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Abstract

Semantic parsing shines at analyzing com-
plex natural language that involves com-
position and computation over multiple
pieces of evidence. However, datasets
for semantic parsing contain many factoid
questions that can be answered from a sin-
gle web document. In this paper, we pro-
pose to evaluate semantic parsing-based
question answering models by comparing
them to a question answering baseline that
queries the web and extracts the answer
only from web snippets, without access to
the target knowledge-base. We investigate
this approach on COMPLEXQUESTIONS,
a dataset designed to focus on composi-
tional language, and find that our model
obtains reasonable performance (∼35 F1

compared to 41 F1 of state-of-the-art). We
find in our analysis that our model per-
forms well on complex questions involv-
ing conjunctions, but struggles on ques-
tions that involve relation composition and
superlatives.

1 Introduction

Question answering (QA) has witnessed a surge
of interest in recent years (Hill et al., 2015; Yang
et al., 2015; Pasupat and Liang, 2015; Chen et al.,
2016; Joshi et al., 2017), as it is one of the promi-
nent tests for natural language understanding. QA
can be coarsely divided into semantic parsing-
based QA, where a question is translated into a
logical form that is executed against a knowledge-
base (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Liang et al., 2011; Kwiatkowski
et al., 2013; Reddy et al., 2014; Berant and
Liang, 2015), and unstructured QA, where a ques-
tion is answered directly from some relevant text

(Voorhees and Tice, 2000; Hermann et al., 2015;
Hewlett et al., 2016; Kadlec et al., 2016; Seo et al.,
2016).

In semantic parsing, background knowledge
has already been compiled into a knowledge-base
(KB), and thus the challenge is in interpreting the
question, which may contain compositional con-
structions (“What is the second-highest mountain
in Europe?”) or computations (“What is the dif-
ference in population between France and Ger-
many?”). In unstructured QA, the model needs
to also interpret the language of a document, and
thus most datasets focus on matching the question
against the document and extracting the answer
from some local context, such as a sentence or a
paragraph (Onishi et al., 2016; Rajpurkar et al.,
2016; Yang et al., 2015).

Since semantic parsing models excel at han-
dling complex linguistic constructions and reason-
ing over multiple facts, a natural way to exam-
ine whether a benchmark indeed requires model-
ing these properties, is to train an unstructured QA
model, and check if it under-performs compared
to semantic parsing models. If questions can be
answered by examining local contexts only, then
the use of a knowledge-base is perhaps unneces-
sary. However, to the best of our knowledge, only
models that utilize the KB have been evaluated on
common semantic parsing benchmarks.

The goal of this paper is to bridge this evalua-
tion gap. We develop a simple log-linear model,
in the spirit of traditional web-based QA systems
(Kwok et al., 2001; Brill et al., 2002), that answers
questions by querying the web and extracting the
answer from returned web snippets. Thus, our
evaluation scheme is suitable for semantic pars-
ing benchmarks in which the knowledge required
for answering questions is covered by the web (in
contrast with virtual assitants for which the knowl-
edge is specific to an application).
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We test this model on COMPLEXQUESTIONS

(Bao et al., 2016), a dataset designed to re-
quire more compositionality compared to earlier
datasets, such as WEBQUESTIONS (Berant et al.,
2013) and SIMPLEQUESTIONS (Bordes et al.,
2015). We find that a simple QA model, despite
having no access to the target KB, performs rea-
sonably well on this dataset (∼35 F1 compared to
the state-of-the-art of 41 F1). Moreover, for the
subset of questions for which the right answer can
be found in one of the web snippets, we outper-
form the semantic parser (51.9 F1 vs. 48.5 F1). We
analyze results for different types of composition-
ality and find that superlatives and relation com-
position constructions are challenging for a web-
based QA system, while conjunctions and events
with multiple arguments are easier.

