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Abstract

To model semantic similarity for multilin-
gual and cross-lingual sentence pairs, we
first translate foreign languages into En-
glish, and then build an efficient mono-
lingual English system with multiple NLP
features. Our system is further support-
ed by deep learning models and our best
run achieves the mean Pearson correlation
73.16% in primary track.

1 Introduction

Sentence semantic similarity is the building block
of natural language understanding. Previous Se-
mantic Textual Similarity (STS) tasks in SemEval
focused on judging sentence pairs in English and
achieved great success. In SemEval-2017 STS
shared task concentrates on the evaluation of
sentence semantic similarity in multilingual and
cross-lingual (Agirre et al., 2017). There are t-
wo challenges in modeling multilingual and cross-
lingual sentence similarity. On the one hand, this
task requires human linguistic expertise to design
specific features due to the different characteristic-
s of languages. On the other hand, lack of enough
training data for a particular language would lead
to a poor performance.

The SemEval-2017 STS shared task assesses
the ability of participant systems to estimate the
degree of semantic similarity between monolin-
gual and cross-lingual sentences in Arabic, En-
glish and Spanish, which is organized into a set of
six secondary sub-tracks (Track 1 to Track 6) and
a single combined primary track (Primary Track)
achieved by submitting results for all of the sec-
ondary sub-tracks. Specifically, track 1, 3 and
5 are to determine STS scores for monolingual
sentence pairs in Arabic, Spain and English, re-
spectively. Track 2, 4, and 6 involve estimat-

ing STS scores for cross-lingual sentence pairs
from the combination of two particular languages,
i.e., Arabic-English, Spanish-English and surprise
language (here is Turkish)-English cross-lingual
pairs. Given two sentences, a continuous val-
ued similarity score on a scale from 0 to 5 is re-
turned, with 0 indicating that the semantics of the
sentences are completely independent and 5 sig-
nifying semantic equivalence. The system is as-
sessed by computing the Pearson correlation be-
tween system returned semantic similarity scores
and human judgements.

To address this task, we first translate all sen-
tences into English through the state-of-the-art
machine translation (MT) system, i.e., Google
Translator1. Then we adopt a combination method
to build a universal model to estimate seman-
tic similarity, which consists of traditional natu-
ral language processing (NLP) methods and deep
learning methods. For traditional NLP methods,
we design multiple effective NLP features to de-
pict the semantic matching degree and then su-
pervised machine learning-based regressors are
trained to make prediction. For neural network-
s methods, we first obtain distributed representa-
tions for each sentence in sentence pairs and then
feed these representations into end-to-end neural
networks to output similarity scores. Finally, the
scores returned by the regressors with traditional
NLP methods and by the neural network models
are equally averaged to get a final score to estimate
semantic similarity.

2 System Description

Figure 1 shows the overall architecture of our sys-
tem, which consists of the following three mod-
ules:

1https://cloud.google.com/translate/
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Figure 1: The system architecture

Traditional NLP Module is to extracts two
kinds of NLP features. The sentence pair match-
ing features are to directly calculate the similarity
of two sentences from several aspects and the s-
ingle sentence features are to first represent each
sentence in NLP method and then to adopt kernel-
based method to calculate the similarity of two
sentences. All these NLP-based similarity scores
act as features to build regressors to make predic-
tion.

Deep Learning Module is to encode input sen-
tence pairs into distributed vector representations
and then to train end-to-end neural networks to ob-
tain similarity scores.

Ensemble Module is to equally average the
above two modules to get a final score.

Next, we will describe the system in detail.

2.1 Traditional NLP Module

In this section, we give the details of feature engi-
neering and learning algorithms.

2.1.1 Sentence Pair Matching Features
Five types of sentence pair matching features are
designed to directly calculate the similarity of t-
wo sentences based on the overlaps of charac-
ter/word/sequence, syntactic structure, alignment
and even MT metrics.

