
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 61–70,
Denver, Colorado, June 4–5, 2015.

A Methodology for Word Sense Disambiguation at 90%
based on large-scale CrowdSourcing

Oier Lopez de Lacalle
University of the Basque Country

oier.lopezdelacalle@ehu.eus

Eneko Agirre
University of the Basque Country

e.agirre@ehu.eus

Abstract

Word Sense Disambiguation has been stuck
for many years. In this paper we explore
the use of large-scale crowdsourcing to cluster
senses that are often confused by non-expert
annotators. We show that we can increase
performance at will: our in-domain experi-
ment involving 45 highly polysemous nouns,
verbs and adjective (9.8 senses on average),
yields an average accuracy of 92.6 using a su-
pervised classifier for an average polysemy of
6.1. Our proposal has the advantage of being
cost-effective and being able to produce differ-
ent levels of granularity. Our analysis shows
that the error reduction with respect to fine-
grained senses is higher, and manual inspec-
tion show that the clusters are sensible when
compared to those of OntoNotes and WordNet
Supersenses.

1 Introduction

Word sense ambiguity is a major hurdle for accu-
rate information extraction, summarization and ma-
chine translation. The utility of Word Sense Dis-
ambiguation (WSD) depends on the accuracy and
on how useful the sense distinctions are. The first
issue is quantitative, as it can be measured using
a WSD system on certain dataset. The second ex-
amines whether the sense distinctions are appropri-
ate, which varies from application to application.
Although usefulness can be explored in a down-
stream application (Agirre et al., 2008), it is usually
assessed subjectively, discussing the quality of the
sense distinctions (Palmer et al., 2007). Both issues

(performance and usefulness) are linked to the gran-
ularity of the sense inventory, and conflict with each
other: finer granularity might produce more useful
distinctions but the accuracy would be worse, and
vice-versa.

WordNet (Fellbaum, 1998) is the most widely
used resource to build word sense disambiguation
tools and word sense annotated corpora, including
recent large efforts (Passonneau et al., 2012), but its
fine-grainedness has been mentioned to be a prob-
lem (Hovy et al., 2006; Palmer et al., 2007).

We think that a desiderata for a sense inventory
would be that it provides useful sense distinctions
and useful performance across a large range of appli-
cations. We would also add that it should be tightly
integrated with WordNet, given its prevalence on
NLP applications, and we thus focus on sense in-
ventories which are mapped to WordNet.

In order to asses usefulness, we need specific
measures. Downstream application is difficult, and
unfeasible for new proposals, as a full-fledged sense
inventories and associated annotations are neces-
sary. We can instead estimate usefulness of pro-
posed sense inventories using several proxy mea-
sures:

• High polysemy. Note that polysemy alone
could be misleading, as a word with many
senses might be skewed to a single sense: 99%
of occurrences could belong to a single sense,
while the rest are only seen once. Besides the
absolute polysemy, we can use the accuracy of
the most frequent sense (MFS, estimated in
train data and applied to test data) as a simple
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and effective indication of skewness. High pol-
ysemy and low MFS are desirable properties.

• High performance, as measured the accuracy of
a supervised system trained on hand-annotated
data. The higher the accuracy, the better.

• Flexible sense granularity, that is, the ability
to produce different degrees of polysemy and
accuracy, from fine-grained to coarse-grained.
When comparing sense inventories with differ-
ent granularities, absolute MFS and supervised
performance are not enough. We propose to use
error reduction of the supervised system with
respect to the MFS as a measure of the balance
between low MFS and high supervised perfor-
mance. The larger the error reduction the bet-
ter.

• Manual inspection of the sense distinctions, as
a complement to quantitative measures.

We propose to use crowdsourced annotations
(Passonneau and Carpenter, 2014) to cluster Word-
Net senses that are often confused by non-expert an-
notators. Our method can provide clusters at dif-
ferent levels of granularity. We show that we can
construct clusters yielding around 90% accuracy for
45 words, with higher error reduction with respect
to MFS than fine-grained senses. By construction,
we merge senses which are often confused by anno-
tators, yielding sensible sense clusters, as corrobo-
rated by manual inspection.

The paper is structured as follows. Section 2 men-
tions related work. We then present the annotations,
followed by the clustering procedure. Section 5 re-
port the main experiments. Section 6 compares our
clustering to that of OntoNotes followed by a com-
parison to WordNet Supersenses. Section 8 draws
the conclusions.

