
Proceedings of SemEval-2016, pages 1197–1201,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

CU-NLP at SemEval-2016 Task 8: AMR Parsing using LSTM-based
Recurrent Neural Networks

William R. Foland Jr.
OK Robot Go, Ltd.

5345 Dunraven Circle
Golden, Co, 80403, USA

bill.foland@okrobotgo.com

James H. Martin
Department of Computer Science and

Institute of Cognitive Science
University of Colorado

Boulder, CO 80309
James.Martin@colorado.edu

Abstract

We describe the system used in our participa-
tion in the AMR Parsing task for SemEval-
2016. Our parser does not rely on a syntactic
pre-parse, or heavily engineered features, and
uses five recurrent neural networks as the key
architectural components for estimating AMR
graph structure.

1 Introduction

Abstract Meaning Representation, or AMR (Ba-
narescu et al., 2012) is a graph-based representation
of the meaning of sentences which incorporates lin-
guistic phenomena such as semantic roles, corefer-
ence, negation, and more.1

The process of creating AMR’s for sentences is
called AMR Parsing. We used an early version of
the system described in this paper to generate our
submission to the Semeval-2016 Meaning Represen-
tation Parsing Task.2

The details of our system will be explained using
this example sentence: France plans further nu-
clear cooperation with numerous countries . A
graphical depiction is shown in Figure 1.

The system extracts features from the sentence
which are processed by a form of recurrent neural
network called BDLSTM to create a set of AMR
concepts. Features from these concepts are pro-
cessed by a pair of BDLSTM networks to compute
relation probabilities. All concepts are then con-
nected using an iterative, greedy algorithm to com-
pute the set of relations in the AMR. Another two

1http://amr.isi.edu/language.html
2http://alt.qcri.org/semeval2016/task8/#

BDLSTM networks compute attribute and name cat-
egories to complete the estimation of AMR element
probabilities.

2 Related Work

Most current AMR parsers assume input that has
undergone varying degrees of syntactic analysis,
ranging from simple part-of-speech tagging to more
complex dependency or phrase-structure analysis.
(Wang et al., 2015; Vanderwende et al., 2015; Peng
et al., 2015; Pust et al., 2015; Artzi et al., 2015;
Flanigan et al., 2014; Werling et al., 2015). In con-
trast, we follow the spirit of minimal feature extrac-
tion using pre-trained word embeddings, as in (Col-
lobert et al., 2011) and a recurrent network archi-
tecture similar to that described in (Zhou and Xu,
2015).

3 System Architecture

3.1 Feature Extraction

In our system, all features are represented by em-
bedding vectors, trained and stored in lookup ta-
bles. Word feature embeddings are mapped from
the words in the sentence, and are trained with back
propagation just like other parameters in the net-
work. They are initialized with vectors which are
pre-trained on large corpora of english text, we use
the word embeddings from (Collobert et al., 2011).

The only explicit features not derived from the
raw input are features based on named entity recog-
nition (NER). We first use the Univ. of Illinois Wik-
ifier to find and classify named entities and then en-
code these features as embeddings.

1197



country (N1000)
95.66

wiki: "France"

name (N0)
99.46

op1: france

name
100.00

plan-01 (N1)
99.69

TOP: plan-01

ARG0
99.86

cooperate-01 (N4)
98.60

ARG1
94.78

ARG0
84.02

further (N2)
93.09

degree
75.66

nucleus (N3)
98.99

mod
69.06

country (N7)
85.95

ARG1
45.33

numerous (N6)
98.25

quant
91.13

Figure 1: Graphical Representation of the Reference
AMR (annotated with probabilities expressed as percent-
age.)

3.2 Neural Networks

Unlike relatively simple sequence processing tasks
like part-of-speech tagging and NER, semantic anal-
ysis requires the ability to keep track of relevant in-
formation that may be arbitrarily far away from the
words currently under consideration. Fortunately,
recurrent neural networks (RNNs) are a class of neu-
ral architecture that use a form of short-term mem-
ory in order to solve this semantic distance problem.
Basic RNN systems have been enhanced with the
use of special memory cell units, referred to as Long
Short-Term Memory neural networks, or LSTM’s
(Hochreiter and Schmidhuber, 1997). Such systems
can effectively process information dispersed over
hundreds of words (Schmidhuber et al., 2002; Gers
et al., 2001).

Bidirectional LSTMs (BDLSTM) networks are
LSTMs that are connected so that both future and
past words in the sentence can be examined. We
use the LSTM cell as described in (Graves et al.,
2013), Figure 3, configured in a Bi-directional struc-
ture, called BDLSTM (Zhou and Xu, 2015), shown
in Figure 4 as the core network in our system. Five
BDLSTM Neural Networks comprise our parser.