An important insight is that semantic parsers
must overcome the mismatch between natural lan-
guage and formal language. Consequently, lan-
guage that can be easily matched against the web
may become challenging to express in logical
form. For example, the word “wife” is an atomic
binary relation in natural language, but expressed
with a complex binary λx.λy.Spouse(x, y) ∧
Gender(x,Female) in knowledge-bases. Thus,
some of the complexity of understanding natural
language is removed when working with a natural
language representation.

To conclude, we propose to evaluate the extent
to which semantic parsing-based QA benchmarks
require compositionality by comparing semantic
parsing models to a baseline that extracts the an-
swer from short web snippets. We obtain rea-
sonable performance on COMPLEXQUESTIONS,
and analyze the types of compositionality that are
challenging for a web-based QA model. To en-
sure reproducibility, we release our dataset, which
attaches to each example from COMPLEXQUES-
TIONS the top-100 retrieved web snippets.1

2 Problem Setting and Dataset

Given a training set of triples {q(i), R(i), a(i)}Ni=1,
where q(i) is a question, R(i) is a web result set,
and a(i) is the answer, our goal is to learn a model
that produces an answer a for a new question-
result set pair (q,R). A web result set R consists
of K(= 100) web snippets, where each snippet si

1Data can be downloaded from https:
//worksheets.codalab.org/worksheets/
0x91d77db37e0a4bbbaeb37b8972f4784f/

R:

s1: Billy Batts (Character) - Biography - IMDb
Billy Batts (Character) on IMDb: Movies, TV,
Celebs, and more... ... Devino is portrayed by
Frank Vincent in the film Goodfellas. Page last up-
dated by !!!de leted!!!
s2: Frank Vincent - Wikipedia He appeared in
Scorsese’s 1990 film Goodfellas, where he played
Billy Batts, a made man in the Gambino crime fam-
ily. He also played a role in Scorsese’s...
...
s100: Voice-over in Goodfellas In the summer when
they played cards all night, nobody ever called the
cops. .... But we had a problem with Billy Batts.
This was a touchy thing. Tommy had killed a made
man. Billy was a part of the Bambino crew and un-
touchable. Before you...

q: “who played the part of billy batts in goodfellas?”
a: “Frank Vincent”

Figure 1: A training example containing a result set R, a
question q and an answer a. The result set R contains 100
web snippets si, each including a title (boldface) and text.
The answer is underlined.

has a title and a text fragment. An example for a
training example is provided in Figure 1.

Semantic parsing-based QA datasets contain
question-answer pairs alongside a background
KB. To convert such datasets to our setup, we run
the question q against Google’s search engine and
scrape the top-K web snippets. We use only the
web snippets and ignore any boxes or other infor-
mation returned (see Figure 1 and the full dataset
in the supplementary material).

Compositionality We argue that if a dataset
truly requires a compositional model, then it
should be difficult to tackle with methods that
only match the question against short web snip-
pets. This is since it is unlikely to integrate all
necessary pieces of evidence from the snippets.

We convert COMPLEXQUESTIONS into the
aforementioned format, and manually analyze the
types of compositionality that occur on 100 ran-
dom training examples. Table 1 provides an ex-
ample for each of the question types we found:

SIMPLE: an application of a single binary re-
lation on a single entity.
FILTER: a question where the semantic type
of the answer is mentioned (“tv shows” in Ta-
ble 1).
N-ARY: A question about a single event that
involves more than one entity (“juni” and
“spy kids 4” in Table 1).
CONJUNCTION: A question whose answer is
the conjunction of more than one binary rela-
tion in the question.

162



Type Example %

SIMPLE “who has gone out with cornelis de graeff” 17%
FILTER “which tv shows has wayne rostad starred in” 18%
N-ARY “who played juni in spy kids 4?” 51%
CONJ. “what has queen latifah starred in that doug 10%

mchenry directed”
COMPOS. “who was the grandson of king david’s father?” 7%
SUPERL. “who is the richest sports woman?” 9%
OTHER “what is the name george lopez on the show?” 8%

Table 1: An example for each compositionality type and the
proportion of examples in 100 random examples. A question
can fall into multiple types, and thus the sum exceeds 100%.