N-gram Overlaps: Let Si be the sets of consec-
utive n-grams, and the n-gram overlap (denoted as
ngo) is defined as (Šarić et al., 2012):

ngo(S1, S2) = 2 · ( |S1|
|S1 ∩ S2| +

|S2|
|S1 ∩ S2|)

−1

We obtain n-grams at three different levels (i.e.,
the original and lemmatized word, the character
level), where n = {1, 2, 3} are used for word level
and n = {2, 3, 4, 5} are used for character level.
Finally, we collect 10 features.

Sequence Features: Sequence features are de-
signed to capture more enhanced sequence infor-
mation besides the n-gram overlaps. We compute
the longest common prefix / suffix / substring /
sequence and levenshtein distance for each sen-
tence pair. Note that the stopwords are removed
and each word is lemmatized so as to estimate se-
quence similarity more accurately. As a result, we
get 5 features.

Syntactic Parse Features: In order to model
tree structured similarity between two sentences
rather than sequence-based similarity, inspired by
Moschitti (2006), we adopt tree kernels to cal-
culate the similarity between two syntactic parse
trees. In particular, we calculate the number of
common substructures in three different kernel s-
paces, i.e., subtree (ST), subset tree (SST), partial
tree (PT). Thus we get 3 features.

Alignment Features: Sultan et al. (2015) used
word aligner to align matching words across a pair
of sentences, and then computes the proportion of
aligned words as follows:

sim(S1, S2) =
na(S1) + na(S2)
n(S1) + n(S2)

where na(S) and n(S) is the number of aligned
and non-repeated words in sentence S.

To assign appropriate weights to different word-
s, we adopt two weighting methods: i) weighted
by five POS tags (i.e., noun, verb, adjective, adver-
b and others; we first group words in two sentences
into 5 POS categories, then for each POS category
we compute the proportion of aligned words, and
we get 5 features as a result. ii) weighted by IDF
values (calculated in each dataset separately). To-
tally, we collect 7 alignment features.

MT based Features: Following previous work
in (Zhao et al., 2014) and (Zhao et al., 2015), we
use MT evaluation metrics to measure the seman-
tic equivalence of the given sentence pairs. Nine
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MT metrics (i.e., BLEU, GTM-3, NIST, -WER,
-PER, Ol, -TERbase, METEOR-ex, ROUGE-L)
are used to assess the similarity. These 9 MT
based features are calculated using the Asiya Open
Toolkit2.

Finally, we collect a total of 34 sentence pair
matching features.

2.1.2 Single Sentence Features

Unlike above sentence pair matching features to
directly estimate matching score between two sen-
tences, the single sentence features are to repre-
sent each sentence in the same vector space to cal-
culate the sentence similarity. We design the fol-
lowing three types of features.

BOW Features: Each sentence is represented
as a Bag-of-Words (BOW) and each word (i.e., di-
mension) is weighted by its IDF value.

Dependency Features: For each sentence, its
dependency tree is interpreted as a set of triples,
i.e., (dependency-label, governor, subordinate).
Similar to BOW, we treat triples as words and rep-
resent each sentence as Bag-of-Triples.

Word Embedding Features: Each sentence
is represented by concatenating min/max/average
pooling of vector representations of words. Note
that for each word, its vector is weighted by its
IDF value. Table 1 lists four the state-of-the-art
pretrained word embeddings used in this work.

Embedding Dimension Source
word2vec

Mikolov et al. (2013) 300d GoogleNews-vectors-
negative300.bin

GloVe
Pennington et al. (2014)

100d glove.6B.100d.txt
300d glove.6B.300d.txt

paragram
Wieting et al. (2015) 300d paragram 300 sl999.txt

Table 1: Four pretrained word embeddings

However, in comparison with the number of
sentence pair matching features (33 features), the
dimensionality of single sentence features is huge
(approximately more than 71K features) and thus
it would suppress the discriminating power of sen-
tence pair matching features. Therefore, In order
to reduce the high dimensionality of single sen-
tence features, for each single sentence feature, we
use 11 kernel functions to calculate sentence pair
similarities. Table 2 lists the 11 kernel functions
we used in this work. In total we collect 33 sin-

2http://asiya.cs.upc.edu/demo/asiya_
online.php

Type Measures

linear kernel Cosine distance, Manhanttan distance,
Euclidean distance, Chebyshev distance

stat kernel Pearson coefficient, Spearman coefficient,
Kendall tau coefficient

non-linear kernel polynomial, rbf, laplacian, sigmoid

Table 2: List of 11 kernel functions

gle sentence features, which is of the same order
of magnitude as sentence pair matching features.

