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Abstract

In this paper, we explore the role of con-
stituent properties in English and Ger-
man noun-noun compounds (corpus fre-
quencies of the compounds and their con-
stituents; productivity and ambiguity of
the constituents; and semantic relations
between the constituents), when predict-
ing the degrees of compositionality of the
compounds within a vector space model.
The results demonstrate that the empirical
and semantic properties of the compounds
and the head nouns play a significant role.

1 Introduction

The past 20+ years have witnessed an enormous
amount of discussions on whether and how the
modifiers and the heads of noun-noun compounds
such as butterfly, snowball and teaspoon influence
the compositionality of the compounds, i.e., the
degree of transparency vs. opaqueness of the com-
pounds. The discussions took place mostly in psy-
cholinguistic research, typically relying on read-
ing time and priming experiments. For example,
Sandra (1990) demonstrated in three priming ex-
periments that both modifier and head constituents
were accessed in semantically transparent En-
glish noun-noun compounds (such as feaspoon),
but there were no effects for semantically opaque
compounds (such as buttercup), when primed ei-
ther on their modifier or head constituent. In con-
trast, Zwitserlood (1994) provided evidence that
the lexical processing system is sensitive to mor-
phological complexity independent of semantic
transparency. Libben and his colleagues (Libben
et al. (1997), Libben et al. (2003)) were the first
who systematically categorised noun-noun com-
pounds with nominal modifiers and heads into four
groups representing all possible combinations of

modifier and head transparency (T) vs. opaque-
ness (O) within a compound. Examples for these
categories were car-wash (TT), strawberry (OT),
jailbird (TO), and hogwash (OO). Libben et al.
confirmed Zwitserlood’s analyses that both se-
mantically transparent and semantically opaque
compounds show morphological constituency; in
addition, the semantic transparency of the head
constituent was found to play a significant role.

From a computational point of view, address-
ing the compositionality of noun compounds (and
multi-word expressions in more general) is a cru-
cial ingredient for lexicography and NLP appli-
cations, to know whether the expression should
be treated as a whole, or through its constituents,
and what the expression means. For example,
studies such as Cholakov and Kordoni (2014),
Weller et al. (2014), Cap et al. (2015), and Salehi
et al. (2015b) have integrated the prediction of
multi-word compositionality into statistical ma-
chine translation.

Computational approaches to automatically
predict the compositionality of noun compounds
have mostly been realised as vector space mod-
els, and can be subdivided into two subfields:
(1) approaches that aim to predict the meaning
of a compound by composite functions, relying
on the vectors of the constituents (e.g., Mitchell
and Lapata (2010), Coecke et al. (2011), Baroni
et al. (2014), and Hermann (2014)); and (ii) ap-
proaches that aim to predict the degree of compo-
sitionality of a compound, typically by comparing
the compound vectors with the constituent vec-
tors (e.g., Reddy et al. (2011), Salehi and Cook
(2013), Schulte im Walde et al. (2013), Salehi et
al. (2014; 2015a)). In line with subfield (ii),
this paper aims to distinguish the contributions
of modifier and head properties when predicting
the compositionality of English and German noun-
noun compounds in a vector space model.
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Up to date, computational research on noun
compounds has largely ignored the influence of
constituent properties on the prediction of compo-
sitionality. Individual pieces of research noticed
differences in the contributions of modifier and
head constituents towards the composite functions
predicting compositionality (Reddy et al., 2011;
Schulte im Walde et al., 2013), but so far the
roles of modifiers and heads have not been distin-
guished. We use a new gold standard of German
noun-noun compounds annotated with corpus fre-
quencies of the compounds and their constituents;
productivity and ambiguity of the constituents; and
semantic relations between the constituents; and
we extend three existing gold standards of German
and English noun-noun compounds (O Séaghdha,
2007; von der Heide and Borgwaldt, 2009; Reddy
et al., 2011) to include approximately the same
compound and constituent properties. Relying on
a standard vector space model of compositional-
ity, we then predict the degrees of compositional-
ity of the English and German noun-noun com-
pounds, and explore the influences of the com-
pound and constituent properties. Our empirical
computational analyses reveal that the empirical
and semantic properties of the compounds and the
head nouns play a significant role in determining
the compositionality of noun compounds.