2 Related Work

Our work is close to (Passonneau and Carpenter,
2014) in that we use the same dataset and anno-
tations presented in that work. They present a
comparison of conventional expert-guided annota-
tion model with a probabilistic annotation model
that does not take agreement into account.

Previous efforts to cluster WordNet senses in
order to produce coarse-grained inventories have
shown that improved results can be obtained, but
we think our approach fits the desiderata better.
For instance, clustering together senses which have
the same Semantic File (also called Supersenses)
allowed the best supervised WSD system to date
(Zhong and Ng, 2010) to increase accuracy from
58.3% to 82.6% in the Semeval 2007 all-words
dataset (Navigli et al., 2007). Semantic Files are
useful, but don’t allow to provide flexible sense in-
ventories.

The OntoNotes project (Hovy et al., 2006) de-
vised a manual grouping method which explicitly
sought 90% accuracy. Although the method was
shown to be successful, the fixed sense groupings
had to be produced manually, included complex
mappings to WordNet (cf. Section 6), and was a
limited exercise, with annotations for around 4900
words. Our work is similar in spirit to OntoNotes,
but use a different methodology which allows for
flexible granularity, as the annotation is done at the
fine-grained level, and the clustering is done later
fully automatically.

Automatic clustering algorithms are not new.
(Tou Ng et al., 1999) propose to use annotator
agreement to cluster senses, reporting higher inter-
annotator agreement after clustering. We are in part
inspired by their approach, as we extend it from two
annotators to a sample with 25 annotators, and vali-
date the approach with WSD systems.

The rest of approaches use other sources of in-
formation. Peters et al. (1998) make use of the
WordNet hierarchy to group close senses. Mihal-
cea and Moldovan (1999) present similar approach
that is based in the structure of WordNet. To-
muro (2001) presents are more principled algorithm
based on Minimum Description Length. A work
which is closely related to our work is (Agirre and
Lopez de Lacalle, 2003), in which they examine
a variety of information sources to cluster Word-
Net word senses, including a hierarchical cluster-
ing based on distributional information. Snow et
al. (2007) present a supervised learning algorithm
that learns merging senses and make use of wide
range of WordNet-based and corpus-based features.
(Navigli et al., 2007) mapped WordNet to the top
level sense distinctions in the Oxford Dictionary of
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English. All the above rely on automatic measures,
while our method is based on human annotations.

3 MASC Crowdsourced annotations

The corpus used in the experiments is part of the
Manually Annotated Sub-Corpus of the Open Amer-
ican National Corpus, which contains a subsidiary
word sense sentence corpus consisting of approxi-
mately one thousand sentences per word annotated
with WordNet 3.0 sense labels (Passonneau et al.,
2012). In this work we make use of a publicly avail-
able subset of 45 words (17 nouns, 19 verbs and
9 adjective, see Table2) that have been annotated,
1000 sentences per target word, using crowdsourc-
ing (Passonneau and Carpenter, 2014). The authors
collected between 20 and 25 labels for every sen-
tence. They showed that a probabilistic annotation
model based on crowdsourced data was effective,
with favorable quality when compared to a conven-
tional expert-guided annotation model.

4 Clustering Procedure

Having access to multiple annotations of the same
item allows to identify correlations among senses
of a word. In particular, we can mine how many
times the annotators confused 2 particular senses of
a word. If two senses are confused very often, it
will signal that the annotators find the differences
between the two senses difficult to discriminate in
context. We also want to note that, in some cases, the
context might be underspecified, and several senses
might hold at the same time. We left this second
phenomena for a future study.

We built a confusion matrix for each target word
counting how many times two distinct senses are an-
notated in the same instance. More formally, the
confusion of two senses of a target word conf(s1, s2)
is defined as follows:

1
I

I∑
i=1

1(
Ji
2

) Ji−1∑
m=1

Ji∑
n=m+1

I((yi,n = s1 ∧ yi,m = s2)∨

(yi,n = s2 ∧ yi,m = s1))

where I is number of instances of the word, Ji is the
number of turkers that annotated instance i, and yi,m

is the annotation of turker m in instance i. Finally,
I(s) = 1 iff the condition expressed in s is true.

