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Abstract

We develop a novel transition-based parsing
algorithm for the abstract meaning representa-
tion parsing task using exact imitation learn-
ing, in which the parser learns a statistical
model by imitating the actions of an expert
on the training data. We then use the imita-
tion learning algorithm DAGGER to improve
the performance, and apply an α-bound as a
simple noise reduction technique. Our perfor-
mance on the test set was 60% in F-score, and
the performance gains on the development set
due to DAGGER was up to 1.1 points of F-
score. The α-bound improved performance by
up to 1.8 points.

1 Introduction

In abstract meaning representation parsing (Ba-
narescu et al., 2013), the goal is to parse natural lan-
guage in a domain-independent graph-based mean-
ing representation (AMR). In the first AMR parsing
work, Flanigan et al. (2014) split the task into two
sub-tasks; concept identification and graph creation.
The sub-tasks are learned independently, and exact
inference is used to find highest-scoring maximum
spanning connected acyclic graph that contains all
the concepts identified in the first stage. Later work
by Wang et al. (2015b) adopted a different strat-
egy based on the similarity between the dependency
parse of a sentence and the semantic AMR graph.
They start from the dependency parse and learn a
transition-based parser that converts it into an AMR
graph. To learn the parser, Wang et al. (2015b) de-
fine an algorithm that for each instance in the train-
ing data infers the action sequence that convert the

input dependency tree into the corresponding AMR
graph and train a classifier to predict the actions to be
taken during testing. This strategy is also referred to
as exact imitation learning, while the algorithm that
infers the action sequence in the training instances is
commonly referred to as the expert policy.

In our submission to SemEval Task 8 on AMR
parsing, we follow the transition-based paradigm of
Wang et al. (2015b) with modifications to the pars-
ing algorithm, and also use the DAGGER imitation
learning algorithm (Ross et al., 2011) to generalise
better to unseen data. The central idea of DAGGER

is that the distribution of states encountered by the
expert policy during training may not be a good ap-
proximation to those seen in testing by the trained
policy. Previous work by Rao et al. (2015) used
SEARN, a similar imitation learning algorithm, on
the AMR problem, with an algorithm that constructs
the AMR graph directly from the sentence tokens.
Imitation learning has also been used successfully
in other semantic parsing tasks (Vlachos and Clark,
2014; Berant and Liang, 2015).

In imitation learning approaches such as DAG-
GER the previous actions become features for clas-
sification learning. However the partial graphs in
AMR parsing are rather complex to represent in this
way, and combined with the finite amount of train-
ing data different actions can be chosen by the expert
even though the feature representations for them can
be very similar. These decisions appear as noisy out-
liers in classification learning. To control noise we
experiment with the α-bound discussed by Khardon
and Wachman (2007), which excludes a training ex-
ample from future training once it has been misclas-
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Action Name Param. Pre-conditions Outcome of action
NextEdge lr β non-empty Set label of edge (σ0, β0) to lr. Pop β0.
NextNode lc β empty Set concept of node σ0 to lc. Pop σ0, and initialise β.
Swap β non-empty Make β0 parent of σ0 (reverse edge) and its sub-graph. Pop β0

and insert β0 as σ1.
ReplaceHead β non-empty Pop σ0 and delete it from the graph. Parents of σ0 become par-

ents of β0. Other children of σ0 become children of β0. Insert
β0 at the head of σ and re-initialise β.

Reattach κ β non-empty Pop β0 and delete edge (σ0, β0). Attach β0 as a child of κ. If κ
has already been popped from σ then re-insert it as σ1.

DeleteNode β empty; leaf σ0 Pop σ0 and delete it from the graph.
Insert lc Insert a new node δ with AMR concept lc as the parent of σ0,

and insert δ into σ.
InsertBelow lc Insert a new node δ with AMR concept lc as a child of σ0.
Reentrance κ Phase 2 Insert edge (σ0, κ). Then apply NextEdge action.
Wikify ω Phase 2 See main text

Table 1: Action Space for the transition-based graph parsing algorithm

sified α times in training. Khardon and Wachman
(2007) do not report any experimental results for
this, and we are not aware of any previous use of
this method.