2 Related Work

Regarding relevant psycholinguistic research on
the representation and processing of noun com-
pounds, Sandra (1990) hypothesised that an asso-
ciative prime should facilitate access and recog-
nition of a noun compound, if a compound con-
stituent is accessed during processing. His three
priming experiments revealed that in transparent
noun-noun compounds, both constituents are ac-
cessed, but he did not find priming effects for the
constituents in opaque noun-noun compounds.
Zwitserlood (1994) performed an immediate
partial repetition experiment and a priming exper-
iment to explore and to distinguish morpholog-
ical and semantic structures in noun-noun com-
pounds. On the one hand, she confirmed San-
dra’s results that there is no semantic facilitation of
any constituent in opaque compounds. In contrast,
she found evidence for morphological complex-
ity, independent of semantic transparency, and that
both transparent and also partially opaque com-
pounds (i.e., compounds with one transparent and
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one opaque constituent) produce semantic prim-
ing of their constituents. For the heads of seman-
tically transparent compounds, a larger amount of
facilitation was found than for the modifiers. Dif-
ferences in the results by Sandra (1990) and Zwit-
serlood (1994) were supposedly due to different
definitions of partial opacity, and different prime—
target SOAs.

Libben and his colleagues (Libben et al. (1997),
Libben (1998), and Libben et al. (2003)) were the
first who systematically categorised noun-noun
compounds with nominal modifiers and heads
into four groups representing all possible com-
binations of a constituent’s transparency (T) vs.
opaqueness (O) within a compound: TT, OT, TO,
0O. Libben’s examples for these categories were
car-wash (TT), strawberry (OT), jailbird (TO),
and hogwash (OO). They confirmed Zwitserlood’s
analyses that both semantically transparent and se-
mantically opaque compounds show morphologi-
cal constituency, and also that the semantic trans-
parency of the head constituent was found to play
a significant role. Studies such as Jarema et al.
(1999) and Kehayia et al. (1999) to a large ex-
tent confirmed the insights by Libben and his col-
leagues for French, Bulgarian, Greek and Polish.

Regarding related computational work, promi-
nent approaches to model the meaning of a com-
pound or a phrase by a composite function include
Mitchell and Lapata (2010), Coecke et al. (2011),
Baroni et al. (2014), and Hermann (2014)). In this
area, researchers combine the vectors of the com-
pound/phrase constituents by mathematical func-
tions such that the resulting vector optimally rep-
resents the meaning of the compound/phrase. This
research is only marginally related to ours, since
we are interested in the degree of compositional-
ity of a compound, rather than its actual meaning.

Most closely related computational work in-
cludes distributional approaches that predict the
degree of compositionality of a compound regard-
ing a specific constituent, by comparing the com-
pound vector to the respective constituent vector.
Most importantly, Reddy et al. (2011) used a stan-
dard distributional model to predict the compo-
sitionality of compound-constituent pairs for 90
English compounds. They extended their predic-
tions by applying composite functions (see above).
In a similar vein, Schulte im Walde et al. (2013)
predicted the compositionality for 244 German
compounds. Salehi et al. (2014) defined a cross-



lingual distributional model that used translations
into multiple languages and distributional simi-
larities in the respective languages, to predict the
compositionality for the two datasets from Reddy
et al. (2011) and Schulte im Walde et al. (2013).

3 Noun-Noun Compounds

Our focus of interest is on noun-noun compounds,
such as butterfly, snowball and teaspoon as well
as car park, zebra crossing and couch potato in
English, and Ahornblatt ‘maple leaf’, Feuerwerk
‘fireworks’, and Lowenzahn ‘dandelion’ in Ger-
man, where both the grammatical head (in English
and German, this is typically the rightmost con-
stituent) and the modifier are nouns. We are inter-
ested in the degrees of compositionality of noun-
noun compounds, i.e., the semantic relatedness be-
tween the meaning of a compound (e.g., snowball)
and the meanings of its constituents (e.g., snow
and ball). More specifically, this paper aims to
explore factors that have been found to influence
compound processing and representation, such as

e frequency-based factors, i.e., the frequencies
of the compounds and their constituents (van
Jaarsveld and Rattink, 1988; Janssen et al.,
2008);

the productivity (morphological family size),
i.e., the number of compounds that share a
constituent (de Jong et al., 2002); and

semantic variables as the relationship be-
tween compound modifier and head: a teapot
is a pot FOR tea; a snowball is a ball MADE
OF snow (Gagné and Spalding, 2009; Ji et
al., 2011).

