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Abstract

Interpretable semantic textual similarity
(iSTS) task adds a crucial explanatory layer
to pairwise sentence similarity. We address
various components of this task: chunk level
semantic alignment along with assignment of
similarity type and score for aligned chunks
with a novel system presented in this paper.
We propose an algorithm, iMATCH, for the
alignment of multiple non-contiguous chunks
based on Integer Linear Programming (ILP).
Similarity type and score assignment for
pairs of chunks is done using a supervised
multiclass classification technique based on
Random Forrest Classifier. Results show that
our algorithm iMATCH has low execution
time and outperforms most other participating
systems in terms of alignment score. Of the
three datasets, we are top ranked for answer-
students dataset in terms of overall score and
have top alignment score for headlines dataset
in the gold chunks track.

1 Introduction and Related Work

Semantic Textual Similarity (STS) refers to measur-
ing the degree of equivalence in underlying seman-
tics(meaning) of a pair of text snippets. It finds ap-
plications in information retrieval, question answer-
ing and other natural language processing tasks. In-
terpretable STS (iSTS) adds an explanatory layer,
by measuring similarity across chunks of segmented
text, leading to an improved interpretability. It in-
volves aligning multiple chunks across sentences
with similar meaning along with similarity score(0-
5) and type assignment.

Interpretable STS task was first introduced as a
pilot task in 2015 Semeval STS task. Several ap-
proaches were proposed including NeRoSim (Ban-
jade et al., 2015), UBC-Cubes (Agirre et al., 2015)
and Exb-Thermis (Hänig et al., 2015). For the task
of alignment, these submissions used approaches
based on monolingual aligner using word similarity
and contextual features (Md Arafat Sultan and Sum-
mer, 2014), JACANA that uses phrase based semi-
markov CRFs (Yao and Durme, 2015) and Hun-
garian Munkers algorithm (Kuhn and Yaw, 1955).
Other popular approaches for mono-lingual align-
ment include two-stage logistic-regression based
aligner (Md Arafat Sultan and Summer, 2015), tech-
niques based on edit rate computation such as (lien
Maxe Anne Vilnat, 2011) and TER-Plus (Snover et
al., 2009). (Bodrumlu et al., 2009) used ILP for
word alignment problem. The iSTS task in 2016
introduced problem of many-to-many chunk align-
ment, where multiple non-contiguous chunks of
the source can align with multiple-non-contiguous
chunks of the target sentence, that previous mono-
lingual alignment techniques cannot handle. We
propose iMATCH, a new technique for monolingual
alignment for many-to-many alignment at the chunk
level, that can combine non-contiguous chunks
based on integer linear programming (ILP). We also
explore several features to define a similarity score
between chunks to define the objective function for
our optimization problem, similarity type and score
classification modules. To summarize our contribu-
tions:

• We propose a novel algorithm for monolingual
alignment : iMATCH that handles many-to-
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Figure 1: Flow diagram of proposed iSTS system

many chunk level alignment, based on Integer
Linear Programming.

• We propose a system for Interpretable Se-
mantic Textual Similarity: In the Gold-chunks
track, our system is the top performer for the
students-dataset and our alignment score is in
that of the best two teams for all datasets.

2 System for Interpretable STS

Our system comprises of (a) alignment module,
iMATCH (section 2.1), (2) Type prediction module
(section 2.2) and (3) Score prediction module (sec-
tion 2.3). In the case of system chunks, there is
an additional chunking module for segmenting in-
put sentences into chunks. Figure 1 shows the block
diagram of proposed system.

Problem Formulation: Following is the for-
mal definition of our problem. Consider source
sentence (Sent1) with M chunks and target sen-
tence (Sent2) with N chunks. Consider sets C1 =
{c11, . . . , c1M}, the chunks of sentence Sent1 and
C2 = {c21, . . . , c2N}, the chunks of sentence Sent2.
Consider sets S1 ⊂ PowerSet(C1)− φ and S2 ⊂
PowerSet(C2)− φ. Note that S1 and S2 are sub-
sets of the power set (set of all possible combina-
tions of sentence chunks) ofC1 andC2 respectively.
Consider sets S1 ∈ S1 and S2 ∈ S2, which de-
notes a specific subset of chunks that are likely to be
combined during alignment. Let concat(S1) denote
the phrase resulting from concatenation of chunks in
S1 and concat(S2) denote the phrase resulting from
concatenation of chunks of S2. Consider a binary

Figure 2: iMatch: An example illustrating notation

variable ZS1,S2 that takes value 1 if concat(S1) is
aligned with concat(S2) and 0 otherwise.

