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Abstract

This paper describes MITRE’s participa-
tion in the Semantic Textual Similarity
task (SemEval-2017 Task 1), which eval-
uated machine learning approaches to the
identification of similar meaning among
text snippets in English, Arabic, Spanish,
and Turkish. We detail the techniques
we explored, ranging from simple bag-of-
ngrams classifiers to neural architectures
with varied attention and alignment mech-
anisms. Linear regression is used to tie the
systems together into an ensemble submit-
ted for evaluation. The resulting system is
capable of matching human similarity rat-
ings of image captions with correlations of
0.73 to 0.83 in monolingual settings and
0.68 to 0.78 in cross-lingual conditions.

1 Introduction

Semantic Textual Similarity (STS) measures the
degree to which two snippets of text convey the
same meaning. Cross-lingual STS measures the
same for sentence pairs written in two different
languages. Automatic identification of semanti-
cally similar text has practical applications in do-
mains such as evaluation of machine translation
outputs, discovery of parallel sentences in com-
parable corpora, essay grading, and news summa-
rization. It serves as an easily explained assay for
systems modeling semantics.

SemEval-2017 marked the sixth consecutive
year of a shared task measuring progress in STS.
Current machine learning approaches to measur-
ing semantic similarity vary widely. One de-
sign decision for STS systems is whether to ex-
plicitly align words between paired sentences.
Wieting et al. (2016) demonstrate that sentence
embeddings without explicit alignment or atten-

tion can often provide reasonable performance
on STS tasks. Related work in textual entail-
ment offers evidence that neural models with
soft alignment outperform embeddings-only ap-
proaches Chen et al. (2016); Parikh et al. (2016).
However these results were obtained on a dataset
multiple orders of magnitude larger than existing
STS datasets. In absence of large datasets, word
alignments similar to those used in statistical ma-
chine translation have proven to be useful (Zarrella
et al., 2015; Itoh, 2016).

In this effort we explored diverse methods for
aligning words in pairs of candidate sentences:
translation-inspired hard word alignments as well
as soft alignments learned by deep neural net-
works with attention. We also examined a variety
of approaches for comparing aligned words, rang-
ing from bag-of-ngrams features leveraging hand-
engineered lexical databases, to recurrent and con-
volutional neural networks operating over dis-
tributed representations. Although an ideal cross-
lingual STS system might operate directly on input
sentences in their original language, we used ma-
chine translation to convert all the inputs into En-
glish. The paucity of in-domain training data and
the simplicity of the image caption genre made
the translation approach reasonable. Our contri-
bution builds on approaches developed for En-
glish STS but points a way forward for progress
on knowledge-lean, fully-supervised methods for
semantic comparison across different languages.

2 Task, Data and Evaluation

Semantic Textual Similarity was a shared task
organized within SemEval-2017 (Agirre et al.,
2017). The task organizers released 1,750 sen-
tence pairs of evaluation data organized into six
tracks: Arabic, Spanish, and English monolingual,
as well as Arabic-English, Spanish-English, and
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Turkish-English cross-lingual.
Most of this evaluation data was sourced from

the Stanford Natural Language Inference cor-
pus (Bowman et al., 2015). The sentences are
English-language image captions, grouped into
pairs and human-annotated on a scale of 0 to 5
for semantic similarity. In the monolingual En-
glish task, the average sentence length was 8.7
words, and the average rating was 2.3 (e.g. The
woman had brown hair. and The woman has gray
hair.) There was a roughly balanced distribution of
highly rated pairs (e.g. A woman is bungee jump-
ing. and A girl is bungee jumping.) and poorly
rated pairs (e.g. The yard has a dog. and The dog
is running after another dog.) Annotated sentence
pairs were manually translated from English into
other languages to create additional tracks.

For each pair, task participants predicted a sim-
ilarity score. Systems were evaluated by Pearson
correlation with the human ratings.

