
Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics (*SEM 2016), pages 102–107,
Berlin, Germany, August 11-12, 2016.

Leveraging VerbNet to build Corpus-Specific Verb Clusters

Daniel W Peterson and Jordan Boyd-Graber and Martha Palmer
University of Colorado

{daniel.w.peterson,jordan.boyd.graber,martha.palmer}@colorado.edu

Daisuke Kawhara
Kyoto University, JP

dk@i.kyoto-u.ac.jp

Abstract

In this paper, we aim to close the gap
from extensive, human-built semantic re-
sources and corpus-driven unsupervised
models. The particular resource explored
here is VerbNet, whose organizing princi-
ple is that semantics and syntax are linked.
To capture patterns of usage that can aug-
ment knowledge resources like VerbNet,
we expand a Dirichlet process mixture
model to predict a VerbNet class for each
sense of each verb, allowing us to incorpo-
rate annotated VerbNet data to guide the
clustering process. The resulting clusters
align more closely to hand-curated syn-
tactic/semantic groupings than any previ-
ous models, and can be adapted to new
domains since they require only corpus
counts.

1 Introduction

In this paper, we aim to close the gap from exten-
sive, human-built semantic resources and corpus-
driven unsupervised models. The work done by
linguists over years of effort has been validated by
the scientific community, and promises real trac-
tion on the fuzzy problem of deriving meaning
from words. However, lack of coverage and adapt-
ability currently limit the usefulness of this work.

The particular resource explored here is Verb-
Net (Kipper-Schuler, 2005), a semantic resource
built upon the foundation of verb classes by Levin
(1993). Levin’s verb classes are built on the hy-
pothesis that syntax and semantics are fundamen-
tally linked. The semantics of a verb affect the
allowable syntactic constructions involving that
verb, creating regularities in language to which
speakers are extremely sensitive. It follows that
grouping verbs by allowable syntactic realizations
leads from syntax to meaningful semantic group-
ings. This seed grew into VerbNet, a process

which involved dozens of linguists and a decade
of work, making careful decisions about the al-
lowable syntactic frames for various verb senses,
informed by text examples.

VerbNet is useful for semantic role labeling and
related tasks (Giuglea and Moschitti, 2006; Yi,
2007; Yi et al., 2007; Merlo and van der Plas,
2009; Kshirsagar et al., 2014), but its widespread
use is limited by coverage. Not all verbs have
a VerbNet class, and some polysemous verbs
have important senses unaccounted for. In addi-
tion, VerbNet is not easily adaptable to domain-
specific corpora, so these omissions may be more
prominent outside of the general-purpose corpora
and linguistic intuition used in its construction.
Its great strength is also its downfall: adding
new verbs, new senses, and new classes requires
trained linguists - at least, to preserve the integrity
of the resource.

According to Levin’s hypothesis, knowing the
set of allowable syntactic patterns for a verb sense
is sufficient to make meaningful semantic classifi-
cations. Large-scale corpora provide an extremely
comprehensive picture of the possible syntactic re-
alizations for any particular verb. With enough
data in the training set, even infrequent verbs have
sufficient data to support learning. Kawahara et
al. (2014) showed that, using a Dirichlet Process
Mixture Model (DPMM), a VerbNet-like cluster-
ing of verb senses can be built from counts of syn-
tactic features.

We develop a model to extend VerbNet, using
a large corpus with machine-annotated dependen-
cies. We build on prior work by adding partial su-
pervision from VerbNet, treating VerbNet classes
as additional latent variables. The resulting clus-
ters are more similar to the evaluation set, and
each cluster in the DPMM predicts its VerbNet
class distribution naturally. Because the technique
is data-driven, it is easily adaptable to domain-
specific corpora.
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Figure 1: The DPMM used in Kawahara et al.
(2014) for clustering verb senses. M is the num-
ber of verb senses, and N is the sum total of slot
counts for that verb sense.

2 Prior Work

Parisien and Stevenson (2011) and Kawahara et
al. (2014) showed distinct ways of applying the
Hierarchical Dirichlet Process (Teh et al., 2006)
to uncover the latent clusters from cluster exam-
ples. The latter used significantly larger corpora,
and explicitly separated verb sense induction from
the syntactic/semantic clustering, which allowed
more fine-grained control of each step.