The goal of alignment module is to determine
the decision variables (ZS1,S2), which are non-zero.
S1 and S2 can have more than one chunk (mul-
tiple alignment), that are not necessarily contigu-
ous. Aligned chunks are further classified using
Type classifier and Score classifier. Type predic-
tion module identifies a pair of aligned chunks
(concat(S1), concat(s2))) with a relation type like
EQUI (equivalent), OPPO (opposite) etc. Score
classifier module assigns a similarity score ranging
between 0-5 for a pair of chunks. For the system
chunks track, the chunking module, converts sen-
tences Sent1, Sent2 to sentence chunks C1, C2.

2.1 iMATCH: ILP based Monolingual Aligner
for Multiple-Alignment at the Chunk Level

We approach the problem of multiple alignment
(permitting non-contiguous chunk combinations) by
formulating it as an Integer Linear Programming
(ILP) optimization problem. We construct the ob-
jective function as the sum of all ZS1,S2 ,∀S1, S2
weighed by the similarity between concat(S1) and
concat(S2), subject to constraints to ensure that
each chunk is aligned only a single time with any
other chunk. This leads to the following optimiza-
tion problem based on Integer linear programming

791



(Nemhauser and Wolsey, 1988):

max
Z

Σ
S1∈S1,S2∈S2

ZS1,S2 α(S1, S2) Sim(S1, S2)

S.T Σ
S̄1={S:c1∈S,S∈S1},S2∈S2

ZS1,S2 ≤ 1, ∀1 ≤ c1 ≤M

Σ
S1∈S1,S̄2={S:c2∈S,S∈S2}

ZS1,S2 ≤ 1, ∀1 ≤ c2 ≤ N

ZS1,S2 ∈ {0, 1}, ∀S1 ∈ S1, S2 ∈ S2

Optimization constraints ensure that a particular
chunk c appears in an alignment a single time with
any subset of chunks in the other sentence. There-
fore, one chunk can be part of alignment only once.
We note that all possible multiple alignments are ex-
plored by this optimization problem when S1 =
PowerSet(C1)−φ and S2 = PowerSet(C2)−φ.
However, this leads to a very high number of deci-
sion variables ZS1,S2 , not suitable for realistic use.
Hence we consider a restricted usecase

S1 = {C1
1}, . . . , {C1

M} ∪ {{C1
i , C

1
j } : 1 ≤ i < j ≤M}

S2 = {C2
1}, . . . , {C2

N} ∪ {{C2
i , C

2
j } : 1 ≤ i < j ≤ N}

This leads to many-to-many alignment where at
most two chunks are combined to align with two
other chunks. For iSTS task submission, we restrict
our experiments to this setting (since this worked
well for the iSTS task), but can relax sets S1 and S2
to cover combinations of 3 or more chunks. For ef-
ficiency, it should be possible to consider a subset of
chunks based on adjacency information, existence of
a dependency using dependency parsing techniques.
Sim(S1, S2), the similarity score, that measures de-
sirability of aligning concat(S1) with concat(S2),
plays an important role in finding the optimal solu-
tion for the monolingual alignment task. We com-
pute this similarity score by taking the maximum of
similarity scores obtained from a subset of features
F1, F2, F3, F8, F10 and F11 given in Table 1 as
follows: max(F1, F2, F3, F8, F10, F11). During
implementation, the weighting term, α(S1, S2) is set
as a function of the cardinality of S1 and cardinality
of S2 to ensure aligning fewer individual chunks (for
instance, single alignment tends to increase objec-
tive function value more due to more aligned pairs,
since similarity scores are normalized to lie between

-1 and 1) does not get an undue advantage over mul-
tiple alignment. This is a hyper-parameter whose
value is set using simple grid search. We solve
the actual ILP optimization problem using PuLP
(Mitchell et al., 2011), a python toolkit for linear
programming. Our system achieved the best align-
ment score for headlines datasets in the gold chunks
track.