Finally, these 67 NLP features are standard-
ized into [0, 1] using max-min normalization be-
fore building regressor models.

2.1.3 Regression Algorithms
Five learning algorithms for regression are ex-
plored, i.e., Random Forests (RF), Gradien-
t Boosting (GB) Support Vector Machines (SVM),
Stochastic Gradient Descent (SGD) and XGBoost
(XGB). Specially, the first four algorithms are im-
plemented in scikit-learn toolkit3, and XGB is im-
plemented in xgboost4. In preliminary experi-
ments, SVM and SGD underperformed the other
three algorithms and thus we adopt RF, GB and
XGB in following experiments.

2.2 Deep Learning Module

Unlike above method adopting manually designed
NLP features, deep learning based models are to
calculate semantic similarity score with the pre-
trained word vectors as inputs. Four pretrained
word embeddings listed in Table 1 are explored
and the paragram embeddings achieved better re-
sults in preliminary experiments. We analyze and
find the possible reason may be that the paragram
embeddings are trained on Paraphrase Database5,
which is an extensive semantic resource that con-
sists of many phrase pairs. Therefore, we use para-
gram embeddings to initialize word vectors.

Based on pretrained word vectors, we adopt the
following four methods to obtain single sentence
vector as (Wieting et al., 2015):

(1) by simply averaging the word vectors in sin-
gle sentence;

(2) after (1), the resulting averaged vector is
multiplied by a projection matrix;

(3) by using deep averaging network (DAN,
Iyyer et al. (2015)) consisting of multiple layers
as well as nonlinear activation functions;

3http://scikit-learn.org/stable/
4https://github.com/dmlc/xgboost
5http://www.cis.upenn.edu/˜ccb/ppdb/
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(4) by using long short-term memory network
(LSTM, Hochreiter and Schmidhuber (1997)) to
capture long-distance dependencies information.

In order to obtain the vector of sentence pair,
given two single sentence vectors, we first use a
element-wise subtraction and a multiplication and
then concatenate the two values as the final vec-
tor of sentence pair representation. At last, we use
a fully-connected neural network and output the
probability of similarity based on a softmax func-
tion. Thus we obtain 4 deep learning based scores.

To learn model parameters, we minimize the
KL-divergence between the outputs and gold la-
bels, as in Tai et al. (2015). We adopt Adam (K-
ingma and Ba, 2014) as optimization method and
set learning rate of 0.01.

2.3 Ensemble Module

The NLP-based scores and the deep learning based
scores are averaged in the ensemble module to ob-
tain the final score.

3 Experimental Settings

Datasets: SemEval-2017 provided 7 tracks in
monolingual and cross-lingual language pairs. We
first translate all sentences into English via Google
Translator and then we build a universal model on
only English pairs. The training set we used is al-
l the monolingual English dataset from SemEval
STS task (2012-2015) consisting of 13, 592 sen-
tence pairs.

For each track, we grant the training dataset-
s provided by SemEval-2017 as development set.
Table 3 lists the statistics of the development and
the test data for each track in SemEval-2017.

Track Language Pair Development Test
Pairs Dataset Pairs

Track 1 Arabic-Arabic
(AR-AR) 1088 MSRpar, MSRvid,

SMTeuroparl (2017) 250

Track 2 Arabic-English
(AR-EN) 2176 MSRpar, MSRvid,

SMTeuroparl (2017) 250

Track 3 Spanish-Spanish
(SP-SP) 1555 News, Wiki

(2014, 2015) 250

Track 4a Spanish-English
(SP-EN) 595 News, Multi-source

(2016) 250

Track 4b
Spanish-English
WMT news data
(SP-EN-WMT)

1000 WMT (2017) 250

Track 5 English-English
(EN-EN) 1186

Plagiarsism, Postediting,
Ans.-Ans., Quest.-Quest.,
HDL (2016)

250

Track 6 English-Turkish
(EN-TR) - - 500

Table 3: The statistics of development and test set.