In addition, we were interested in the effect of am-
biguity (of both the modifiers and the heads) re-
garding the compositionality of the compounds.

Our explorations required gold standards of
compounds that were annotated with all these
compound and constituent properties. Since most
previous work on computational predictions of
compositionality has been performed for English
and for German, we decided to re-use existing
datasets for both languages, which however re-
quired extensions to provide all properties we
wanted to take into account. We also created a
novel gold standard. In the following, we describe
the datasets.!

The datasets are available from http://www.ims.
uni-stuttgart.de/data/ghost-nn/.
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German Noun-Noun Compound Datasets As
basis for this work, we created a novel gold stan-
dard of German noun-noun compounds: GpOST-
NN (Schulte im Walde et al., 2016). The new
gold standard was built such that it includes a rep-
resentative choice of compounds and constituents
from various frequency ranges, various productiv-
ity ranges, with various numbers of senses, and
with various semantic relations. In the follow-
ing, we describe the creation process in some de-
tail, because the properties of the gold standard are
highly relevant for the distributional models.

Relying on the 11.7 billion words in the web
corpus DECOWI14AX?* (Schifer and Bildhauer,
2012; Schifer, 2015), we extracted all words that
were identified as common nouns by the Tree Tag-
ger (Schmid, 1994) and analysed as noun com-
pounds with exactly two nominal constituents by
the morphological analyser SMOR (Faal3 et al.,
2010). This set of 154,960 two-part noun-noun
compound candidates was enriched with empiri-
cal properties relevant for the gold standard:

o corpus frequencies of the compounds and the
constituents (i.e., modifiers and heads), rely-
ing on DECOWI4AX;

e productivity of the constituents i.e., how
many compound types contained a specific
modifier/head constituent;

o number of senses of the compounds and the
constituents, relying on GermaNet (Hamp
and Feldweg, 1997; Kunze, 2000).

From the set of compound candidates we extracted
a random subset that was balanced? for

o the productivity of the modifiers: we cal-
culated tertiles to identify modifiers with
low/mid/high productivity;

o the ambiguity of the heads: we distinguished
between heads with 1, 2 and >2 senses.

For each of the resulting nine categories (three
productivity ranges X three ambiguity ranges),
we randomly selected 20 noun-noun compounds

http://corporafromtheweb.orqg/decowl4/

3We wanted to extract a random subset that at the same
time was balanced across frequency, productivity and am-
biguity ranges of the compounds and their constituents, but
defining and combining several ranges for each of the three
criteria and for compounds as well as constituents would have
led to an explosion of factors to be taken into account, so we
focused on two main criteria instead.



from our candidate set, disregarding compounds
with a corpus frequency < 2,000, and disregard-
ing compounds containing modifiers or heads with
a corpus-frequency < 100. We refer to this dataset
of 180 compounds balanced for modifier produc-
tivity and head ambiguity as G, 0ST-NN/S.

We also created a subset of 5 noun-noun com-
pounds for each of the 9 criteria combinations, by
randomly selecting 5 out of the 20 selected com-
pounds in each mode. This small, balanced sub-
set was then systematically extended by adding
all compounds from the original set of compound
candidates with either the same modifier or the
same head as any of the selected compounds. Tak-
ing Haarpracht as an example (the modifier is
Haar *hair’, the head is Pracht ’glory’), we added
Haarwdsche, Haarkleid, Haarpflege, etc. as well
as Bliitenpracht, Farbenpracht, etc.* We refer to
this dataset of 868 compounds that destroyed the
coherent balance of criteria underlying our ran-
dom extraction, but instead ensured a variety of
compounds with either the same modifiers or the
same heads, as G;,0ST-NN/XL.