2.2 Type Prediction Module

We use a supervised approach for multiclass classi-
fication based on the training data of 2016 and that
of previous years (for some submitted runs) to learn
the similarity type between aligned pair of chunks
based on various features derived from the chunk
text. We train a one-vs-rest random forest classi-
fier (Pedregosa et al., 2011) with various features
mentioned in Table 1. We perform normalization
on the input phrases as a preprocessing step before
extracting features for classification. Normalisation
step includes various heuristic steps to convert simi-
lar words to the same form, for example ‘USA’ and
‘US’ were mapped to ‘U.S.A’. Empirical results sug-
gested that features F1, F2, F3, F5, F7, F8, F9, F12
along with unigram and bigram features give good
accuracy with decision tree classifier. Feature vec-
tor normalisation is done before training and pre-
diction. We note that our type classification mod-
ule performed well for the answer-students dataset,
while it did not generalize as well for the headlines
and images. We are exploring other features to im-
prove performance on these datasets as future work.

2.3 Score Prediction Module

Similar to type classifier, we designed the Score
classifier to do multiclass classification using one-
vs-rest random forest classifier (Pedregosa et al.,
2011). Each score 1-5 is considered as a class.
‘0’ score is assigned by default for ‘not-aligned’
chunks. Word normalization (US, USA, U.S.A are
mapped to U.S.A string) is performed as a prepro-
cessing step. Features F1, F2, F3, F5, F7, F8, F9,
F12 along with unigram and bigram features (refer
Table 1) were used in training the multi-class clas-
sifier. Feature normalization was performed to im-
prove results. Our score classifier works well on all
datasets. The system achieved highest score on the
gold-chunks track for answer-students dataset and
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Table 1: Feature Extraction as used in various modules of iSTS system
No. Feature Name Description

F1 Common Word Count
v1 words = {words1 from sentence 1}
v2 words = {words2 from sentence 2}

feature value = {|v1 words∩v2 words|}
0.5∗(sentence1 length+sentence2 length)

F2 Wordnet Synonym Count
v1 = {words1} ∪ {wordnet synsets, similar tos, hypernms and hyponyms of words in sentence 1}
v2 = {words2} ∪ {wordnet synsets, similar tos, hypernms and hyponyms of words in sentence 2}

feature value = |v1∩v2|
0.5∗(sentence1 length+sentence2 length)

F3 Wordnet Antonym Count
v1 words = {words1} ,v1 anto = {wordnet antonyms of words in sentence 1}
v2 words = {words2} ,v2 anto = {wordnet antonyms of words in sentence 2}

feature value = {|v1 words∩v2 anto|}+{|v2−words∩v1 anto|}
0.5∗(sentence1 length+sentence2 length)

F4
Wordnet IsHyponym

& IsHypernym

v1 syn = {synonyms of words in sentence 1}, v1 hyp = {hypo{/hyper}nyms of words in v1 syn}
v2 syn = {synonyms of words in sentence 2}, v2 hyp = {hypo{/hyper}nyms of words in v2 syn}

feature value = 1 if |v1 syn ∩ v2 hyp| ≥ 1

F5 Wordnet Path Similarity
v1 syn = {synonyms of words in sentence 1}
v2 syn = {synonyms of words in sentence 2}

feature value = {∑w1.path similarity(w2)}
(sentence1 length+sentence2 length)

, w1 ∈ v1 syn,w2 ∈ v2 syn

F6 Has Number feature value = 1 if phrase contains a number

F7 Is Negation
feature value = 1 if one phrase contains a ’not’ or ’n’t’ or ’never’

and other phrase does not contain those terms.

F8 Edit Score

v1 = words in sentence 1
v2 = words in sentence 2

value =
∑

[max(1− EditDistance(w1,w2)
(max(len(sentence1),len(sentence2))

), ∀w2 ∈ v2] ∀w1 ∈ v1.

feature value = value
sentence1 length

For phrasal score, sum editscore of sentence 1 words with the closest sentence 2 words.
Compute the average over scores for words in source.