COMPOSITION A question that involves
composing more than one binary relation
over an entity (“grandson” and “father” in
Table 1).
SUPERLATIVE A question that requires sort-
ing or comparing entities based on a numeric
property.
OTHER Any other question.

Table 1 illustrates that COMPLEXQUESTIONS

is dominated by N-ARY questions that involve an
event with multiple entities. In Section 4 we eval-
uate the performance of a simple QA model for
each compositionality type, and find that N-ARY

questions are handled well by our web-based QA
system.

3 Model

Our model comprises two parts. First, we extract
a set of answer candidates, A, from the web result
set. Then, we train a log-linear model that outputs
a distribution over the candidates inA, and is used
at test time to find the most probable answers.

Candidate Extraction We extract all 1-grams,
2-grams, 3-grams and 4-grams (lowercased) that
appear inR, yielding roughly 5,000 candidates per
question. We then discard any candidate that fully
appears in the question itself, and define A to be
the top-K candidates based on their tf-idf score,
where term frequency is computed on all the snip-
pets inR, and inverse document frequency is com-
puted on a large external corpus.

Candidate Ranking We define a log-linear
model over the candidates in A:

pθ(a | q,R) =
exp(φ(q,R, a)>θ)∑

a′∈A exp(φ(q,R, a′)>θ)
,

where θ ∈ Rd are learned parameters, and
φ(·) ∈ Rd is a feature function. We train

our model by maximizing the regularized condi-
tional log-likelihood objective

∑N
i=1 log pθ(a(i) |

q(i), R(i)) + λ · ||θ||22. At test time, we return the
most probable answers based on pθ(a | q,R) (de-
tails in Section 4). While semantic parsers gener-
ally return a set, in COMPLEXQUESTIONS 87% of
the answers are a singleton set.

Features A candidate span a often has multiple
mentions in the result setR. Therefore, our feature
function φ(·) computes the average of the features
extracted from each mention. The main informa-
tion sources used are the match between the candi-
date answer itself and the question (top of Table 2)
and the match between the context of a candidate
answer in a specific mention and the question (bot-
tom of Table 2), as well as the Google rank in
which the mention appeared.

Lexicalized features are useful for our task, but
the number of training examples is too small to
train a fully lexicalized model. Therefore, we de-
fine lexicalized features over the 50 most common
non-stop words in COMPLEXQUESTIONS. Last,
our context features are defined in a 6-word win-
dow around the candidate answer mention, where
the feature value decays exponentially as the dis-
tance from the candidate answer mention grows.
Overall, we compute a total of 892 features over
the dataset.

4 Experiments

COMPLEXQUESTIONS contains 1,300 training
examples and 800 test examples. We performed
5 random 70/30 splits of the training set for de-
velopment. We computed POS tags and named
entities with Stanford CoreNLP (Manning et al.,
2014). We did not employ any co-reference reso-
lution tool in this work. If after candidate extrac-
tion, we do not find the gold answer in the top-
K(=140) candidates, we discard the example, re-
sulting in a training set of 856 examples.

We compare our model, WEBQA, to STAGG
(Yih et al., 2015) and COMPQ (Bao et al.,
2016), which are to the best of our knowledge
the highest performing semantic parsing models
on both COMPLEXQUESTIONS and WEBQUES-
TIONS. For these systems, we only report test F1

numbers that are provided in the original papers,
as we do not have access to the code or predic-
tions. We evaluate models by computing average
F1, the official evaluation metric defined for COM-
PLEXQUESTIONS. This measure computes the F1
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Template Description