3 System Overview

We created an ensemble of five systems which
each independently predicted a similarity score.
Some features were reused among many compo-
nents, including word embeddings, machine trans-
lations, alignments, and dependency parses.

3.1 English Word Embeddings

We used word2vec (Mikolov et al., 2013) to
learn distributed representations of words from
the text of the English Wikipedia. We applied
word2phrase twice to identify phrases of up to four
words, and trained a skip-gram model of size 256
for the 630,902 vocabulary items which appeared
at least 100 times, using a context window of 10
words and 15 negative samples per example.

3.2 Machine Translation

Sentences in the image caption genre tend to be
short and use a simple vocabulary. To test the ex-
tent to which this is true of SNLI data, we trained a
small unregularized neural language model which
achieved a perplexity of 18.9 on a held-out test
set. The same parameterization achieved a per-
plexity of 114.5 in experiments on the Penn Tree-
bank (Zaremba et al., 2014). We proceeded to
translate all non-English sentences to English, rec-
ognizing that modern MT systems are sufficient to
provide high quality translations for simple sen-
tences. We used the Google Translate API in mid-

January 2017.

3.3 Dependency Parses
The dependency parse arcs were used as features
to assist in aligning and comparing pairs of words.
The Stanford Parser library produced these typed
dependency representations (Chen and Manning,
2014). The English PCFG model with basic de-
pendencies was used rather than the default col-
lapsed dependencies to ensure that the parser gave
us exactly one parse arc for each token.

3.4 Alignment
Comparing sentences can be a tallying process.
One can find all associated atomic pairs in the
left hand and right hand sides, cross them off,
and judge the dissimilarity based on the remain-
ing residuals. This process is reminiscent of find-
ing translation equivalences for training machine
translation systems (Al-Onaizan et al., 1999).

To this end, we built an alignment system on
top of word embeddings. First, the min alignment
is produced to maximize the sum of cosine simi-
larities (sim(wi, wj) = 1 + cos(wi, wj)) of word
vectors corresponding to aligned word pairs under
the constraint that no word is aligned more than
once. The max alignment is constrained such that
each word must be paired with at least one other,
and the total number of edges in the alignment can
be no more than word count of the longer string.
In both cases, LPSOLVE was employed to find the
assignment maximizing these criteria (Berkelaar
et al., 2004).

Dependency parses constructed in Section 3.3
were aligned in a similar way. Consider de-
pendency arcs ai : head → dep In-
stead of the sum of cosine similarities as
atoms in the linear program, however, we used
sim(a1, a2) = sim(head(a1), head(a2)) +
10sim(dep(a1), dep(a2)) to give preference to
matching dependency arcs a1 and a2 with similar
heads.

3.5 Ensemble Components
TakeLab The open source TakeLab Semantic
Text Similarity System was incorporated as a
baseline (Šarić et al., 2012). Specifically we
use LIBSVM to train a support vector regres-
sion model with an RBF kernel, cost parameter
of 20, gamma of 0.2, and epsilon of 0.5. Input
features were comprised of TakeLab-computed n-
gram overlap and word similarity metrics.
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Recurrent Convolutional Neural Network We
recreate the recurrent neural network (RNN)
model described in Zarrella et al. (2015) and
train it using the embeddings and parse-aware
alignments described above. Briefly, this 16-
dimensional RNN operates over a sequence of
aligned word pairs, comparing each pair accord-
ing to features that encode embedding similarity,
word position, and unsupervised string similarity.

We extended this model with four new feature
categories. The first was a binary variable that in-
dicates whether both words in the pair were deter-
mined to have the same dependency type in their
respective parses. We also added three convolu-
tional recurrent neural networks (CRNNs), each
of which receive as input a sequence of word
embeddings, and which learn STS features via
256 1D convolutional filters connected (with 50%
dropout) to a 128-dimensional LSTM. For each
aligned word pair, the first CRNN operates on
the embeddings of the aligned words, the sec-
ond CRNN operates on the squared difference of
the embeddings of the aligned words, and the fi-
nal CRNN operates on the embeddings of the
parent words selected by the dependency parse.
All above RNN outputs were concatenated to
form a sequence of 400-dimensional (16+128*3)
timesteps, which fed a 128-dimensional LSTM
connected to a single sigmoidal output unit.