F9 PPDB Similarity
v1 =words in sentence 1
v2 =words in sentence 2

feature value =
∑

[ppdb similarity{w1, w2}], w1 ∈ v1, w2 ∈ v2

F10 W2V Similarity
v1 =words in sentence 1, v1 vec =

∑
word2vec embedding{w1}, w1 ∈ v1

v2 =words in sentence 2, v2 vec =
∑

word2vec embedding{w2}, w2 ∈ v2
feature value = cosine distance(v1 vec, v2 vec)

F11 Bigram Similarity
v1 =bigrams in sentence 1,
v2 =bigrams in sentence 2,

feature value = cosine distance(v1, v2)

F12 Length Difference feature value = len(sentence1)− len(sentence2)

headlines dataset and is within 2% of the top score
for all other datasets.

2.4 System Chunks Track: Chunking Module

When gold chunks are not given, we perform an
additional chunking step. We use two methods
for chunking: (1) With OpenNLP Chunker(Apache,
2010) (2) With stanford-core-nlp (Manning et al.,
2014) API for generating parse trees and using the
chunklink (Buchholz, 2000) tool for chunking based
on the parse trees.

For chunking, we do preprocessing to remove
punctuations unless the punctuation is space sepa-
rated (therefore constitutes an independent word).
We also convert unicode characters to ascii charac-
ters. Output of chunker is further post-processed to
combine each single preposition phrase with the pre-
ceding phrase. We noted that the OpenNLP chun-
ker ignored last word of a sentence, in which case,

we concatenated the last word as a separate chunk.
In the case of chunking based on stanford-core-nlp
parser, we noted that in several instances, particu-
larly in the student answer dataset, a conjunction
such as ‘and’ was consistently being separated into
an independent chunk in most cases, and therefore
improved chunking can be realized by potentially
combining chunks around a conjunction. These pro-
cessing heuristics are based on observations from
gold chunks data. We observe that quality of chunk-
ing has a huge impact on the overall score in system
chunks track. As future work, we are exploring ways
to improve the chunking with custom algorithms.

3 Experimental Results

In this section, we present our results, in both the
gold standard and the system chunks tracks. We sub-
mitted 3 runs for each track. In gold chunks track,
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Table 2: Gold Chunks Images
RunName Align Type Score T+S Rank
IIScNLP R2 0.8929 0.5247 0.8231 0.5088 15
IIScNLP R3 0.8929 0.505 0.8264 0.4915 17
IIScNLP R1 0.8929 0.5015 0.8285 0.4845 19
UWB R3 0.8922 0.6867 0.8408 0.6708 1
UWB R1 0.8937 0.6829 0.8397 0.6672 2

Table 3: Gold Chunks headlines
RunName Align Type Score T+S Rank
IIScNLP R2 0.9134 0.5755 0.829 0.5555 16
IIScNLP R1 0.9144 0.5734 0.82 0.5509 18
IIScNLP R3 0.9144 0.567 0.8206 0.5405 19
Inspire R1 0.8194 0.7031 0.7865 0.696 1

Table 4: Gold Chunks Answer Students
RunName Align Type Score T+S Rank
IIScNLP R1 0.8684 0.6511 0.8245 0.6385 1
IIScNLP R2 0.8684 0.627 0.8263 0.6167 4
IIScNLP R3 0.8684 0.6511 0.8245 0.6385 2
V-Rep R2 0.8785 0.5823 0.7916 0.5799 8

Table 5: Gold Chunks Overall
RunName Images Headline Answer Mean Rank

Student
IISCNLP r2 0.5088 0.5555 0.6167 0.560 13
IIScNLP R1 0.4845 0.5509 0.6385 0.558 14
IIScNLP R3 0.4915 0.5405 0.6385 0.557 15
UWB R1 0.6672 0.6212 0.6248 0.637 1

Table 6: System Chunks Images
RunName Align Type Score T+S Rank
IIScNLP R2 0.8459 0.4993 0.777 0.4872 9
IIScNLP R3 0.8335 0.4862 0.7654 0.4744 11
IIScNLP R1 0.8335 0.4862 0.7654 0.4744 10
DTSim R3 0.8429 0.6276 0.7813 0.6095 1
Fbk-Hlt-Nlp R1 0.8427 0.5655 0.7862 0.5475 5