We cluster the senses based on the information in
the confusion matrix, i.e. two senses (s1, s2) will
tend to be in the same cluster if conf(s1, s2) is high.
We used agglomerative hierarchical clustering for
the sake of simplicity, as we obtain one hierarchy of
senses in one go, and then used different cuts in the
hierarchy to obtain clusters of different sense granu-
larities.

In order to obtain the target coarse-grained inven-
tory, the procedure was the following: (0) we start
at the leaves of the hierarchy, that is, with the fine-
grained senses; (1) we train and test a word sense
disambiguation algorithm on development data us-
ing the current sense distinctions (see the next Sec-
tion for details); (2) if the accuracy is higher than
90%, or if there are only two senses left, we stop
and output the current sense distinctions; (3) we go
up one level in the hierarchical cluster, joining to-
gether the two senses with highest confusion score,
and go to step (1). Note that the algorithm does not
guarantee obtaining 90% on the training data. Once
the coarse-grained senses are obtained, we train the
word sense disambiguation on the development data
and test over held-out data, yielding the final accu-
racy scores.

In order to contrast results, we also produced hier-
archies of senses based on random clustering, where
the clusters yield the same sense granularity as those
of the confusion-based clustering explained above.
We produced 10 random clustering for each word,
and averaged over the runs to obtain the final accu-
racy.

5 Experiments

The gold standard is based on the multiple annota-
tions in the corpus, but a single sense was selected
as the correct one, following (Passonneau and Car-
penter, 2014), which use a probabilistic annotation
model (Dawid and Skene, 1979). We split the 1000
examples for each word into development and test,
sampling 85% (and 15% respectively) at random,
preserving the overall sense distribution.

The Word Sense Disambiguation algorithm of
choice is It Make Sense (IMS) (Zhong and Ng,
2010), which reports the best WSD results to date.
IMS is a freely available Java implementation1,

1http://www.comp.nus.edu.sg/˜nlp/
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which provides an extensible and flexible platform
for researchers interested in using a WSD compo-
nent. Following Lee and Ng (2002), IMS adopts
support vector machines as the classifier and inte-
grates the state of the features extractors including
parts-of-speech of the surrounding words, bag of
words features, and local collocations as features.

IMS provides ready-to-use models trained with
examples collected from parallel texts , SEM-
COR (Miller et al., 1993), and the DSO corpus
(Ng and Lee, 1996). In our experiments we train
IMS with the train examples of the crowdsourced
MASC. We used IMS out-of-the-box, using the
default parametrization and built-in feature extrac-
tion. We compare results obtained with IMS against
the Most Frequent Sense (MFS), which was es-
timated using the training corpus. Both systems
(IMS and MFS) could be trained on fine-grained
senses, on coarse-grained senses induced from the
confusion matrix using the 90% threshold described
above (Coarseconf) and coarse-grained senses in-
duced from random clustering using the 90% thresh-
old (Coarserandom). We also used sense clusters from
OntoNotes and WordNet Supersenses (cf. Sections
6 and 7) .

5.1 Main results

The results of the six systems on development and
test data are shown in Table 1, showing that we suc-
cessfully attained an accuracy over 90% on average.
The results for random clustering show that not any
clustering yields meaningful results. Due to varia-
tion of the random sense-hierarchies, we calculated
the upper and lower margins with 95% of confidence
level (79.2-80.0 accuracy in test). The results show
that random clustering performs significantly lower
than the confusion based clustering. The results in
development and test are very similar, confirming
that the confusion information is stable in our in-
domain scenario.

All in all, as Table 2 shows, 30 words out of the
45 attain an accuracy higher than 90% in test (14
out of 17 nouns, 11 out of 19 verbs and 5 out of
9 adjectives). The precision for the words which
do not attain 90% is 87.4% on average, and 85.4%
for adjective, being the lowest. The polysemy is re-

software.html

Development Test
MFS IMS MFS IMS

Fine-grained 47.2 73.2 46.2 73.1
Coarserandom 60.4 79.9 60.2 79.6
Coarseconf 84.2 92.9 84.1 92.6

Table 1: Development and test results using cross-
validation (left side) and test results (right side) for IMS
and MFS using three sense inventories.
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Figure 1: Accuracy on test of sense granularities and
methods (top) and error reduction with respect to fine-
grained (bottom), for the three sense inventories.

duced from 9.8 to 6.2.The appendix shows detailed
information for each target word. In all but 3 words
coarse-grained accuracy is above fine-grained. Note
that MFS and IMS produce the same results in 11
words out of 45. We will revisit MFS in Section 6.