In Kawahara et al. (2014), two identical
DPMM’s were used. The first clustered verb
instances into senses, and one such model was
trained for each verb. These verb-sense clusters
are available publicly, and are used unmodified
in this paper. The second DPMM clusters verb
senses into VerbNet-like clusters of verbs. The
result is a resource that, like Verbnet, inherently
captures the inherent polysemy of verbs. We fo-
cus our improvements on this second step, and try
to derive verb clusters that more closely align to
VerbNet.

2.1 Dirichlet Process Mixture Models

The DPMM used in Kawahara et al. (2014) is
shown in Figure 1. The clusters are drawn from a
Dirichlet Process with hyperparameter α and base
distribution G. The Dirichlet process prior cre-
ates a clustering effect described by the Chinese
Restaurant Process. Each cluster is chosen pro-
portionally to the number of elements it already

contains, i.e.

P (k|α,Ck(∗)) ∝
{
Ck(∗), if Ck(∗) > 0
α, if k = knew,

(1)

where Ck(∗) is the count of clustered items al-
ready in cluster k.

Each cluster k has an associated multinomial
distribution over vocabulary items (e.g. slot:token
pairs), φk, which is drawn from G, a Dirichlet dis-
tribution of the same size as the vocabulary, pa-
rameterized by a constant β. Because the Dirichlet
is the multinomial’s conjugate prior, we can actu-
ally integrate out φk analytically, given counts of
vocabulary items drawn from φk. For a particular
vocabulary item w, we compute

P (w|φk, β) =
Ck(w) + β

Ck(∗) + |V |β , (2)

where Ck(w) is the number of times w has been
drawn from φk, Ck(∗) =

∑
iCk(i), and |V | is the

size of the vocabulary.
When assigning a verb instance to a sense, a

single instance may have multiple syntactic argu-
ments w. Using Bayes’s law, we update each as-
signment iteratively using Gibbs sampling, using
equations (1) and (2), according to

P (k|α,Ck(∗), φk, β) ∝
P (k|α,Ck(∗))

∏
w

P (w|φk, β). (3)

β < 1 encourages the clusters to have a sparse
representation in the vocabulary space. α = 1 is a
typical choice, and encourages a small number of
clusters to be used.

2.2 Step-wise Verb Cluster Creation
By separating the verb sense induction and the
clustering of verb senses, the features can be opti-
mized for the distinct tasks. According to (Kawa-
hara et al., 2014), the best features for inducing
verb classes are joint slot:token pairs. For the verb
clustering task, slot features which ignore the lexi-
cal items were the most effective. This aligns with
Levin’s hypothesis of diathesis alternations - the
syntactic contexts are sufficient for the clustering.

In this paper, we re-create the second stage clus-
tering with the same features, but add supervision.
Supervised Topic Modeling (Mimno and McCal-
lum, 2008; Ramage et al., 2009) builds on the
Bayesian framework by adding, for each item, a
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prediction about a variable of interest, which is ob-
served at least some of the time. This encourages
the topics to be useful at predicting a supervised
signal, as well as coherent as topics. We do not
have explicit knowledge of VerbNet class for any
of the first-level DPMM’s verb senses, so our su-
pervision is informed only at the level of the verb.

3 Supervised DPMM

Adding supervision to the DPMM is fairly
straightforward: at each step, we sample both a
mixture component k and a VerbNet class y. For
this, we assign each cluster (mixture component) a
unique distribution ρ over VerbNet classes, drawn
from a fixed-size Dirichlet prior with parameter γ.
As before, this allows us to estimate the likelihood
of a VerbNet class y knowing only the counts of
assigned senses, Ck(y), for each y, as

P (y|ρk, γ) =
Ck(y) + γ

Ck(∗) + |S|γ , (4)

where |S| is the number of classes in the supervi-
sion.

The likelihood of choosing a class for a partic-
ular verb requires us to form an estimate of that
verb’s probability of joining a particular VerbNet
class. We initialize η from SemLink, as η(y) =
ω ∗ CSL

v (y) + δ, for fixed constants ω and δ, and
with CSL

v (y) as the count, in SemLink, of times
verb v was assigned to VerbNet class y. We then
draw a verb-specific distribution θ over VerbNet
classes, from a Dirichlet with parameters η, so that
η acts as pseudo-counts, steering θ to give high
weight to VerbNet classes aligned with SemLink
for each verb. We compute

P (y|θ, η) =
Cv(y) + η(y)
Cv(∗) +

∑
η
, (5)

where Cv(y) is the number of times verb v is as-
signed to VerbNet class y by our model.