SPAN LENGTH Indicator for the number of tokens in am

TF-IDF Binned and raw tf-idf scores of am for every
span length

CAPITALIZED Whether am is capitalized
STOP WORD Fraction of words in am that are stop words
IN QUEST Fraction of words in am that are in q
IN QUEST+COMMON Conjunction of IN QUEST with common words

in q
IN QUESTION DIST. Max./avg. cosine similarity between am

words and q words
WH+NE Conjunction of wh-word in q and named entity

tags (NE) of am

WH+POS Conjunction of wh-word in q and
part-of-speech tags of am

NE+NE Conjunction of NE tags in q and NE tags in am

NE+COMMON Conjunction of NE tags in am and common
words in q

MAX-NE Whether am is a NE with maximal span
(not contained in another NE)

YEAR Binned indicator for year if am is a year

CTXT MATCH Max./avg. over non stop words in q, for
whether a q word occurs around am, weighted
by distance from am

CTXT SIMILARITY Max./avg. cosine similarity over non-stop
words in q, between q words and words around
am, weighted by distance

IN TITLE Whether am is in the title part of the snippet
CTXT ENTITY Indicator for whether a common word appears

between am and a named entity that appears
in q

GOOGLE RANK Binned snippet rank of am in the result set R

Table 2: Features templates used to extract features from each
answer candidate mention am. Cosine similarity is computed
with pre-trained GloVe embeddings (Pennington et al., 2014).
The definition of common words and weighting by distance is
in the body of the paper.

between the set of answers returned by the system
and the set of gold answers, and averages across
questions. To allow WEBQA to return a set rather
than a single answer, we return the most proba-
ble answer a∗ as well as any answer a such that
(φ(q,R, a∗)>θ − φ(q,R, a)>θ) < 0.5. We also
compute precision@1 and Mean Reciprocal Rank
(MRR) for WEBQA, since we have a ranking over
answers. To compute metrics we lowercase the
gold and predicted spans and perform exact string
match.

Table 3 presents the results of our evaluation.
WEBQA obtained 32.6 F1 (33.5 p@1, 42.4 MRR)
compared to 40.9 F1 of COMPQ. Our candidate
extraction step finds the correct answer in the top-
K candidates in 65.9% of development examples
and 62.7% of test examples. Thus, our test F1

on examples for which candidate extraction suc-
ceeded (WEBQA-SUBSET) is 51.9 (53.4 p@1,
67.5 MRR).

We were able to indirectly compare WEBQA-
SUBSET to COMPQ: Bao et al. (2016) graciously
provided us with the predictions of COMPQ when
it was trained on COMPLEXQUESTIONS, WE-
BQUESTIONS, and SIMPLEQUESTIONS. In this

Dev Test
System F1 p@1 F1 p@1 MRR

STAGG - - 37.7 - -
COMPQ - - 40.9 - -

WEBQA 35.3 36.4 32.6 33.5 42.4
WEBQA-EXTRAPOL - - 34.4 - -

COMPQ-SUBSET - - 48.5 - -
WEBQA-SUBSET 53.6 55.1 51.9 53.4 67.5

Table 3: Results on development (average over random splits)
and test set. Middle: results on all examples. Bottom: results
on the subset where candidate extraction succeeded.

setup, COMPQ obtained 42.2 F1 on the test set
(compared to 40.9 F1, when training on COM-
PLEXQUESTIONS only, as we do). Restricting the
predictions to the subset for which candidate ex-
traction succeeded, the F1 of COMPQ-SUBSET is
48.5, which is 3.4 F1 points lower than WEBQA-
SUBSET, which was trained on less data.

Not using a KB, results in a considerable disad-
vantage for WEBQA. KB entities have normalized
descriptions, and the answers have been annotated
according to those descriptions. We, conversely,
find answers on the web and often predict a cor-
rect answer, but get penalized due to small string
differences. E.g., for “what is the longest river in
China?” we answer “yangtze river”, while the
gold answer is “yangtze”. To quantify this effect
we manually annotated all 258 examples in the
first random development set split, and determined
whether string matching failed, and we actually
returned the gold answer.2 This improved perfor-
mance from 53.6 F1 to 56.6 F1 (on examples that
passed candidate extraction). Further normaliz-
ing gold and predicted entities, such that “Hillary
Clinton” and “Hillary Rodham Clinton” are uni-
fied, improved F1 to 57.3 F1. Extrapolating this to
the test set would result in an F1 of 34.4 (WEBQA-
EXTRAPOL in Table 3) and 34.9, respectively.