Feature Extraction

Sentence 

 

Relation Resolution

AMR 

AMR Construction

Args Nargs Attr NCat

UofI Wikifier

L0

Hard Max

Hard Max

L0 Concepts

NER WikiCat[8]Word Features

PnargsPargs

relations category

Pattr

Figure 2: AMR Parser Architecture, BDLSTM networks
in bold.

3.2.1 Level 0 Concepts BDLSTM Network (L0)

The first step in our process is to create the set of
concepts (nodes) that form the basis for any AMR
representation; we call these Level 0, or L0, con-
cepts. For the most part in current AMR training
data, these concepts are in a direct relationship to
words and sequences of words in a sentence. The
task of the L0 network is, therefore, to take the input
sequence of words and produce an output sequence
of IOB tags that identify and classify the concepts in
the AMR output.

For training, AMR concepts are first aligned to
words using an AMR-to-word alignment algorithm.
We used the alignment provided in the SemEval
dataset. In cases where multiple concepts are as-
sociated with the same word, we use only the lower
level concept and ignore upper level concept(s).

The system classifies each L0 concept as pred-
icate or non-predicate, and predicts the PropBank
sense for the predicates. AMR concepts are either

1198



X

tanh

 +

X X

sigmoidsigmoid tanh sigmoid

ht�1

xt

ht

ctct�1

Figure 3: LSTM Cell.
An ”unrolled” representation of an LSTM Cell. Rectan-
gles represent linear layers followed by the labelled non-
linearity. Each cell learns how to weigh, or gate, the in-
put, previous cell memory, and output.

English words (boy), PropBank framesets (plan-01),
or special keywords. A translation table was created
from training data by calculating the most probable
AMR concept, given the sentence word and the gen-
eral concept identifier.

The most common multilevel cases, a subgraph
composed of a named entity, its related category, and
a wiki link when available, are identified as excep-
tions and tagged as name concepts, which will be
expanded.3

The features used in the L0 nework are:

• word: 130Kx50, the word embedding
• suffix: 430x5, embedding based on the final

two letters of each word.
• caps: 5x5, embedding based on the capitaliza-

tion pattern of the word.
• NER: 5x5, indexed by NER from the Wikifier,

’O’, ’LOC’, ’ORG’, ’PER’ or ’MISC’.

The L0 Network produces probabilities for 19
BIOES tagged concept types, and the highest prob-
ability tag is chosen for each word, as shown for the
example sentence in Table 1.

3.2.2 Predicate Argument Relations BDLSTM
Network (Args)

The Args Network is run once for each predicate
concept, and produces a matrix Pargs which defines

3For example France in the shaded section of Figure 1.

output

Softmax and Concatenation

x0 x1 xT

output output

...

...

...

...

P

h
(f)
0 h

(f)
1 h

(f)
T

h
(r)
Th

(r)
0 h

(r)
1

Figure 4: Bi-Directional LSTM.
A general diagram of a BDLSTM network, showing the
feature input vectors xi, the forward layer (f) and the re-
verse layer (r). The network generates vectors of log like-
lihoods which are converted to an array of probabilities.

the probability of a type of predicate argument rela-
tion from an L0 predicate concept to any other L0
concept. (See, for example, ARG0 and ARG1 rela-
tions in Figure 1.), prior to the identification of any
relations.4 The matrix has dimensions a by c, where
a is the number of non-arg relations to be identified,
and c is the total number of concepts.

The Args features, calculated for each source
predicate concept, are:

4relation probabilities change as hard decisions are made,
see section 3.4

words BIOES Prob kind

France S Named 0.995 txNamed
plans S Pred-01 0.997 plan-01
further S NonPred 0.931 further
nuclear S NonPred 0.990 nucleus
cooperation S Pred-01 0.986 cooperate-01
with O 1.000 O
numerous S NonPred 0.982 numerous
countries S NonPred 0.860 country
. O 0.999 O

Table 1: L0 Network Example Output

1199



• Word, Suffix and Caps as in the L0 network.
• L0: 19x5, indexed by the L0 network identified

concept.
• PredWords[5], 130Kx50: The word embed-

dings of the word and surrounding 2 words as-
sociated with the source predicate concept.

• PredL0[5], 19x10: The L0 embedding of the
word and surrounding 2 words associated with
the source predicate concept.

• regionMark: 21x5, indexed by the distance in
words between the word and the word associ-
ated with the source predicate concept.

3.2.3 Non-Predicate Relations BDLSTM
Network (Nargs)

The Nargs Network uses features similar to the
Args network, is run once for each concept, and pro-
duces a matrix Pnargs which defines the probability
of a type of relation from an L0 concept to any other
L0 concept, prior to the identification of any rela-
tions.5 The matrix has dimensions an by c, where
an is the number of non-arg relations to be identi-
fied, and c is the total number of concepts.