The two sets of compounds (G, 0ST-NN/S and
G, 0ST-NN/XL) were annotated with the seman-
tic relations between the modifiers and the heads,
and compositionality ratings. Regarding seman-
tic relations, we applied the relation set sug-
gested by 0 Séaghdha (2007), because (i) he
had evaluated his annotation relations and anno-
tation scheme, and (ii) his dataset had a similar
size as ours, so we could aim for comparing re-
sults across languages. O Séaghdha (2007) him-
self had relied on a set of nine semantic rela-
tions suggested by Levi (1978), and designed and
evaluated a set of relations that took over four
of Levi’s relations (BE, HAVE, IN, ABOUT)
and added two relations referring to event partici-
pants (ACTOR, INST (rument)) that replaced
the relations MAKE, CAUSE, FOR, FROM,
USE. An additional relation LEX refers to lexi-
calised compounds where no relation can be as-
signed. Three native speakers of German anno-
tated the compounds with these seven semantic
relations.’ Regarding compositionality ratings,
eight native speakers of German annotated all
868 gold-standard compounds with compound-

“The translations of the example compounds are hair
washing, hair dress, hair care, floral glory, and colour glory.

>In fact, the annotation was performed for a superset of
1,208 compounds, but we only took into account 868 com-
pounds with perfect agreement, i.e. [AA=1.
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constituent compositionality ratings on a scale
from 1 (definitely semantically opaque) to 6 (def-
initely semantically transparent). Another five na-
tive speakers provided additional annotation for
our small core subset of 180 compounds on the
same scale. As final compositionality ratings, we
use the mean compound—constituent ratings across
the 13 annotators.

As alternative gold standard for German noun-
noun compounds, we used a dataset based on a
selection of noun compounds by von der Heide
and Borgwaldt (2009), that was previously used
in computational models predicting composition-
ality (Schulte im Walde et al., 2013; Salehi et al.,
2014). The dataset contains a subset of their com-
pounds including 244 two-part noun-noun com-
pounds, annotated by compositionality ratings on
a scale between 1 and 7. We enriched the existing
dataset with frequencies, and productivity and am-
biguity scores, also based on DECOWI4AX and
GermaNet, to provide the same empirical infor-
mation as for the G,0ST-NN datasets. We refer
to this alternative German dataset as VDHB.

English Noun-Noun Compound Datasets
Reddy et al. (2011) created a gold standard for
English noun-noun compounds. Assuming that
compounds whose constituents appeared either
as their hypernyms or in their definitions tend
to be compositional, they induced a candidate
compound set with various degrees of compound-—
constituent relatedness from WordNet (Miller et
al.,, 1990; Fellbaum, 1998) and Wiktionary. A
random choice of 90 compounds that appeared
with a corpus frequency > 50 in the ukWaC
corpus (Baroni et al., 2009) constituted their
gold-standard dataset and was annotated by
compositionality ratings. Bell and Schifer (2013)
annotated the compounds with semantic relations
using all of Levi’s original nine relation types:
CAUSE, HAVE, MAKE, USE, BE, IN,
FOR, FROM, ABOUT. We refer to this dataset
as REDDY.

O Séaghdha developed computational models
to predict the semantic relations between modi-
fiers and heads in English noun compounds (O
Séaghdha, 2008; 0 Séaghdha and Copestake,
2013; O Séaghdha and Korhonen, 2014). As
gold-standard basis for his models, he created a
dataset of compounds, and annotated the com-
pounds with semantic relations: He tagged and
parsed the written part of the British National Cor-



Language | Dataset #Compounds f.ln.notatwn — -
Frequency/Productivity \ Ambiguity \ Relations
GjOST-NN/S 180 DECOW GermalNet | Levi (7)
DE G,OST-NN/XL 868 DECOW GermaNet | Levi (7)
VDHB 244 DECOW GermaNet -
EN REDDY 90 ENCOW WordNet | Levi (9)
oS 396 ENCOW WordNet | Levi (6)

Table 1: Noun-noun compound datasets.

pus using RASP (Briscoe and Carroll, 2002), and
applied a simple heuristics to induce compound
candidates: He used all sequences of two or more
common nouns that were preceded or followed by
sentence boundaries or by words not representing
common nouns. Of these compound candidates,
a random selection of 2,000 instances was used
for relation annotation (() Séaghdha, 2007) and
classification experiments. The final gold standard
is a subset of these compounds, containing 1,443
noun-noun compounds. We refer to this dataset as
OS.

