
Proceedings of SemEval-2016, pages 139–144,
San Diego, California, June 16-17, 2016. c©2016 Association for Computational Linguistics

MDSENT at SemEval-2016 Task 4: A Supervised System for Message
Polarity Classification

Hang Gao and Tim Oates
hanggao1@umbc.edu, oates@cs.umbc.edu
University of Maryland Baltimore County

11000 Hilltop Circlet
Baltimore, MD 21250, USA

Abstract

This paper describes our system submitted
for the Sentiment Analysis in Twitter task of
SemEval-2016, and specifically for the Mes-
sage Polarity Classification subtask. We used
a system that combines Convolutional Neural
Networks and Logistic Regression for senti-
ment prediction, where the former makes use
of embedding features while the later utilizes
various features like lexicons and dictionaries.

1 Introduction

Recently, rapid growth of the amount of user-
generated content on the web prompts increasing in-
terest in research on sentiment analysis and opinion
mining. A typical example is Twitter, where lots
of users express feelings and opinions about vari-
ous subjects. However, unlike traditional media, lan-
guage used in social network services like Twitter is
often informal, leading to new challenges to corre-
sponding text analysis.

The SemEval-2016 Sentiment Analysis in Twit-
ter task (SESA-16) is a task that focuses on the
sentiment analysis of tweets. As a continuation of
SemEval-2015 Task 10, SESA-16 introduces sev-
eral new challenges, including the replacement of
classification with quantification, movement from
two/three-point scale to five-point scale, etc.

We participated in Subtask A of SESA-16,
namely message polarity classification, a task that
seeks to predict a sentiment label for some given
text. We model the problem as a multi-class classifi-
cation problem that combines the predictions given
by two different classifiers: one is a Convolutional

Neural Network (CNN) and the other is Logistic Re-
gression (LR). The former takes embedding-based
features while the latter utilizes various features
such as lexicons, dictionaries, etc.

The remainder of this paper is structured as fol-
lows. In Section 2, we describe our system in de-
tail, including feature description and approaches.
In Section 3, we list the details of datasets for the ex-
periments, along with hyperparameter settings and
training techniques. In Section 4, we report the ex-
periment results and present the corresponding dis-
cussion.

2 System Description

Our system aims at predicting the sentiment of a
given message, i.e., whether the message expresses
positive, negative or neutral emotion. To achieve
that, we adopt two separate classifiers, CNN and LR,
designed to utilize different types of features. The fi-
nal prediction for sentiment is a combination of pre-
dictions given by both classifiers.

2.1 Data Preprocessing

Tweets often include informal text, making it es-
sential to preprocess tweets before they are fed to
the system. However, we keep the preprocessing
to a minimum by only removing URLs and @User
tags. We then further tokenize and tag tweets with
arktweetnlp (Gimpel et al., 2011). In addition, all
tweets are lower-cased.

2.2 Logistic Regression

We use the LR classifier for features from sentiment
lexicons and token clusters. We have used the fol-

139

Figure 1: CNN architecture for an example with both word-based and character-based input maps.

lowing:

• clusters: 1000 token clusters provided by the
CMU tweet NLP tool. These clusters are pro-
duced with the Brown clustering algorithm on
56 million English-language tweets.

• manually-constructed sentiment lexicons:
NRC Emotion Lexicon (Mohammad and Tur-
ney, 2010), MPQA (Wilson et al., 2005), Bing
Liu Lexicon (Hu and Liu, 2004) and AFINN-
111 Lexicon (Nielsen, 2011).

• automatically-constructed sentiment lexi-
cons: Hashtag Sentiment Lexicon and Senti-
ment140 Lexicon (Mohammad et al., 2013).

For the Sentiment140 Lexicon and Hashtag Senti-
ment Lexicon, we compute separate lexicon features
for uni-grams and bi-grams, while for other Lexi-
cons, only uni-gram lexicon features are produced.
For each lexicon, let t be the token(uni-gram or bi-
gram), p be the polarity and s be the score provided
by the lexicon. We use the same features that are

also adopted by the NRC-Canada system (Moham-
mad et al., 2013):

• the total count of tokens in a tweet with
s(t, p) > 0.

• the total score of tokens in a tweet
∑

w s(t, p).