We unrolled this network to a zero-padded se-
quence length of 60 and trained it to convergence
using Adam with a mean average error loss func-
tion (Kingma and Ba, 2014). The embeddings
were not updated during training. We ensembled
eight instances of this network trained from differ-
ent random initializations.

Paris: String Similarity More than a decade
ago, MITRE entered a system based on string
similarity metrics in the 2004 Pascal RTE com-
petition (Bayer et al., 2005). The libparis
code base implements eight different string sim-
ilarity and machine translation evaluation algo-
rithms; measures include an implementation of
the MT evaluation BLEU (Papineni et al., 2002);
WER, a common speech recognition word error
rate based on Levenshtein distance (Levenshtein,
1966); WER-g (Foster et al., 2003); ROUGE (Lin
and Och, 2004); a simple position-independent
error rate similar to PER (Leusch et al., 2003);
both global and local similarity metrics often used
for biological string comparison (Gusfield, 1997).

Finally, there are precision and recall measures
based on bags of all substrings (or n-grams in
word tokenization).

In total, the package computes 22 metrics for a
pair of strings. The metrics were run on both case-
folded and original versions as well as on word
tokens and characters, yielding 88 string similar-
ity features. Some of the metrics are not symmet-
ric, so they were run both forward and reversed
based on presentation in the dataset yielding 176
features. Finally, for each feature value x, log(x)
was added as a feature, producing a final count of
352 string similarity features. LIBLINEAR used
these features to build a L1-regularized logistic re-
gression model. This system was unchanged, ex-
cept for retraining, from the system described in
Zarrella et al. (2015)

Simple Alignment Measures Section 3.4 de-
scribes methods we used for aligning two strings.
L2-regularized logistic regression was used to
combine 16 simple features calculated as side-
effects of alignment. Details are described in
Zarrella et al. (2015).

Enhanced BiLSTM Inference Model (EBIM)
We recreated the neural model described in Chen
et al. (2016) which reports state-of-the-art perfor-
mance on the task of finding entailment in the
SNLI corpus. The model encodes each sentence
with a bidirectional LSTM over word embeddings,
uses a parameter-less attention mechanism to pro-
duce a soft alignment matrix for the two sentences,
and then does inference over each timestep and
its alignment using another LSTM. Two fully-
connected layers complete the prediction. Chen
et al. (2016) improves performance by concate-
nating the final LSTM representation from EBIM
with that of a similar model where a modified
LSTM operates over a syntax tree; we did not in-
clude this extension in our submission.

Our implementation kept most hyperparameters
described in the paper. However, we used the
word2vec embeddings described above and found
that freezing the embeddings produced better per-
formance for this small dataset. We also found our
models worked better without dropout on the em-
bedding layer. Where the original model chooses a
class via softmax, we output a semantic similarity
score trained to minimize mean squared error.
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Primary Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
AR-AR AR-EN ES-ES ES-EN ES-EN news EN-EN TR-EN

Official Score 0.6590 0.7294 0.6753 0.8202 0.7802 0.1598 0.8053 0.6430
Corrected Score 0.6687 0.7294 0.6753 0.8202 0.7802 0.1598 0.8329 0.6831

Table 1: Pearson correlations on official test set. Corrected ensemble effects in bold.

Factored Ablated
Component dev test dev test
TakeLab .8724 .6503 .8739 .6454
CRNNs-8 .8621 .6379 .8846 .6551
Paris .8074 .5524 .8891 .6666
EBIM .7742 .4760 .8886 .6687
Align .7607 .5037 .8910 .6722
All In .8900 .6687

Table 2: Factored and ablated system components
evaluated on our dev set and the official test set.