Figure 1 plots, on top, the results (on test) grouped
on MFS and IMS for easier comparison. The figure
also plots the error reduction of each coarse-grained
inventory with respect to fine-grained. The higher
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Figure 2: Accuracy of sense granularities and methods
(top) and error reduction of IMS with respect to MFS
(bottom), for the three sense inventories.

error reduction of our coarse-grained inventory with
respect to the random clustering shows that the clus-
ters are meaningful, and that the performance gain
is not an artifact of reducing the sense inventory2.

Figure 2 plots, on top, the results (on test) grouped
on each sense inventory. The figure also plots the er-
ror reduction of IMS with respect to MFS in each
coarse-grained inventory. The better error reduc-
tion of IMS with respect to MFS for our coarse-
grained inventory shows that our clusters are eas-
ier to learn, in that reducing the sense inventory in-
creases the delta with respect to the MFS baseline.
Note that reducing the sense inventory is not enough
to show this effect, as exemplified by the fact that
the error reduction for the random clusters is lower
than for the fine-grained senses.

2Note that, by construction, Coarserandom and Coarseconf have
the same granularity.

5.2 Flexible clustering

As we reached 90% of accuracy with relatively high
polysemy, we also checked whether MFS could
reach 90% of accuracy if we continued to cluster
senses. The experiments in development confirmed
that MFS gets above 90% at expenses of coarser
grained senses than IMS does: On average, the fine-
grained polysemy (9.8) would drop to 4.4, compared
to the 6.2 when clustering to reach 90% using IMS.
When we obtain MFS>90% 17 words have 2 senses
and 40 words reach to 90% of accuracy, whilst when
IMS>90% only 5 words are reduced to 2 senses and
42 words reach to 90%. This shows that it makes
more sense to cluster senses using the performance
of IMS as stopping criteria, as the polysemy is pre-
served better.

In case we continued clustering senses until we
have 2 senses for each word, IMS would reach
98.2% and MFS 95.7%, with an error reduction of
58% over the MFS. Note that this error reduction
compares favorably to that of our clustering when
stopping at IMS>90%, showing that we could have
kept clustering senses further without losing predic-
tive power. These figures show that we could stop at
arbitrary performance figures at the cost of obtaining
highly skewed clusters (indicated by the high MFS
value). We will revisit high MFS in Section 6.

6 Comparison to OntoNotes senses

In order to perform a qualitative study and check
whether our sense clusters make sense, we decided
to compare them to another coarse sense inventory
which is mapped to WordNet. We chose Ontonotes
5.0 (Hovy et al., 2006), which also had the goal of at-
taining 90% sense accuracy. Alternatively, we could
have used the Oxford Dictionary of English, which
was mapped automatically to WordNet 2.1 (Navigli
et al., 2007) but we preferred to factor out automatic
mappings and version differences from the analysis.

Ontonotes contains lexical entries for 35 of our
target words. The relation between the sense inven-
tory of WordNet and OntoNotes is complex. Given
that our work clusters WordNet senses, we focused
on the 18 words where the OntoNotes senses where
composed of one or several WordNet senses and
where all WordNet senses were covered3. Table 2