We sample the VerbNet class for a verb sense
as a product of experts (Hinton, 2002), the θv

for the verb v, and ρk for the assigned cluster
k. This encourages alignment between the Verb-
Net classes observed in SemLink and the VerbNet
classes predicted by the clusters, and is computa-
tionally straightforward. We simply compute

P (y|ρk, γ, θv, η) ∝ P (y|ρk, γ)P (y|θv, η). (6)

Sampling a cluster for a verb sense now depends
on the VerbNet class y,

P (k|y, α, φk, β, ρk, γ,θv, η) ∝(
P (k|α,Ck(∗))×
P (y|ρk, γ, θv, η)×∏

w

P (w|φk, β)
)
.

(7)

We then update y based on Equation 6, and then
resample for the next batch.

The supervised process is depicted in Figure 2.
In brief, we know for each verb an η, a given by
counts from SemLink, which we use as a prior
for θ. We sample, in addition to the cluster label
k, a VerbNet class y, which depends on θ and ρ,
where ρ is the distribution over VerbNet classes in
cluster k. ρ is drawn from a Dirichlet distribution
paramaterized by γ < 1, encouraging each cluster
to have a sparse distribution over VerbNet classes.
Because y depends on both θ and ρ, the clusters
are encouraged to align with VerbNet classes.

α

G

kβ

wφ θ

y

ρ

γ

η

N∞

∞

M

Figure 2: The Supervised DPMM used in this
work for clustering verb senses. M is the num-
ber of verb senses, and N is the sum total of slot
counts for that verb sense. θ is initialized to reflect
the VerbNet class preferences for each verb, when
they are known.
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3.1 Modeling Choices

When incorporating supervision, the more direct
method of downstream sampling of the VerbNet
class may be preferred to using a prior. However,
the verb senses are generated through a DPMM,
and we do not have a gold-label assignment of
VerbNet classes to each sense. Instead, we esti-
mate, for each verb in VerbNet, a distribution θ
describing the likelihood a verb will participate in
a particular class, using counts from SemLink.

When sampling a cluster for a verb sense with
a verb in VerbNet, we sample y from a product of
experts. We cannot incorporate θ as a prior when
sampling y, because we have multiple verbs, with
distinct distributions θv1 , θv2 , . . ..

Because the product-of-experts is a discrete
probability distribution, it is easy to marginalize
out this variable when sampling k, using

P (k|α, φk, β, ρk, γ, θ) ∝∑
y

P (k|y, α, φk, β, ρk, γ, θv, η). (8)

Either way, once a cluster is selected, we should
update the ρ and θ. So, once a cluster is selected,
we still sample a discrete y. We compare perfor-
mance for sampling k with assigned y and with
marginalized y.

When incorporating supervision, we flatten
VerbNet, using only the top-level categories, sim-
plifying the selection process for y. In Kawahara
et al. (2014), slot features were most effective fea-
tures at producing a VerbNet-like structure; we
follow suit.

4 Results

For evaluation, we compare using the same dataset
and metrics as Kawahara et al. (2014). There, the
authors use the polysemous verb classes of Ko-
rhonen et al. (2003), a subset of frequent polyse-
mous verbs. This makes the test set a sort of mini-
VerbNet, suitable for evaluation. They also define
a normalized modified purity and normalized in-
verse purity for evaluation, explained below.

The standard purity of a hard clustering av-
erages, for each cluster’s majority gold standard
class, the percentage of clustered items of that
class. Because the clustering is polysemous, a typ-
ical automatically-induced cluster K will contain
only some senses of the verbs. We take this par-
tial membership into account when deciding the

cluster’s majority class. We define civ ∈ [0, 1] as
the proportion of instances of verb v grouped into
cluster Ki. We also treat induced clusters contain-
ing only one verb sense as errors, rather than treat-
ing them as clusters of perfect purity. Therefore,
the normalized modified purity (nmPU), with re-
spect to the gold standard clusters G, is,

nmPU =
1
N

∑
i s.t. |Ki|>1

max
j
δKi(Ki ∩Gj), (9)

where

δKi(Ki ∩Gj) =
∑

v∈Ki∩Gj

civ. (10)

This nmPU is analagous to clustering precision:
it measures, on average, how well the clustering
avoids matching items that should not be clus-
tered. We also define a recall analogue, the nor-
malized inverse purity (niPU), as,

niPU =
1
N

∑
j

max
i
δGj (Ki ∩Gj). (11)

This measures how well each gold standard cluster
is recovered. We report each metric, and the F1
score combining them, to compare the clustering
accuracy with respect to the gold standard G.