Last, to determine the contribution of each fea-
ture template, we performed ablation tests and we
present the five feature templates that resulted in
the largest drop to performance on the develop-
ment set in Table 4. Note that TF-IDF is by far the
most impactful feature, leading to a large drop of
12 points in performance. This shows the impor-
tance of using the redundancy of the web for our
QA system.

Analysis To understand the success of WEBQA
on different compositionality types, we manu-

2We also publicly release our annotations.
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Figure 2: Proportion of examples that passed or failed can-
didate extraction for each compositionality type, as well as
average F1 for each compositionality type. COMPOSITION
and SUPERLATIVE questions are difficult for WEBQA.

Feature Template F1 ∆

WEBQA 53.6
- MAX-NE 51.8 -1.8
- NE+COMMON 51.8 -1.8
- GOOGLE RANK 51.4 -2.2
- IN QUEST 50.1 -3.5
- TF-IDF 41.5 -12

Table 4: Feature ablation results. The five features that lead
to largest drop in performance are displayed.

ally annotated the compositionality type of 100
random examples that passed candidate extrac-
tion and 50 random examples that failed candi-
date extraction. Figure 2 presents the results of
this analysis, as well as the average F1 obtained
for each compositionality type on the 100 exam-
ples that passed candidate extraction (note that
a question can belong to multilpe compositional-
ity types). We observe that COMPOSITION and
SUPERLATIVE questions are challenging for WE-
BQA, while SIMPLE, FILTER, and N-ARY quesi-
tons are easier (recall that a large fraction of the
questions in COMPLEXQUESTIONS are N-ARY).
Interestingly, WEBQA performs well on CON-
JUNCTION questions (“what film victor garber
starred in that rob marshall directed”), possibly
because the correct answer can obtain signal from
multiple snippets.

An advantage of finding answers to ques-
tions from web documents compared to seman-
tic parsing, is that we do not need to learn the
“language of the KB”. For example, the ques-
tion “who is the governor of California 2010”
can be matched directly to web snippets, while
in Freebase (Bollacker et al., 2008) the word
“governor” is expressed by a complex predicate
λx.∃z.GoverPos(x, z) ∧ PosTitle(z,Governor).
This could provide a partial explanation for the
reasonable performance of WEBQA.

5 Related Work

Our model WEBQA performs QA using web snip-
pets, similar to traditional QA systems like MUL-
DER (Kwok et al., 2001) and AskMSR (Brill et al.,
2002). However, it it enjoys the advances in com-
merical search engines of the last decade, and uses
a simple log-linear model, which has become stan-
dard in Natural Language Processing.

Similar to this work, Yao et al. (2014) ana-
lyzed a semantic parsing benchmark with a simple
QA system. However, they employed a semantic
parser that is limited to applying a single binary
relation on a single entity, while we develop a QA
system that does not use the target KB at all.

Last, in parallel to this work Chen et al. (2017)
evaluated an unstructured QA system against se-
mantic parsing benchmarks. However, their fo-
cus was on examining the contributions of multi-
task learning and distant supervision to training
rather than to compare to state-of-the-art seman-
tic parsers.

6 Conclusion

We propose in this paper to evaluate semantic
parsing-based QA systems by comparing them to
a web-based QA baseline. We evaluate such a QA
system on COMPLEXQUESTIONS and find that it
obtains reasonable performance. We analyze per-
formance and find that COMPOSITION and SU-
PERLATIVE questions are challenging for a web-
based QA system, while CONJUNCTION and N-
ARY questions can often be handled by our QA
model.

Reproducibility Code, data, annotations, and
experiments for this paper are available on the
CodaLab platform at https://worksheets.
codalab.org/worksheets/
0x91d77db37e0a4bbbaeb37b8972f4784f/.
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