3The rest of words include senses not mapped to Word-
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Fine-grained Conf Random ON SS
Word #S IMS Mfs #S IMS Mfs IMS Mfs #S IMS Mfs #S IMS Mfs
common-j 10 70.5 39.0 7 87.0 83.6 74.3 46.9 - - - 1 100 100
fair-j 11 88.8 67.3 11 88.8 67.3 88.8 67.3 - - - 2 95.9 93.9
full-j 9 78.5 45.1 8 92.4 66.7 80.2 54.2 - - - 2 98.6 98.6
high-j 8 86.3 71.9 7 94.5 86.3 87.1 74.6 - - - 2 97.9 92.5
late-j 8 84.9 52.1 7 87.0 70.5 87.5 58.5 - - - 2 98.6 98.6
long-j 10 78.0 49.3 6 98.7 98.7 79.8 53.6 - - - 2 90.0 86.7
normal-j 5 81.9 66.0 4 85.4 79.9 83.8 72.2 - - - 1 100 100
particular-j 7 85.0 51.0 6 94.6 66.7 89.5 60.0 - - - 1 99.3 99.3
poor-j 6 76.2 52.4 2 94.6 62.6 88.2 73.6 - - - 2 100 100
board-n 10 88.9 79.9 9 93.8 93.1 89.8 80.9 7 88.9 79.9 5 89.6 79.9
book-n 12 56.3 64.4 11 88.9 89.6 58.3 65.3 - - - 5 65.9 71.1
color-n 9 65.5 32.4 2 99.3 99.3 85.6 76.8 - - - 4 84.8 73.8
control-n 12 79.5 46.6 6 96.6 93.8 82.8 52.0 - - - 8 78.1 46.6
date-n 9 80.1 24.1 4 91.5 65.2 84.2 43.4 - - - 5 91.5 85.1
family-n 9 64.3 26.6 2 100 100 79.7 64.9 - - - 3 99.3 99.3
image-n 10 70.6 49.0 7 90.9 85.3 74.6 59.0 - - - 7 77.6 60.8
land-n 12 57.6 20.8 6 96.5 92.4 62.9 43.2 - - - 6 62.5 28.5
level-n 9 69.9 52.1 7 94.5 94.5 74.6 59.3 7 85.6 77.4 5 77.4 53.4
life-n 15 58.0 21.7 5 89.5 88.8 67.3 43.8 - - - 10 65.0 46.2
number-n 12 87.7 71.2 11 92.5 86.3 89.6 73.9 - - - 5 89.0 71.2
paper-n 8 76.4 41.0 2 100 100 87.7 72.4 - - - 5 83.3 74.3
sense-n 6 93.8 38.6 6 93.8 38.6 93.8 38.6 6 93.8 38.6 3 94.5 66.9
time-n 11 90.1 48.4 7 94.5 93.4 89.7 51.7 - - - 5 92.9 48.4
way-n 13 72.1 55.8 7 91.2 78.9 78.6 62.4 - - - 8 78.2 59.9
window-n 9 75.9 38.6 3 91.7 60.7 84.9 59.3 - - - 4 90.3 62.8
work-n 8 69.8 20.5 2 85.9 79.5 80.9 63.1 - - - 5 75.1 38.5
add-v 7 40.3 49.3 2 91.0 91.0 74.3 77.1 3 90.3 90.3 6 40.3 49.3
appear-v 8 64.4 47.3 5 87.7 63.0 69.2 59.6 5 87.7 63.0 5 87.7 63.0
ask-v 8 78.3 36.4 6 96.5 96.5 83.9 53.8 - - - 3 100 100
find-v 17 62.4 28.4 13 86.5 85.8 65.7 30.8 6 80.9 58.9 7 75.2 41.8
fold-v 6 93.2 83.7 6 93.2 83.7 93.2 83.7 5 93.2 83.7 4 94.6 83.7
help-v 9 61.2 36.0 6 99.3 97.1 69.3 48.7 3 100 97.8 4 73.4 59.7
kill-v 16 63.9 59.7 11 89.6 86.8 67.0 62.5 9 89.6 86.8 7 82.6 81.2
know-v 12 63.1 35.4 7 89.2 77.9 64.8 40.3 7 81.5 48.7 2 100 100
live-v 8 73.5 47.6 3 97.3 94.6 82.5 66.9 - - - 3 91.2 87.8
lose-v 12 64.4 50.7 3 93.8 93.8 76.6 69.1 6 70.5 58.2 7 75.3 64.4
meet-v 14 69.7 28.9 2 86.6 59.9 83.5 61.1 7 82.4 52.1 8 78.9 59.9
read-v 12 82.8 73.9 11 85.1 80.6 84.5 76.1 8 82.1 75.4 4 91.0 88.8
say-v 12 64.9 35.7 7 96.1 96.1 67.5 44.0 6 96.1 92.2 3 100 100
serve-v 16 73.1 40.7 11 88.3 83.4 76.4 46.1 7 80.0 49.7 6 81.4 65.5
show-v 13 75.7 27.5 9 94.2 93.7 79.1 41.6 - - - 5 81.5 32.8
suggest-v 5 74.3 63.5 3 97.3 97.3 81.0 73.3 3 91.2 81.8 1 99.3 99.3
tell-v 9 57.6 38.9 6 86.1 83.3 69.2 54.6 4 94.4 92.4 3 97.9 97.2
wait-v 5 70.2 36.6 3 96.2 92.4 82.2 66.1 3 96.2 92.4 4 76.3 64.9
win-v 5 72.8l 60.5 2 100 99.3 87.9 82.3 - - - 4 76.9 70.1
AVG 45 words 9.8 73.1 46.2 6.2 92.6 84.1 79.6 60.2 - - - 4.7 84.2 73.3
AVG 18 words 10.2 69.9 48.8 6.0 91.5 83.2 76.8 59.6 5.7 88.0 73.2 4.3 86.2 74.3