3.2.4 Attributes BDLSTM Network (Attr)
The Attr Network determines a primary attribute

for each concept, if any.6 The attributes (op words)
associated with named entities are determined di-
rectly during L0 concept identification. This net-
work is simplified to detect only one attribute (there
could be many) per concept, and only computes
probabilities for the most common attributes: TOP,
polarity, and quant.

3.2.5 Named Category BDLSTM Network
(NCat)

The NCat Network uses features similar to the L0
Network, along with the suggested categories (up
to eight) from the Wikifier, and produces probabili-
ties for each of 68 :instance roles, or categories, for
named entities identified in the training set AMR’s.

• Word, Suffix and Caps as in the L0 network.
• WikiCat[8]: 108 x 5, indexed by suggested cat-

egories from the Wikifier.
5Degree, mod, or quant are examples of narg relations in

Figure 1.
6(TOP: plan-01) and (op1: france) are attribute examples

shown in Figure 1.

Semeval Task 8 Dataset Smatch F1

Test 66.1%
Evaluation 56.0%

Table 2: Smatch F1 results for Test and Eval Datasets

3.3 Wikifier
Named entities in AMR are annotated with a canon-
ical form, using Wikipedia as the standard (see
France in Figure 1). A :wiki role, or link, should
be provided if an appropriate wikipedia page exists,
root category (or top-level :instance role) should also
be provided. To determine these fields, prior to run-
ning the L0 network, we run the sentences through
the University of Illinois Wikifier (Ratinov et al.,
2011; Cheng and Roth, 2013) which provides a wiki
link and a list of possible categories. We insert the
link directly as a :wiki role, and use the possible cat-
egories as feature inputs to the NCat Network.

3.4 Relation Resolution
The generated Pargs and Pnargs for each L0 iden-
tified concept are processed to determine the most
likely relation connections, using the constraints:

1. AMR’s are single component graphs without
cycles.

2. AMR’s are simple directed graphs, a max of
one relation between concepts is allowed.

3. Outgoing predicate relations are limited to one
of each kind (i.e. can’t have two ARG0’s)

We apply a greedy algorithm which repeatedly se-
lects the most probable edge from Pargs and Pnargs,
then adjusts Pargs and Pnargs based on the con-
straints (hard decisions change the probabilities),
until all edge probabilities are below a threshold.
From then on, only the most probable edges which
span subgraphs are chosen, until the graph contains
a single component.

4 Results

Semeval task 8 provides aligned, split datasets. Our
Smatch F1 result for the test dataset was 66.1%, and
56.0% for the eval dataset (Table 2). Reportedly, the
eval dataset is more challenging than the provided
test dataset. The mean of all task 8 results for the
eval dataset is 55% with a standard deviation of 6%,
more detail is not yet available.

1200



5 Conclusion

In this paper, we have described our submission
to the AMR Parsing task for SemEval-2016. Our
parser does not make use of a syntactic pre-parse,
and avoids the use of heavily engineered features.
Future work will include expanding the identifica-
tion of concepts and exploring the use of more so-
phisticated alignments and word embeddings.

References

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage ccg semantic parsing with amr. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Màrquez,
Adam Meyers, Joakim Nivre, Sebastian Padó, Jan
Štepánek, Pavel Stranák, Mihai Surdeanu, Nianwen
Xue, and Yi Zhang.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representation
(amr) 1.0 specification. In Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Seattle: ACL, pages 1533–1544.

X. Cheng and D. Roth. 2013. Relational inference for
wikification. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrimina-
tive graph-based parser for the abstract meaning repre-
sentation.

Felix A Gers, Douglas Eck, and Jürgen Schmidhuber.
2001. Applying lstm to time series predictable through
time-window approaches. In Artificial Neural Net-
worksICANN 2001, pages 669–676. Springer.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E.
Hinton. 2013. Speech recognition with deep recurrent
neural networks. CoRR, abs/1303.5778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for amr parsing. CoNLL 2015,
page 32.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english into
abstract meaning representation using syntax-based
machine translation. Training, 10:218–021.

L. Ratinov, D. Roth, D. Downey, and M. Anderson.
2011. Local and global algorithms for disambiguation
to wikipedia. In ACL.

Jürgen Schmidhuber, F Gers, and Douglas Eck. 2002.
Learning nonregular languages: A comparison of sim-
ple recurrent networks and lstm. Neural Computation,
14(9):2039–2041.

Lucy Vanderwende, Arul Menezes, and Chris Quirk.
2015. An amr parser for english, french, german,
spanish and japanese and a new amr-annotated corpus.
In Proceedings of NAACL-HLT, pages 26–30.

Chuan Wang, Nianwen Xue, Sameer Pradhan, and
Sameer Pradhan. 2015. A transition-based algorithm
for amr parsing. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 366–375.

Keenon Werling, Gabor Angeli, and Christopher Man-
ning. 2015. Robust subgraph generation improves ab-
stract meaning representation parsing. arXiv preprint
arXiv:1506.03139.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

1201