Both English compound datasets were enriched
with frequencies and productivities, based on the
ENCOWI14AX® containing 9.6 billion words. We
also added the number of senses of the con-
stituents to both datasets, using WordNet. And we
collected compositionality ratings for a random
choice of 396 compounds from the OS dataset
relying on eight experts, in the same way as the
G, 0ST-NN ratings were collected.

Resulting Noun-Noun Compound Datasets
Table 1 summarises the gold-standard datasets.
They are of different sizes, but their empirical and
semantic annotations have been aligned to a large
extent, using similar corpora, relying on WordNets
and similar semantic relation inventories based on
Levi (1978).

4 VSMs Predicting Compositionality

Vector space models (VSMs) and distributional in-
formation have been a steadily increasing, integral
part of lexical semantic research over the past 20
years (Turney and Pantel, 2010): They explore
the notion of “similarity” between a set of tar-
get objects, typically relying on the distributional
hypothesis (Harris, 1954; Firth, 1957) to deter-
mine co-occurrence features that best describe the
words, phrases, sentences, etc. of interest.

*http://corporafromtheweb.org/encowl4/
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In this paper, we use VSMs in order to model
compounds as well as constituents by distribu-
tional vectors, and we determine the semantic re-
latedness between the compounds and their mod-
ifier and head constituents by measuring the dis-
tance between the vectors. We assume that the
closer a compound vector and a constituent vec-
tor are to each other, the more compositional (i.e.,
the more transparent) the compound is, regard-
ing that constituent. Correspondingly, the more
distant a compound vector and a constituent vec-
tor are to each other, the less compositional (i.e.,
the more opaque) the compound is, regarding that
constituent.

Our main questions regarding the VSMs are
concerned with the influence of constituent prop-
erties on the prediction of compositionality. IL.e.,
how do the corpus frequencies of the compounds
and their constituents, the productivity and the am-
biguity of the constituents, and the semantic rela-
tions between the constituents influence the qual-
ity of the predictions?

4.1 Vector Space Models (VSMs)

We created a standard vector space model for
all our compounds and constituents in the vari-
ous datasets, using co-occurrence frequencies of
nouns within a sentence-internal window of 20
words to the left and 20 words to the right of
the targets.” The frequencies were induced from
the German and English COW corpora, and trans-
formed to local mutual information (LMI) values
(Evert, 2005).

Relying on the LMI vector space models, the
cosine determined the distributional similarity
between the compounds and their constituents,
which was in turn used to predict the degree

"In previous work, we systematically compared window-
based and syntax-based co-occurrence variants for predicting
compositionality (Schulte im Walde et al., 2013). The current
work adopted the best choice of co-occurrence dimensions.



of compositionality between the compounds and
their constituents, assuming that the stronger the
distributional similarity (i.e., the cosine values),
the larger the degree of compositionality. The vec-
tor space predictions were evaluated against the
mean human ratings on the degree of composition-
ality, using the Spearman Rank-Order Correlation
Coefficient p (Siegel and Castellan, 1988).

4.2 Overall VSM Prediction Results

Table 2 presents the overall prediction results
across languages and datasets. The mod column
shows the p correlations for predicting only the
degree of compositionality of compound—-modifier
pairs; the head column shows the p correlations
for predicting only the degree of compositional-
ity of compound-head pairs; and the both col-
umn shows the p correlations for predicting the
degree of compositionality of compound-modifier
and compound-head pairs at the same time.

[ Dataset [ mod | head [ both ]
GrOST-NN/S 048 | 0.57 | 0.46
DE | GLOST-NN/XL || 049 | 0.59 | 0.47
vDHB 0.65 | 0.60 | 0.61
EN REDDY 0.48 | 0.60 | 0.56
oS 046 | 039 | 0.35

Table 2: Overall prediction results (p).

The models for VDHB and REDDY represent
replications of similar models in Schulte im Walde
et al. (2013) and Reddy et al. (2011), respectively,
but using the much larger COW corpora.