• the maximum score of tokens in a tweet
maxw s(t, p).

• the score of the last token in the tweet with
s(t, p) > 0.

For each token, we also use features to describe
whether it is present or absent in each of the 1000
token clusters. There are in total 1051 features for a
tweet.

2.3 Convolutional Neural Network
Deep learning models have achieved remarkable re-
sults for various NLP tasks, with most of them based
on embeddings that represent words, characters, etc.
with vectors of real values. Some work on embed-
dings suggests that word vectors generated by some

140

embedding algorithms preserve many linguistic reg-
ularities (Mikolov et al., 2013a).

Among the various deep learning models, we use
Convolutional Neural Networks, which have already
been used for sentiment classification with promis-
ing results (Kim, 2014). We show the network ar-
chitecture in Figure 1.

In general, the architecture contains two separate
CNNs: one is for word-based input maps while the
other is for character-based input maps. In our sys-
tem, an input map for a tweet is a stack of the em-
beddings of its words/characters w.r.t. their order in
the tweet. We initialize word embeddings with the
publicly available 300 dimension Google News em-
beddings trained with Word2Vec, but randomly ini-
tialize character embeddings with the same dimen-
sion. We fine tune both kinds of embeddings during
the training procedure.

Each of the two separate CNNs has its own set of
convolutional filters. We fix the width of all filters
to be the same as the corresponding embedding di-
mension, but set their height according to predefined
types of n-grams. For example, a filter for bi-grams
on an input map constructed with 300 dimensional
word embeddings will have shape (2, 300), where 2
is the height and 300 is the width. In other words, we
use each filter to capture and extract features w.r.t. a
specific type of n-gram from an input map.

The feature maps generated by a particular filter
may have different shapes for different input maps,
due to variable tweet lengths. Thus we adopt a pool-
ing scheme called max-over-time pooling (Collobert
et al., 2011), which captures the most important fea-
ture, i.e., the one with highest value, for each feature
map. This pooling scheme naturally deals with the
variable tweet length problem.

After pooling, we first generate a representation
for each CNN by concatenating its own pooled fea-
tures, and then form a final representation by con-
catenating the two separate representations. The fi-
nal representation is then fed into a multi-layer per-
ceptron (MLP) classifier for predictions.

2.3.1 Regularization
For regularization we employ dropout with a con-

straint on l2-norms of the weight vectors (Hinton et
al., 2012). The key idea of dropout is to prevent co-
adaptation of feature detectors (hidden units) by ran-

domly dropping out a portion of hidden units in the
training procedure. At test time, the learned weight
vectors are scaled according to the portion while no
dropout is needed.

In addition to dropout, we constrain weight vec-
tors by introducing an upper limit on their l2-norms.
That is, for a weight vector w, we rescale it to have
||w||2 = l, whenever it has ||w||2 > l, after gradient
descent step.

2.4 Combination
We combine the predictions of the two classifiers in
the form of a weighted summation. Given the pre-
diction PLR by Logistic Regression and the predic-
tion PCNN by the CNN, we introduce a scalar w,
such that the final prediction is given as,

Pfinal = (1− w)PLR + wPCNN (1)

In other words, let x be the input instance,

Pfinal(Y = y|x) = wPCNN (Y = y|x)
+ (1− w)PLR(Y = y|x) (2)

We do not simply feed the features of LR along
with the features generated by the CNN into a
single classifier because they are naturally differ-
ent. The features from LR are highly relevant with
manually-created or automatically-generated dictio-
naries, scores, clusters, etc. They are a mixture of
binary and real-value features with high variance.
While for the CNN, the features are generated by
convolutional kernels on distributed representations
(embeddings), leading to strong correlation and rel-
atively smaller variance. Our preliminary experi-
ments show that by simply adding LR features to
CNN features, the performance of our system does
not increase, but drops.

3 Experiment

3.1 Datasets
We test our model on the SemEval-2016 benchmark
dataset with two different settings. Setting 1 uses
only the 2016 datasets while Setting 2 uses a combi-
nation of 2016 and 2013 datasets. We list the details
of the two settings in Table 1.

For setting 2, the merge of two datasets is con-
ducted w.r.t. the train/dev splits. Although we did

141

Settings Train Dev Test
Setting 1 5975 1997 32009
Setting 2 12964 3100 32009

Table 1: Statistics of our two settings of datasets for experi-

ments. Setting 1: a dataset with only the SemEval-2016 dataset.