2 System description

In the following subsections we focus on the differ-
ences from previous work and in particular that of
Wang et al. (2015b) who introduced the transition-
based dependency-to-AMR paradigm we follow.
We initialise the main algorithm with a stack of the
nodes in the dependency tree, root node first. This
stack is termed σ. A second stack, β is initialised
with all children of the top node in σ. The state at
any time is described by σ, β, and the current graph
(which starts as the dependency tree). Each action
manipulates the top nodes in each stack, σ0 and β0.
We reach a terminal state when σ is empty. 1

2.1 The Expert Policy

The expert policy used in training applies heuris-
tic rules to determine the next action from a given
state. It uses the training alignments to construct a
mapping between nodes in the dependency tree, and
nodes in the target AMR. Any unmapped nodes in
the dependency tree will be deleted by the expert,
and any unmapped nodes in the AMR graph will be

1Code available at https://github.com/
hopshackle/dagger-AMR. SemevalSubmission tag
bookmarks the version used.

inserted. All our experiments use node alignments
from the system of Pourdamghani et al. (2014).

2.2 Action Space

Flanigan et al. (2014) and Wang et al. (2015b), both
use AMR fragments as their smallest unit, which
may consist of more than one AMR concept. In-
stead, we always work with the individual AMR
nodes, and rely on Insert actions to learn how to
build common fragments, such as country names.
The main adaptations to the actions, summarised in
Table 1, stem from this. NextNode and NextEdge
form the core action set, labelling nodes and edges
respectively without changing the graph structure.
Swap, Reattach and ReplaceHead change this struc-
ture, but always retain a tree structure. Replace-
Head covers two distinct actions in Wang et al.
(2015b); ReplaceHead and Merge. Their Merge ac-
tion merges σ0 and β0 into a composite node; this is
not required without composite nodes and retention
of a 1:1 mapping between nodes and AMR concept.
Unlike Wang et al. (2015b) we do not parameterise
Swap or Reattach actions with a label. We leave that
decision to a later NextEdge action. We permit a
Reattach action to use parameter κ equal to any node
within six edges from σ0, excluding any that would
disconnect the graph or creating a cycle.

The Insert action inserts a new node as a parent of
the current σ0. Wang et al. (2015a) later introduced
an ‘Infer’ action similar to our Insert action. Infer
inserts an AMR concept node above the current node
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as Insert does, but is restricted to nodes that occur
outside of AMR ‘fragments’, which continue to be
the base building block.

Reentrance is the one action that will turn a Tree
into a non-Tree. We only consider Reentrance ac-
tions during a second pass (“Phase Two”) through
the AMR graph once the first pass has reached a ter-
minal state. In this second pass we consider each
node as σ0 in turn, and each nearby node as a pos-
sible κ to insert a new edge (σ0, κ). We follow any
Reentrance action with a NextEdge action to label
the new arc. This approach simplifies the first pass,
during which the graph is guaranteed to be a Tree.
Reentrance makes only a small difference in the final
F-Score, and was turned off for our final submission.

Also during Phase Two we decide whether to
Wikify σ0. This adds a new leaf node with a rela-
tion of wiki. There are three parameter values for
ω that determine the wiki concept. In turn these use
“-”; a concatenation of all child concepts in original
word order; a dictionary look-up keyed on a con-
catenation of the child nodes if these were seen in
the training data. An example of the third option is if
a name node with a single child node of “Michael”
is seen in the training data with a wiki relation of
“Michael Jackson”. This wikification is held in the
dictionary, and will be used for any name node with
a single child node of “Michael” in test. If instead
in test the name node had two children; “Michael”,
and “Jackson”, then during ω would either add a
wiki node of “-”, or one of “Michael Jackson” by
concatenating the two child concepts in the order
they appear in the sentence.

Figure 1 shows a parse of a sentence frag-
ment. The current σ0 node is shown dashed and
in red. From the top the actions are Insert(date-
entity); NextNode(WORD); NextEdge(year); sec-
ond diagram; NextNode(WORD); ReplaceHead to
remove “in”; third diagram; NextNode(WORD);
NextEdge(mod); Reattach to move “date-entity”;
fourth diagram; NextNode(VERB); ReplaceHead to
remove “by”; NextEdge(ARG0); NextEdge(time);
NextNode(strike-01).