3.6 Ensemble

The semantic similarity estimates of the predictors
described above contributed to the final prediction
with a weighting determined by L2-regularized lo-
gistic regression.

4 Experiment Details

We used as training data a selection of English
monolingual sentence pairs released during prior
SemEval STS evaluations. Specifically, we trained
on 6,898 pairs of news and caption genre data from
the 2012-2014 and 2016 evaluations. We used an
additional 400 and 350 captions from the 2015
evaluation as development and tuning sets, respec-
tively. We did not use out-of-genre data (e.g. dic-
tionary definitions, Europarl, web forums, student
essays) or the newly-released multilingual 2017
training data. The dev set was used to select hyper-
parameters for individual components, while the
tuning set was used to select the hyperparameters
for the final ensemble.

5 Results

The evaluation of our components on the competi-
tion test set is shown in Table 1. The official sim-
ilarity score produced by this approach achieved
0.6590 correlation with expert judgment averaged
across all tracks. A misfiling during construction
of the ensemble submission for tracks 5 and 6 re-
duced the official score from 0.6687.

The dev columns of Table 2 show the ability
of each individual system in isolation on the dev
data (”Factored”) as well as the performance of
the ensemble when the individual system was re-
moved (”Ablated”). Note that the Align system

should have been ablated from the final system to
achieve a higher score. Presumably its capability
was strictly dominated by the CRNNs that used
many of the same features.

The test scores for individual CRNN mod-
els ranged from 0.605 to 0.636, highlighting the
volatility inherent in the process. The CRNN-
ensemble improved slightly over the best single
model, with a score of 0.638.

6 Conclusion

Five models of semantic similarity constructed
from 2004 to 2016 were combined for paraphrase
detection in image captions. The TakeLab bag-
of-features SVM developed and open-sourced in
2012, when trained on our selection of in-genre
data and evaluated on a machine translated ver-
sion of the test set, performed well enough in
isolation to place fourth out of seventeen in the
Primary Track of the Semantic Textual Similarity
competition organized within SemEval-2017 Task
1, which had submissions from 31 teams in total.

Inclusion of explicit word alignments, a neu-
ral attention model, and recurrent networks ac-
counting for sequences of syntactic dependencies
yielded an improvement in Pearson correlation
from 0.650 to 0.672, a modest improvement which
increased the corrected system’s ranking to third.
This surprising result is perhaps an indication that
image captions have few of the complex linguis-
tic dependencies that typically make estimating
semantic similarity a difficult task. Future work
could focus on testing whether this result holds
when performing crosslingual STS without ex-
plicit machine translation.

Acknowledgments

This work was funded under the MITRE Innova-
tion Program. Approved for Public Release; Dis-
tribution Unlimited: 17-0970.

References
Eneko Agirre, Daniel Cer, Mona Diab, Iigo Lopez-

Gazpio, and Lucia Specia. 2017. SemEval-2017

188



task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval 2017).

Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty,
I. D. Melamed, F-J. Och, D. Purdy, N. A. Smith, and
D. Yarowsky. 1999. Statistical machine translation:
Final report. Technical report, JHU Center for Lan-
guage and Speech Processing.

Samuel Bayer, John Burger, Lisa Ferro, John Hender-
son, and Alexander Yeh. 2005. MITRE’s submis-
sions to the EU Pascal RTE challenge. In Proceed-
ings of the Pattern Analysis, Statistical Modelling,
and Computational Learning (PASCAL) Challenges
Workshop on Recognising Textual Entailment.

Michel Berkelaar, Kjell Eikland, and Peter Note-
baert. 2004. lp solve 5.5, open source (mixed-
integer) linear programming system. Software.
http://lpsolve.sourceforge.net/5.5/.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics. http://www.anthology.aclweb.org/D/D15/D15-
1075.pdf.

Danqi Chen and Christopher D Manning. 2014.
A fast and accurate dependency parser using
neural networks. In Proceedings of EMNLP.
http://www.aclweb.org/anthology/D14-1082.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree LSTM for natural language inference.
arXiv preprint arXiv:1609.06038 .