Setting 2: a dataset that is a combination of the SemEval-2016

and SemEval-2013 datasets. In Setting 2, the merge is con-

ducted w.r.t. train/dev splits, with ”Not Available” tweets re-

moved.

not remove any ”Not Available” tweets for setting
1, we found a relatively high amount of such tweets
in the combined dataset, which may significantly in-
fluence the system performance, thus we removed
all the ”Not Available” tweets for setting 2.

3.2 Hyperparameters and Training
3.2.1 CNN

For both settings, we use rectified linear units.
For the word-based CNN, we use filters of height
1,2,3,4, while for the character-based CNN, we use
filters of height 3,4,5. And 100 feature maps are
used for each filter. We also use a dropout rate of
0.5, l2-norm constraint of 3, and mini-batch size of
50. These values were picked on the Dev dataset of
Setting 1.

We perform early stop on dev datasets during
training. We use Adadelta as the optimization al-
gorithm (Zeiler, 2012).

3.2.2 LR
We use the publicly available tool LibLinear for

LR training. The cost is set to be 0.5 with all other
parameters assigned with default settings. The cost
is chosen based on the Dev dataset of Setting 1.

3.2.3 Combination
The scalar w is picked via grid search on the

Dev dataset for both settings. Because of the ran-
dom initialization of weights and random shuffling
of batches for the CNN during the training proce-
dure, w is different for different runs. Thus we con-
sider it as a weight to be trained with other weights.

3.3 Embeddings
It is popular to initialize word vectors with pre-
trained embeddings obtained by some unsupervised
algorithms trained over a large corpus to improve

Actual
Pos Neu Neg

Predicted
Pos PP PU PN
Neu UP UU UN
Neg NP NU NN

Table 2: The confusion matrix for Subtask A. Cell XY stands

for ”the number of tweets that were labeled as X and should

have been labeled as Y”, where P U N stand for Positive Neutral

Negative, respectively.

system performance (Kim, 2014) (Socher et al.,
2011). We use the publicly available Word2Vec
vectors trained on 100 billion words from Google
News using the continuous bag-of-words architec-
ture (Mikolov et al., 2013b) to initialize word em-
beddings, but randomly initialize character embed-
dings. All embeddings have dimensionality of 300.
We also randomly initialize word embeddings that
are not present in the vocabulary of those pre-trained
word vectors.

4 Results and Discussion

The same evaluation measure as the one used in pre-
vious years is adopted, i.e.,

FPN
1 =

FPos
1 + FNeg

1

2
(3)

where FPos
1 is defined as,

FPos
1 =

2πPosρPos

πPos + ρPos
(4)

with ρPos defined as the precision of predicted
positive tweets, i.e., the fraction of tweets predicted
to be positive that are indeed positive,

ρPos =
PP

PP + PU + PN
(5)

and πPos defined as the recall of predicted posi-
tive tweets, i.e., the fraction of positive tweets that
are predicted to be such,

πPos =
PP

PP + UP +NP
(6)

where PP, PU, PN, UP, NP are defined in Table
2, a confusion matrix for Subtask A provided by
(Nakov et al.,). FNeg

1 is defined similarly as FPos
1 .

142

Rank System 2013 2014 2015 2016
Tweet SMS Tweet Tweet sacasm Live-Journal Tweet Tweet

1 SwissCheese 0.7005 0.6372 0.7165 0.5661 0.6957 0.6711 0.6331
2 SENSEI-LIF 0.7064 0.6343 0.7442 0.4678 0.7411 0.6622 0.6302
3 unimelb 0.6877 0.5939 0.7067 0.44911 0.6839 0.6514 0.6173
4 INESC-ID 0.7232 0.6096 0.7273 0.5543 0.7024 0.6573 0.6104
5 aueb* 0.6668 0.6185 0.7086 0.41017 0.6957 0.6237 0.6055
6 SentiSys 0.7143 0.6334 0.7234 0.5155 0.7262 0.6445 0.5986
7 I2RNTU 0.6936 0.5977 0.6808 0.4696 0.6966 0.6386 0.5967
8 INSIGHT-1 0.60216 0.58212 0.64416 0.39123 0.55923 0.59516 0.5938
9 twise 0.61015 0.54017 0.64514 0.45010 0.64913 0.6218 0.5869