Almost all test data is from SNLI, except for
Track 4b from WMT. This can explain why on

Track 4b SP-EN-WMT, the performance is very
poor. So we perform 10 − fold cross validation
(CV) on Track 4b SP-EN-WMT.

Preprocessing: All sentences are translated in-
to English via Google Translator. The Stanford
CoreNLP (Manning et al., 2014) is used for tok-
enization, lemmatization, POS tagging and depen-
dency parsing.

Evaluation: For Track 1 to Track 6, Pearson
correlation coefficient is used to evaluate each in-
dividual test set. For Primary Track, since it is
achieved by submitting results of all the secondary
sub-tracks, a macro-averaged weighted sum of all
correlations on sub-tracks is used for evaluation.

4 Results on Training Data

A series of comparison experiments on English
STS 2016 training set have been performed to ex-
plore different features and algorithms.

4.1 Comparison of NLP Features

Table 4 lists the results of different NLP features
with GB learning algorithm. We find that: (1) the
simple BOW Features with kernel functions are ef-
fective for sentence semantic similarity. (2) The
combination of all these NLP features achieved
the best results, which indicates that all features
make contributions. Therefore we do not perform
feature selection and use all these NLP features in
following experiments.

4.2 Comparison of Learning Algorithms

Table 5 lists the results of different algorithms us-
ing all NLP features as well as deep learning s-
cores. We find:
(1) Regarding machine learning algorithms, RF
and GB achieve better results than XGB. GB per-
forms the best on 3 and RF performs the best on 2
of 5 datasets.
(2) Regarding deep learning models, DL-word and
DL-proj outperform the other 2 non-linear model-
s on all the 5 datasets. This result is consistent
with the findings in (Wieting et al., 2015):“In out-
of-domain scenarios, simple architectures such as
word averaging vastly outperform LSTMs.”
(3) All ensemble methods significantly improved
the performance. The ensemble of 3 machine
learning algorithms (RF+GB+XGB) outperforms
any single learning algorithm. Similarly, the en-
semble of the 4 deep learning models (DL-all) pro-
motes the performance to 75.28%, which is sig-

194



English STS 2016

NLP Features Postediting Ques.-Ques. HDL Plagiarism Ans.-Ans. Weighted
mean

BOW features 0.8388 0.6577 0.7338 0.7817 0.6302 0.7322
Alignment Features 0.8125 0.6243 0.7642 0.7883 0.6432 0.7312
Ngram Overlaps 0.8424 0.5864 0.7581 0.8070 0.5756 0.7203
Sequence Features 0.8428 0.6115 0.7337 0.7983 0.4838 0.7000
Word Embedding Features 0.8128 0.6378 0.7625 0.7955 0.4598 0.6992
MT based Features 0.8412 0.5558 0.7259 0.7617 0.5084 0.6851
Dependency Features 0.7264 0.5381 0.4634 0.5820 0.3431 0.5328
Syntactic Parse Features 0.5773 0.0846 0.4940 0.3976 0.0775 0.3376
All Features 0.8357 0.6967 0.7964 0.8293 0.6306 0.7618
Rychalska et al. (2016) 0.8352 0.6871 0.8275 0.8414 0.6924 0.7781
Brychcı́n and Svoboda (2016) 0.8209 0.7020 0.8189 0.8236 0.6215 0.7573
Afzal et al. (2016) 0.8484 0.7471 0.7726 0.8050 0.6143 0.7561

Table 4: Feature comparison on English STS 2016, the last three are top three systems in STS 2016