Overall, the both prediction results on VDHB
are significantly® better than all others but REDDY;
and the prediction results on OS compounds are
significantly worse than all others. We can also
compare within-dataset results: Regarding the two
G, 0ST-NN datasets and the REDDY dataset, the
VSM predictions for the compound-head pairs are
better than for the compound-modifier pairs. Re-
garding the VDHB and the OS datasets, the VSM
predictions for the compound—modifier pairs are
better than for the compound-head pairs. These
differences do not depend on the language (ac-
cording to our datasets), and are probably due to
properties of the specific gold standards that we
did not control. They are, however, also not the
main point of this paper.

8 All significance tests in this paper were performed by
Fisher r-to-z transformation.
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4.3 Influence of Compound Properties on
VSM Prediction Results

Figures 1 to 5 present the core results of this paper:
They explore the influence of compound and con-
stituent properties on predicting compositionality.
Since we wanted to optimise insight into the influ-
ence of the properties, we selected the 60 maxi-
mum instances and the 60 minimum instances for
each property.” For example, to explore the in-
fluence of head frequency on the prediction qual-
ity, we selected the 60 most frequent and the 60
most infrequent compound heads from each gold-
standard resource, and calculated Spearman’s p
for each set of 60 compounds with these heads.

Figure 1 shows that the distributional model
predicts high-frequency compounds (red bars) bet-
ter than low-frequency compounds (blue bars),
across datasets. The differences are significant for
GrOST-NN/XL.

miow ® high

Ghost-NN/S Ghost-NN/XL vdHB Reddy 0s

Spearman's rho

Figure 1: Effect of compound frequency.

Figure 2 shows that the distributional model
predicts compounds with low-frequency heads
better than compounds with high-frequency heads
(right panel), while there is no tendency regarding
the modifier frequencies (left panel). The differ-
ences regarding the head frequencies are signifi-
cant (p = 0.1) for both G,0ST-NN datasets.

Figure 3 shows that the distributional model
also predicts compounds with low-productivity
heads better than compounds with high-
productivity heads (right panel), while there
is no tendency regarding the productivities of
modifiers (left panel). The prediction differences
regarding the head productivities are significant
for G, O0ST-NN/S (p < 0.05).

For REDDY, we could only use 45 maximum/minimum
instances, since the dataset only contains 90 compounds.
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Figure 4 shows that the distributional model
also predicts compounds with low-ambiguity
heads better than compounds with high-ambiguity
heads (right panel) —with one exception (G,OST-
NN/XL)- while there is no tendency regarding the
ambiguities of modifiers (left panel). The predic-
tion differences regarding the head ambiguities are
significant for G,O0ST-NN/XL (p < 0.01).

Figure 5 compares the predictions of the dis-
tributional model regarding the semantic rela-
tions between modifiers and heads, focusing on
G, 0ST-NN/XL. The numbers in brackets refer to
the number of compounds with the respective re-
lation. The plot reveals differences between pre-
dictions of compounds with different relations.

BE (179) HAVE (127)  IN(82)  INST(256) ABOUT (117) ACTOR (93}

0,8

0,7

0,6

Spearman's rho

Figure 5: Effect of semantic relation.

Table 3 summarises those differences across
gold standards that are significant (where filled
cells refer to rows significantly outperforming
columns).  Overall, the compositionality of
BE compounds is predicted significantly better
than the compositionality of HAVE compounds
(in REDDY), INST and ABOUT compounds (in
G;,0ST-NN) and ACTOR compounds (in G,0ST-
NN and OS). The compositionality of ACTOR
compounds is predicted significantly worse than
the compositionality of BE, HAVE, IN and
INST compounds in both G;0ST-NN and OS.