Wang et al. (2015b) use all AMR concepts and
relations that appear in the training set as possible
parameters (lc and lr) if they appear in any sentence
containing the same lemma as σ0 and β. We reduce
this to just concepts that have been aligned to the
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in 2007
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nn

prep pobj
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Figure 1: Example parse from dependency tree to AMR of the

sentence fragment “. . . struck by cyber attacks in 2007.”

current lemma. We initially run the expert policy
over the training set, and track the AMR concept as-
signed for each lemma. These provide the possible
lc that will be used for NextNode actions. Simi-
larly we track the lemmas at head and tail of each
expert-assigned AMR relation, and compile possi-
ble lr from these. There is no direct generalisation
between different concepts and relations; so ARG0
and ARG0-of are independently learned relations
for example, although they represent the same se-
mantic relationship.

AMR concepts/relations will never be considered
during test if they were not aligned to that lemma in
the training data. To relax this restriction we allow lc
to take the values WORD, LEMMA, VERB, which re-
spectively use the word, lemma, or the lemma con-
catenated with ‘-01’ as the AMR concept. This is
inspired by Werling et al. (2015), who use a simi-
lar set of actions in a concept identification phase.
These options improve performance (by 0.5 to 1.0
points on a validation set) by generalising to unseen
tokens in test data, which otherwise would have no
mapped AMR concepts. For the lc parameters on In-
sert (InsertBelow) actions, we use all AMR concepts
that the expert inserted above (below) any node in
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the training set with the same lemma as σ0.

2.3 Additional action constraints
Transition-based parsing algorithms have classically
relied on a fixed length of trajectory T for guarantees
on performance, or at least a bounded T (Goldberg
and Elhadad, 2010; Honnibal et al., 2013; Sartorio
et al., 2013; McDonald and Nivre, 2007). In our
approach T is theoretically unbounded and the algo-
rithm could Insert, or Reattach ad infinitum.

We impose constraints to prevent these situations.
A Swap action cannot be applied to a previously
Swapped edge; once a node has been moved by
Reattach, then it cannot be Reattached again; an In-
sert action is only permissible if no previous Insert
action has been used with that node as σ0; an Insert
action is not permissible if it would insert an AMR
concept already in use as any of the parent, children,
grand-parents or grand-children of σ0.

Any action that would create a cycle is prohib-
ited. We do not prevent duplication of argument re-
lations so that a concept could have two outgoing
ARG1 edges. We start with a fully connected graph
(the dependency tree), and preserve full connectivity
as none of the actions will disconnect a graph.

2.4 Imitation Learning
In the first iteration we only use the expert policy to
generate a trajectory for each training sentence, and
train a classifier π1 from the collected data. At each
step in the ith iteration we randomly choose the ex-
pert (with probability βi) or else πi−1. The full set of
collected data from all iterations is then used to train
πi−1 to obtain πi. β1 = 1 and we set βi = 0.7βi−1.
Hence each iteration uses the expert policy less and
less, with the training trajectories increasingly ap-
proximating the states the classifier would encounter
without expert knowledge of the target. Formally
the DAGGER algorithm is online (Ross et al., 2011),
while we use it in a batch mode as described above.
We use an averaged AROW classifier for all our ex-
periments, with parameter r = 100 (Crammer et al.,
2009). After each batch DAGGER iteration we use 3
iterations of (on-line) AROW training using all the
collected data.

As well as the α-bound for noise reduction, we
tried two additional modifications to DAGGER and
AROW. Firstly, we considered reducing the num-

ber of actions explored at each stage. The currently
trained classifier evaluates all possible actions, and
discards any that exceed the best scoring action by
some threshold. Only this smaller set, plus the ex-
pert action, are included in the training example.
This speeds up classifier training. In the first itera-
tion we choose three to five actions randomly. Ross
and Bagnell (2014) use a random set of exploratory
actions in their AGGREVATE algorithm, but do not
use the classifier to focus the exploration.

Secondly, we used only the smallest training sen-
tences in the first iteration, as measured by number
of AMR nodes. At each further iteration the AMR
size threshold for the training set was increased. The
motivation was to train the classifier on ‘easy’ sen-
tences, before introducing more complex ones. We
start with up to 30 nodes, and increase this by 10
each iteration. Rao et al. (2015) similarly use the
smallest sentences for training, but do not increase
the size threshold as training proceeds.

