frequencies)

and mean-aggregated normalised word-class oc-
currences, (b) sentiment and (c) psycho-linguistic
features.

Our scores on the test data were significantly
lower than those on the trial data, and we postu-
lated that reasons for so were (1) a random forest
that overfitted the training data and (2) large vari-
ance between trial and test data. It is worth investi-
gating to which extent, and how, different periods
of time explain that variance. For example, trial
and test might have captured different, emerging
trending topics and events; reflect drift in emoji
usage; among others. It is reasonable to assume
that, given the nature and the sparsity of the data,
more representative samples might require much
larger number of instances (say, billions of tweets)
and time periods covered.

F1-scores were consistently low for all partic-
ipants, which demonstrates the difficulty of the
task. We are conscious that idiosyncrasies of
Twitter-specific data (e.g., data sparsity, neolo-
gisms, informality, lack of grammatical structure)
make it all more problematic, and some of our cur-
rent research involves devising and incorporating
features to address those challenges.

We believe it would be fruitful to investigate
evaluation metrics that, rather than all-or-nothing

(e.g., misclassification rate), reflect the semantic
similarity (or distance) between labels and pre-
dicted classes.
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