English STS 2016

Algorithm Postediting Ques.-Ques. HDL Plagiarism Ans.-Ans. Weighted
mean

Single
Model

RF 0.8394 0.6858 0.7966 0.8259 0.5882 0.7518
GB 0.8357 0.6967 0.7964 0.8293 0.6306 0.7618
XGB 0.7917 0.6237 0.7879 0.8175 0.6190 0.7333
DL-word 0.8097 0.6635 0.7839 0.8003 0.5614 0.7283
DL-proj 0.7983 0.6584 0.7910 0.7892 0.5573 0.7234
DL-dan 0.7695 0.4200 0.7411 0.6876 0.4756 0.6274
DL-lstm 0.7864 0.5895 0.7584 0.7783 0.5182 0.6921

Ensemble
RF+GB+XGB 0.8298 0.6969 0.8086 0.8313 0.6234 0.7622
DL-all 0.8308 0.6817 0.8160 0.8261 0.5854 0.7528
EN-seven 0.8513 0.7077 0.8288 0.8515 0.6647 0.7851

Table 5: Algorithms comparison on English STS 2016 datasets

nificantly better than single model and is compa-
rable to the result using expert knowledge. Fur-
thermore, the ensemble of 3 machine learning al-
gorithms and 4 deep learning models by averaging
these 7 scores (EN-seven), achieves the best re-
sults on all of the development set in English STS
2016. It suggests that the traditional NLP methods
and the deep learning models are complementary
to each other and their combination achieves the
best performance.

4.3 Results on Cross-lingual Data

To address cross-lingual, we first translate cross-
lingual pairs into monolingual pairs and then
adopt the universal model to estimate semantic
similarity. Thus, language translation is critical
to the performance. The first straightforward way
for translation (Strategy 1) is to translate foreign
language into English. We observe that it is more
likely to produce synonyms when using Strategy
1. For example: one English-Spanish pair
The respite was short.
La tregua fue breve.
is translated into English-English pair,
The respite was short.

The respite was brief.
where short and brief are synonyms produced by
MT rather than their actual literal meaning ex-
pressed in original languages. Reminding that one
MT system may be in favour of certain words and
it also can translate English into foreign language.
Thus we propose Strategy 2 for translation, i.e.,
we first translate the English sentence into foreign
target language and then roll back to English via
MT again. Under Strategy 2, the above example
English-Spanish pair is translated into the same
English sentence:
The respite was brief.

Table 6 compares the results of the two strate-
gies on cross-lingual data. It is clear that Strate-
gy 2 achieves better performance, which indicates
that the semantic difference between synonyms in
cross-lingual pairs resulting from MT are different
from that in monolingual pairs.

4.4 Results on Spanish-English WMT

On Spanish-English WMT dataset, the system per-
formance dropped dramatically. The possible rea-
son may lie in that they are from different domain-
s. Therefore, we use 10-fold cross validation on
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Cross-lingual STS 2016

Algorithm news multisource Weighted
mean

Stategy 1
RF1 0.9101 0.8259 0.8686
GB1 0.8911 0.8220 0.8570
XGB1 0.8795 0.7984 0.8394

Stategy 2

RF2 0.9009 0.8405 0.8711
GB2 0.9122 0.8441 0.8786
XGB2 0.8854 0.8265 0.8563
RF+GB+XGB2 0.9138 0.8474 0.8810
DL-all2 0.8016 0.7442 0.7732
EN-seven2 0.8832 0.8291 0.8565

Brychcı́n and Svoboda (2016) 0.9062 0.8190 0.8631

Table 6: Pearson correlations on Cross-lingual
STS 2016, the last row is the top system in 2016.

this dataset for evaluation. Table 7 list the result-
s on Spanish-English WMT, where the last col-
umn (wmt(CV)) of show that using the in-domain
dataset achieves better performance.