2.5 Features
All features used are detailed in Table 2, largely
based on Wang et al. (2015b). All are 0-1 indi-
cator functions. inserted is 1 if the node was in-
serted by the parser; dl is the dependency label in
the original dependency tree; ner the named entity
tag; POS the part-of-speech tag; prefix is the string
before the hyphen if word is hyphenated; suffix is
the string after the hyphen; brown is the 100-class
Brown cluster id with cuts at 4, 6, 10 and 20 2;
deleted is the lemma of any child node previously
deleted by the parser; merged is the lemma of any
node merged into this node by a ReplaceHead ac-
tion; distance is the distance between the tokens in
the sentence; path concatenates lemmas and dls be-
tween the tokens in the dependency tree; POSpath
concatenates POS tags between the tokens; NER-
path concatenates NER tags between the tokens.

The key differences to Wang et al. (2015b) are the
inclusion of the brown, POSpath, NERpath, prefix
and suffix feature types.

2.6 Pre-processing
Pre-processing steps on the training sentences were
to: pass the full sentence through the Stanford De-

2From http://metaoptimize.com/projects/
wordreprs/ and the code of Liang (2005)
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Context Features
σ0 lemma, dl, ner, POS, inserted, prefix, suffix, brown, deleted, lemma-dl
σ0P inserted, lemma, brown
σ0C label, ner, label-brown
β0 inserted, POS, lemma, brown, ner, dl, prefix, suffix, merged
κ ner, POS, lemma, brown, label
σ0 → β0 label, path, lemma-path-lemma, POSpath, inserted-inserted, lemma-POS, POS-lemma,

dl-lemma, lemma-dl, lemma-label, label-lemma, ner-ner, distance
β0 → κ path, lemma-path-lemma, NERpath, POSpath, distance, lemma-POS, dl-lemma, ner-ner
σ0 → κ distance, lemma-path-lemma, brown-brown, NERpath, POSpath, lemma-dl, lemma-label
σ0P → σ0 label, POS-lemma, dl-lemma, ner-ner
σ0PP → σ0P → σ0 lemma-lemma-lemma
σ0 → σ0C POS-lemma, lemma-POS, dl-lemma, ner-ner

Table 2: Features used by context. σ0P is the parent of σ0, σ0PP the parent of σ0P , and σ0C a child of σ0.

pendency Parser v3.3.1 to construct a dependency
tree (Manning et al., 2014); remove punctuation
tokens; “/” characters are treated as token separa-
tors, but hyphenated words are kept as single to-
kens; simple regex expressions are applied to find
common date formats, and convert these to numeric
sequences (e.g. 03-Jan-72 to 3 1 1972); similar
regex conversions of common numeric expressions
e.g. “two thousand” becomes “2000”. The parser
was then able to learn to construct date-entity,
temporal-quantity and similar AMR moi-
eties.

3 Results

In all experiments, the training data was the union
of all training and dev sets in the task data, and the
union of all test sets was used for validation. Ta-
ble 3 shows the F-Score of the validation set with
and without the Reentrance action (Reent, NoR),
and with combinations of reduced search (Red), and
incremental data (Inc). All of these give the same
result of 0.65 to 2 dp, and the bold entry was submit-
ted. The Baseline entry uses only a single iteration,
and the DAGGER experiments report the highest F-
Score achieved over 10 iterations (usually reached
between the 3rd to 5th iterations).

The reduced information in the first iterations for
incremental data and reduced search lead to lower
initial performance here, but they still achieve the
0.65 result in time and each iteration is faster. DAG-
GER provides a gain of 0.6 and 1.1 points of F-Score
for experiments with and without Reentrance.

Table 4 shows that the α-bound helps signifi-

Table 3: F-Score results on validation set (α = 1).
Parameter settings NoR Reent.
Baseline 0.642 0.640
DAGGER 0.648 0.651
DAGGER & Inc 0.653 0.655
DAGGER & Red 0.648 0.653
DAGGER & Inc & Red 0.651 0.649

cantly, with a gain of 1.8 points of F-Score in this
example. We found consistently that the most ex-
treme setting of α=1 worked best.

Table 4: Alpha-bound results with DAGGER, Inc and Red
Alpha-bound F-Score

1 0.655
2 0.649

None 0.637

4 Conclusion

Imitation Learning algorithms like DAGGER help in
the AMR task, as in other structured prediction prob-
lems. Performance is improved using the α-bound
to reduce the impact of noise in the training exam-
ples, and future work could investigate the impact in
similar tasks.

The reduction in search space and incremental
growth of the training set do not have a significant
impact on the results. The speed improvements they
provide make little difference here, but could bene-
fit more computationally demanding loss functions
than the 0-1 expert loss used in DAGGER.
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