We use the clustering from Kawahara et al.
(2014) as a baseline for comparison. However,
for evaluation, the authors only clustered senses
of verbs in the evaluation set. Since we would
like to test the effectiveness of adding supervision,
we treat all verbs in the evaluation set as unsuper-
vised, with no initialization of θ. Therefore, to
compare apples-to-apples, we calculate the nPU,
niPU, and F1 of the Kawahara et al. (2014) full
clustering against the evaluation set. Our model
also computes the full clustering, but with super-
vision for known verbs (other than the evaluation
set).

Parameters were selected using a grid search,
and cross-validation. The results are summarized
in Table 1, comparing the unsupervised DPMM
baseline (DPMM) to the supervised DPMM
(SDPMM), and the supervised DPMM sampling
k with y marginalized out (mSDPMM).

5 Comparison of Produced Clusters

The supervised sampling scheme produces fewer
clusters than the unsupervised baseline. This is in
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Model Example Clusters

Gold push (0.20), pull (0.17)
give (1.0), lend (1.0), generate (0.33),
allow (0.25), pull (0.17), pour (0.17)

DPMM push (0.40), drag (0.27), pull (0.08) lend (0.30), give (0.13),

SDPMM drag (0.87), push (0.43), pull (0.42), give (0.82), pour (0.02), ship (0.002)pour (0.39), drop (0.31), force (0.09)

Table 2: Example clusters from the evaluation dataset (Gold), and along with the most-aligned clus-
ters from the unsupervised baseline (DPMM) and our semi-supervised clustering scheme (SDPMM).
Weights given in parentheses describe the total proportion of verb instances assigned to each cluster.

Model nmPU niPU F1 N

DPMM 55.72 60.33 57.93 522
SDPMM 51.00 75.71 60.95 122
mSDPMM 51.04 75.00 60.74 129

Table 1: Clustering accuracy on verbs in the Ko-
rhonen et al. (2003) dataset. N is the number of
clusters spanned by the evaluation set.

part because it produces fewer “singleton” clus-
ters, containing only one verb sense from the eval-
uation set. The SDPMM produces only 16% sin-
gleton clusters, compared with 34% of singleton
clusters from the unsupervised DPMM.

The supervised clusters also tend to cluster
more of the senses of each verb into the same clus-
ter. The predominant SDPMM cluster for a verb,
which has the highest percentage of a verb’s total
instances, tends to have 224% the number of in-
stances as the predominant unsupervised DPMM
cluster. This tendency does not prevent verbs be-
ing assigned multiple clusters, however. On av-
erage, the supervised clustering uses 30% fewer
clusters for each verb, a smaller reduction than the
70% overall drop in the number of clusters.

A few example clusters are presented in Table
2.

6 Conclusions and Future Directions

The supervision tends to encourage a smaller num-
ber of clusters, so the precision-like metric, nmPU,
is lower, but the recall-like metric, niPU, is much
higher. Marginalizing out the variable y when
sampling k does not make an appreciable differ-
ence to the F1 score. Swapping out the Dirichlet
process for a Pitman-Yor process may bring finer
control over the number of clusters.

We have expanded the work in Kawahara et al.
(2014) by explicitly modeling a VerbNet class for
each verb sense, drawn from a product of experts

based on the cluster and verb. This allowed us to
leverage data from SemLink with VerbNet annota-
tion, to produce a higher-quality clustering. It also
allows us to describe each cluster in terms of align-
ment to VerbNet classes. Both of these improve-
ments bring us closer to extending VerbNet’s use-
fulness, using only automated dependency parses
of corpora. We may speculate, and should test,
whether the improved verb clusters will prove use-
ful in end-to-end semantic tasks.
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