10 ECNU 0.64310 0.5939 0.6629 0.42514 0.66310 0.60611 0.58510
11 NTNUSentEval 0.62312 0.6411 0.65111 0.42713 0.7193 0.59913 0.58311
12 MDSENT 0.58919 0.50921 0.58720 0.38624 0.60619 0.59318 0.58012

12 CUFE 0.64211 0.5968 0.6629 0.4669 0.6975 0.59814 0.58012
14 THUIR 0.61613 0.57514 0.64812 0.39920 0.64015 0.61710 0.57614
14 PUT 0.56521 0.51120 0.61419 0.36027 0.64814 0.59715 0.57614
- MDSENT* 0.6649 0.6106 0.6769 0.41017 0.6899 0.6287 0.6016

baseline 0.292 0.190 0.346 0.277 0.272 0.303 0.255

Table 3: Evaluation Results of the top 15 systems with ranks provided as subscripts. aueb* stands for ”aueb.twitter.sentiment”.

Our model with setting 1 ranks 12th among 34 systems. We also show the evaluation results and our reported ranks of MDSENT

with setting 2 among the 34 systems in MDSENT*.

Runs
Setting 1 Setting 2
w FPN

1 w FPN
1

Run 1 0.66 0.582 1.00 0.603
Run 2 0.81 0.583 1.00 0.604
Run 3 0.60 0.587 0.98 0.607
Run 4 0.60 0.591 0.97 0.603
Run 5 0.60 0.592 0.95 0.601

Average 0.654 0.587 0.98 0.604
Table 4: Statistics of 5 individual runs for both settings.

We show the evaluation results of our system in
Table 3, along with the top 15 systems reported.
Originally we tested the system with only setting
1 and it ranks 12th among 34 systems. However,
we find the system with setting 1 perform poorly on
older datasets, which may due to the lack of train-
ing data. Thus we then test our model with setting
2 and report ranks generated from the same list of
evaluation results reported by the 34 systems. It
is apparent that our system can benefit from more
training data and shows significant performance im-
provement (rank 6th).

Another interesting observation is that when pro-
vided with large amounts of training data, the CNN
itself can perform very well, with LR assigned a
very small weight during the combination proce-

dure. We further test this finding by making 5 indi-
vidual runs for both settings and checking the com-
bination scalar weight w and final evaluation score
FPN
1 . We list corresponding results in Table 4. With

more training data, w increased from an average of
0.654 to an average of 0.98, which is very close to
1, while the performance improved from an aver-
age of 0.587 to an average of 0.604. This suggests
the possibility to use only deep learning techniques
along with embeddings to achieve similar or even
better performance than traditional systems that re-
quire a lot of human engineered features and knowl-
edge bases.

Our future work includes finer-design of the
CNN, e.g., performing two stages of classification:
first for subjectivity detection and then for polar-
ity classification. We will also seek the possibility
of conducting unsupervised learning with the CNN,
which allows us to make use of the large amount of
tweets on the Internet. With such increased amount
of training data, our system may further improve its
performance.

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.

143

Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A Smith. 2011. Part-of-speech tagging for twit-
ter: Annotation, features, and experiments. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies: short papers-Volume 2, pages 42–47.
Association for Computational Linguistics.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Using
mechanical turk to create an emotion lexicon. In Pro-
ceedings of the NAACL HLT 2010 workshop on com-
putational approaches to analysis and generation of
emotion in text, pages 26–34. Association for Compu-
tational Linguistics.

Saif M Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. Nrc-canada: Building the state-of-the-
art in sentiment analysis of tweets. arXiv preprint
arXiv:1308.6242.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Se-
bastiani, and Veselin Stoyanov. Evaluation measures
for the semeval-2016 task 4 ’sentiment analysis in twit-
ter’(draft: Version 1.1).

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dynamic

pooling and unfolding recursive autoencoders for para-
phrase detection. In Advances in Neural Information
Processing Systems, pages 801–809.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the conference
on human language technology and empirical methods
in natural language processing, pages 347–354. Asso-
ciation for Computational Linguistics.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

144