Take a closer look at this dataset, we find that
several original Spanish sentences are meaning-
less. For example, the English-Spanish pair
His rheumy eyes began to cloud.
A sus ojos rheumy comenzóa nube.
has a score of 1 as the second is not a proper Span-
ish sentence. Since there are many meaningless S-
panish sentences in this dataset sourced from MT
evaluation, we speculate that these meaningless
sentences are made to be used as negative training
samples for MT model. Thus, only on this dataset,
we grant Spanish as target language and translate
English sentences into Spanish sentences. After
that, we use 9 MT evaluation metrics (mentioned
in Section 2.1) to generate MT based Features.
Then these 9 MT metrics are averaged as the sim-
ilarity score (MT(es)3).

Spanish-English WMT
Algorithm wmt wmt(CV)
RF2 0.1761 0.2635
GB2 0.1661 0.2053
XGB2 0.1627 0.2620
RF+GB+XGB2 0.1739 0.2677
DL-all2 0.0780 -
EN-seven2 0.1393 -
MT(es)3 0.2858 0.2858
RF+GB+XGB2+MT(es)3 0.2889 0.3789
EN-seven2+MT(es)3 0.2847 -

Table 7: Pearson correlations on Spanish-English
WMT. MT(es)3 is calculated using their translated
Spanish-Spanish form. We did not perform cross
validation in deep learning models and did not en-
semble them due to time constraint.

From Table 7, we see that the MT(es)3 score

alone achieves 0.2858 on wmt in terms of Pear-
son correlation, which even surpasses the best per-
formance (0.2677) of ensemble model. Based on
this, we also combine the ensemble model with
MT(es)3 and their averaged score achieves 0.3789
in terms of Pearson correlation.

4.5 System Configuration

Based on the above results, we configure three fol-
lowing systems:

Run 1: all features using RF algorithms. (RF)
Run 2: all features using GB algorithms. (GB)
Run 3: ensemble of three algorithms and four

deep learning scores. (EN-seven)
Particularly, we train Track 4b SP-EN-WMT us-

ing the wmt dataset provided in SemEval-2017 and
Run 2 and Run 3 on this track are combined with
MT(es)3 features.

5 Results on Test Data

Table 8 lists the results of our submitted runs on
test datasets. We find that: (1) GB achieves slight-
ly better performance than RF, which is consisten-
t to that in training data; (2) the ensemble mod-
el significantly improves the performance on all
datasets and enhance the performance of Primary
Track by about 3% in terms of Pearson coefficien-
t; (3) on Track 4b SP-EN-WMT, combining with
MT(es)3 significantly improves the performance.

The last three rows list the results of two top
systems and one baseline system provided by or-
ganizer. The baseline is to use the cosine sim-
ilarity of one-hot vector representations of sen-
tence pairs. On all language pairs, our ensemble
system achieves the best performance. This indi-
cates that both the traditional NLP methods and
the deep learning methods make contribution to
performance improvement.

6 Conclusion

To address mono-lingual and cross-lingual sen-
tence semantic similarity evaluation, we build a u-
niversal model in combination of traditional NLP
methods and deep learning methods together and
the extensive experimental results show that this
combination not only improves the performance
but also increases the robustness for modeling
similarity of multilingual sentences. Our future
work will concentrate on learning reliable sen-
tence pair representations in deep learning.
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Run Primary Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
AR-AR AR-EN SP-SP SP-EN SP-EN-WMT EN-EN EN-TR

Run 1: RF 0.6940 0.7271 0.6975 0.8247 0.7649 0.2633 0.8387 0.7420
Run 2: GB 0.7044 0.7380 0.7126 0.8456 0.7495 0.3311∗ 0.8181 0.7362
Run 3: EN-seven 0.7316 0.7440 0.7493 0.8559 0.8131 0.3363∗ 0.8518 0.7706
Rank 2: BIT 0.6789 0.7417 0.6965 0.8499 0.7828 0.1107 0.8400 0.7305
Rank 3: HCTI 0.6598 0.7130 0.6836 0.8263 0.7621 0.1483 0.8113 0.6741
Baseline 0.5370 0.6045 0.5155 0.7117 0.6220 0.0320 0.7278 0.5456

Table 8: The results of our three runs on STS 2017 test datasets.
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