Table 7: System Chunks Headlines
RunName Alignment Type Score T+S Rank
IIScNLP R2 0.821 0.508 0.7401 0.4919 9
IIScNLP R1 0.8105 0.4888 0.723 0.4686 10
IIScNLP R3 0.8105 0.4944 0.721 0.4685 11
DTSim R2 0.8366 0.5605 0.7595 0.5467 1
DTSim R3 0.8376 0.5595 0.7586 0.5446 2

Table 8: System Chunks Answer Students
RunName Align Type Score T+S Rank
IIScNLP R3 0.7563 0.5604 0.71 0.5451 2
IIScNLP R1 0.756 0.5525 0.71 0.5397 5
IIScNLP R2 0.7449 0.5317 0.6995 0.5198 6
Fbk-Hlt-Nlp R3 0.8166 0.5613 0.7574 0.5547 1
Fbk-Hlt-Nlp R1 0.8162 0.5479 0.7589 0.542 3

Table 9: System Chunks Overall
RunName Image Headline Answer Mean Rank

Student
IISCNLP-R2 0.4872 0.4919 0.5198 0.499 8
IISCNLP-R3 0.4744 0.4685 0.5451 0.496 9
IISCNLP-R1 0.4744 0.4686 0.5397 0.494 10
DTSim R3 0.6095 0.5446 0.5029 0.552 1

all three runs used the same algorithm, with different
training data for the supervised prediction of type
and score. While, in system chunks track, we sub-
mitted different algorithm and data combination for
various runs. Detailed run information follows:
– Gold Chunks - Run 1 uses training data from

2015+2016 for the headlines and images dataset and
2016 data for answer-students dataset.
– Gold Chunks - Run 2 uses training data of all
datasets combined from 2015 and 2016 for headlines
and images and 2016 data for answer-students.
– Gold Chunks - Run 3 uses 2016 training data alone
for each dataset.
–System Chunks - Run 1 uses OpenNLP chunker
with supervised training of type and score with data
of all datasets combined for years 2015,2016.
– System Chunks - Run 2 we use chunker based on
stanford nlp parser and chunklink with training data
of all datasets combined for years 2015,2016.
– System Chunks - Run 3, we use the OpenNLP
chunker, with training data of 2016 alone.

Results of our system compared to the best per-
forming systems in each track are listed in Ta-
bles 2-9. In both gold and system chunks track,
run2 performs best owing to more data during train-
ing. Our system performed well for the answer-
students dataset owing to our edit-distance feature
that enables handling noisy data without any pre-
processing for spelling correction. Our alignment
score is best or close to the best in the gold chunks
track, thus validating that our novel and simple ap-
proach based on ILP can be used for high qual-
ity monolingual multiple alignment at the chunk
level. Our system took only 5.2 minutes for a sin-
gle threaded execution on a Xeon 2420, 6 core sys-
tem for the headlines dataset. Therefore, our tech-
nique is fast to execute. We observe that the qual-
ity of chunking has a huge impact on alignment
and thereby the final score. We are actively ex-
ploring other chunking strategies that could improve
results. Code for our alignment module is avail-
able at https://github.com/lavanyats/
iMATCH.git

4 Conclusion and Future

We have proposed a system for Interpretable Se-
mantic Textual Similarity (task 2- Semeval 2016)
(Agirre et al., 2016). We introduce a novel mono-
lingual alignment algorithm iMATCH for multiple-
alignment at the chunk level based on Integer Lin-
ear Programming(ILP) that leads to the best align-
ment score in several cases. Our system uses novel
features to capture dataset properties. For example,
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we designed edit distance based feature for answer-
students dataset which had considerable number of
spelling mistakes. This feature helped our system
perform well on the noisy data of test set without any
preprocessing in the form of spelling-correction.

As future work, we are actively exploring features
to improve our classification accuracy for type clas-
sification, which could help us improve out mean
score. Some exploration in the techniques for simul-
taneous alignment and chunking could significantly
boost the performance in sys-chunk track.
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