George Foster, Simona Gandrabur, Cyril Goutte, Erin
Fitzgerald, Alberto Sanchis, Nicola Ueffing, John
Blatz, and Alex Kulesza. 2003. Confidence estima-
tion for machine translation. Technical report, JHU
Center for Language and Speech Processing.

Dan Gusfield. 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational
Biology. Cambridge University Press.

Hideo Itoh. 2016. RICOH at SemEval-2016
task 1: IR-based semantic textual similar-
ity estimation. Proceedings of SemEval
https://www.aclweb.org/anthology/S/S16/S16-
1106.pdf.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

G. Leusch, N. Ueffing, and H. Ney. 2003. A novel
string-to-string distance measure with applications
to machine translation evaluation. In Proc. of the
Ninth MT Summit.

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions and reversals. Soviet
Physics Doklady 10(8):707–710.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In Proceedings of
the 20th International Conference on Computational
Linguistics (COLING 2004). Geneva, Switzerland.
http://www.aclweb.org/anthology/C04-1072.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics. ACL ’02.
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A Supplemental Material

These min alignment examples all come from
Track 5.

Example 1: Similarity 5.0.
th

e

bo
y

is ta
ki

ng

a te
st

at sc
ho

ol

a 1.69 1.32 1.56 1.36 2.00 1.26 1.47 1.31
boy 1.30 2.00 1.22 1.30 1.32 1.21 1.23 1.41

is 1.58 1.22 2.00 1.28 1.56 1.24 1.48 1.30
at 1.56 1.23 1.48 1.35 1.47 1.25 2.00 1.34

school 1.28 1.41 1.30 1.21 1.31 1.24 1.34 2.00
taking 1.39 1.30 1.28 2.00 1.36 1.34 1.35 1.21

a 1.69 1.32 1.56 1.36 2.00 1.26 1.47 1.31
test 1.23 1.21 1.24 1.34 1.26 2.00 1.25 1.24

Example 2: Similarity 2.6.

tw
o

m
en

st
an

di
ng

in th
e

su
rf

on a be
ac

h

a 1.41 1.29 1.36 1.64 1.69 1.20 1.52 2.00 1.28
pair 1.54 1.33 1.38 1.35 1.40 1.21 1.34 1.37 1.28

of 1.42 1.34 1.35 1.66 1.79 1.18 1.53 1.60 1.30
men 1.29 2.00 1.40 1.35 1.36 1.25 1.27 1.29 1.33

walk along 1.26 1.25 1.43 1.25 1.30 1.44 1.39 1.29 1.60
the 1.47 1.36 1.42 1.73 2.00 1.25 1.57 1.69 1.30

beach 1.31 1.33 1.36 1.30 1.30 1.66 1.33 1.28 2.00

Example 3: Similarity 0.0.

m
en

ar
e

tr
yi

ng

to re
m

ov
e

oi
l

fr
om

a
bo

dy

of w
at

er

adding 1.12 1.21 1.29 1.21 1.40 1.07 1.18 1.15 1.16 1.18
aspirin 1.16 1.15 1.17 1.17 1.23 1.32 1.15 1.11 1.17 1.27

to 1.33 1.44 1.31 2.00 1.34 1.25 1.62 1.06 1.59 1.35
the 1.36 1.49 1.26 1.64 1.23 1.31 1.58 1.10 1.79 1.37

water 1.21 1.32 1.10 1.35 1.21 1.50 1.34 1.10 1.36 2.00
could 1.31 1.34 1.51 1.48 1.36 1.20 1.30 1.13 1.31 1.18

kill 1.30 1.26 1.41 1.35 1.44 1.18 1.27 1.19 1.32 1.19
the 1.36 1.49 1.26 1.64 1.23 1.31 1.58 1.10 1.79 1.37

plant 1.19 1.30 1.18 1.33 1.26 1.47 1.29 1.07 1.32 1.41
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