HAVE INST ABOUT | ACTOR
BE REDDY | GLOST | G,LOST | G,LOST, OS
HAVE 0S GroOsT, OS
IN GrOST, OS
INST GOSsT, OS

Table 3: Significant differences: relations.
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5 Discussion

While modifier frequency, productivity and am-
biguity did not show a consistent effect on the
predictions, head frequency, productivity and
ambiguity influenced the predictions such that
the prediction quality for compounds with low-
frequency, low-productivity and low-ambiguity
heads was better than for compounds with high-
frequency, high-productivity and high-ambiguity
heads. The differences were significant only for
our new G,OST-NN datasets. In addition, the
compound frequency also had an effect on the pre-
dictions, with high-frequency compounds receiv-
ing better prediction results than low-frequency
compounds. Finally, the quality of predictions
also differed for compound relation types, with
BE compounds predicted best, and ACTOR com-
pounds predicted worst. These differences were
ascertained mostly in the G,OST-NN and the OS
datasets. Our results raise two main questions:

(1) What does it mean if a distributional model
predicts a certain subset of compounds (with
specific properties) “better” or “worse” than
other subsets?

(2) What are the implications for (a) psycholin-
guistic and (b) computational models regard-
ing the compositionality of noun compounds?

Regarding question (1), there are two options
why a distributional model predicts a certain sub-
set of compounds better or worse than other sub-
sets. On the one hand, one of the underlying gold-
standard datasets could contain compounds whose
compositionality scores are easier to predict than
the compositionality scores of compounds in a
different dataset. On the other hand, even if
there were differences in individual dataset pairs,
this would not explain why we consistently find
modelling differences for head constituent proper-
ties (and compound properties) but not for modi-
fier constituent properties. We therefore conclude
that the effects of compound and head properties
are due to the compounds’ morphological con-
stituency, with specific emphasis on the influences
of the heads.

Looking at the individual effects of the com-
pound and head properties that influence the dis-
tributional predictions, we hypothesise that high-
frequent compounds are easier to predict because
they have a better corpus coverage (and less



sparse data) than low-frequent compounds, and
that they contain many clearly transparent com-
pounds (such as Zitronensaft ‘lemon juice’), and
at the same time many clearly opaque compounds
(such as FEifersucht ‘jealousy’, where the literal
translations of the constituents are ‘eagerness’ and
‘addiction’). Concerning the decrease in predic-
tion quality for more frequent, more productive
and more ambiguous heads, we hypothesise that
all of these properties are indicators of ambiguity,
and the more ambiguous a word is, the more diffi-
cult it is to provide a unique distributional predic-
tion, as distributional co-occurrence in most cases
(including our current work) subsumes the con-
texts of all word senses within one vector. For ex-
ample, more than half of the compounds with the
most frequent and also with the most productive
heads have the head Spiel, which has six senses
in GermaNet and covers six relations (BE, 1IN,
INST, ABOUT, ACTOR, LEX).

Regarding question (2), the results of our distri-
butional predictions confirm psycholinguistic re-
search that identified morphological constituency
in noun-noun compounds: Our models clearly dis-
tinguish between properties of the whole com-
pounds, properties of the modifier constituents,
and properties of the head constituents. Further-
more, our models reveal the need to carefully bal-
ance the frequencies and semantic relations of tar-
get compounds, and to carefully balance the fre-
quencies, productivities and ambiguities of their
head constituents, in order to optimise experiment
interpretations, while a careful choice of empirical
modifier properties seems to play a minor role.

For computational models, our work provides
similar implications. We demonstrated the need to
carefully balance gold-standard datasets for multi-
word expressions according to the empirical and
semantic properties of the multi-word expressions
themselves, and also according to those of the con-
stituents. In the case of noun-noun compounds,
the properties of the nominal modifiers were of
minor importance, but regarding other multi-word
expressions, this might differ. If datasets are not
balanced for compound and constituent properties,
the qualities of model predictions are difficult to
interpret, because it is not clear whether biases in
empirical properties skewed the results. Our ad-
vice is strengthened by the fact that most signifi-
cant differences in prediction results were demon-
strated for our new gold standard, which includes
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compounds across various frequency, productivity
and ambiguity ranges.

6 Conclusion

We explored the role of constituent properties
in English and German noun-noun compounds,
when predicting compositionality within a vec-
tor space model. The results demonstrated that
the empirical and semantic properties of the com-
pounds and the head nouns play a significant role.
Therefore, psycholinguistic experiments as well as
computational models are advised to carefully bal-
ance their selections of compound targets accord-
ing to compound and constituent properties.
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