Table 2: The 45 words, with PoS, polysemy, IMS and Mfs accuracy for fine-grained, our clustering (Conf.), random
clustering, OntoNotes coarse-grained senses (ON, cf. Section 6) and Supersenses (SS, cf. Section 7). The bottom
rows report averages for the 45 words and the 18 words in OntoNotes.

Net, or cases where one WordNet sense was mapped to several
OntoNotes senses
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Conf ON WN # Gloss
1 1 1 421 Make an addition (to); join or combine or unite with others; increase the quality,

quantity, size or scope of
1 1 2 115 State or say further
1 1 6 94 Constitute an addition
1 1 3 92 Bestow a quality on
2 2 4 47 Make an addition by combining numbers
2 2 5 44 Determine the sum of

Table 3: Senses for add-v in WN, OntoNotes (ON) and our clusters (Conf), including frequencies in train and glosses.

Conf ON WN # Gloss
1 2 1 449 a position on a scale of intensity or amount or quality
1 2 2 197 a relative position or degree of value in a graded group
1 6 3 143 a specific identifiable position in a continuum or series or especially in a process
5 5 7 18 an abstract place usually conceived as having depth
6 5 8 13 a structure consisting of a room or set of rooms at a single position along a vertical scale
2 1 4 11 height above ground
4 3 6 3 a flat surface at right angles to a plumb line
3 4 5 2 indicator that establishes the horizontal when a bubble is centered in a tube of liquid

Table 4: Senses for level-v in WN, OntoNotes (ON) and our clusters (Conf), including frequencies in train and glosses.

Conf ON WN # Gloss
1 1 1 285 give help or assistance; be of service
1 1 3 217 be of use
1 1 6 194 contribute to the furtherance of
1 1 2 80 improve the condition of
2 1 4 21 abstain from doing; always used with a negative
5 3 8 4 improve; change for the better
3 2 5 0 help to some food; help with food or drink
4 2 7 0 take or use

Table 5: Senses for help-n in WN, OntoNotes (ON) and our clusters (Conf), including frequencies in train and glosses.

lists those 18 words. We leave the analysis of the
rest of words for further work, as they raise issues
about overlapping sense boundaries, and our main
goal is to check the quality of our method to group
fine-grained senses.

Table 2 shows the statistics for those 18 words.
Overall, the average polysemy of our clusters is
higher and the performance of IMS on our clusters is
also higher. We take this as an indication of the good
quality of our clusters. On the other hand, the MFS
on our clusters is considerably higher, which could
mean that our algorithm has a tendency to lump to-
gether frequent senses, casting doubts on the quality
of the clusters.

We selected three words for illustration, depend-

ing on the difference in number of clusters. Tables
3 to 5 show the senses of those four words4. In
the case of add-v (Table 3), the clusters produced
by our algorithm are the same as OntoNotes. For
level-n (Table 4), although the number of clusters is
the same, we group WordNet sense #3 together with
senses #1 and #2, while OntoNotes keeps it sepa-
rate. Note that sense #3 is very frequent, and as such
it is lumped into a coarse grained sense which covers
most of the occurrences. WordNet sense #8, on the
contrary, is grouped by Ontonotes with #7, while we
keep them separate. We think that in both cases, one
could argue that our clusters make as much senses
as those of OntoNotes, even if the distribution of our

4Note that coarse senses not in WordNet are not included.
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cluster is more skewed than that of Ontonotes.
In the case of help-v (Table 5) our clusters pro-

duces more senses than those in Ontonotes. We
think that sense #4, which is always used with a neg-
ative, can be sensibly considered a separate sense.
Senses #5 and #7 are very similar, but being unat-
tested in the train data, our algorithm is unable to
cluster them.

In summary, the analysis of those (and other) ex-
amples shows that, in general, the sense clusters pro-
duced by our algorithm make sense. In a way, this
was to be expected, as the clustering decisions de-
pend on how often the volunteers confused the use
of two senses. Our analysis also shows that our clus-
tering does have an undesired tendency to cluster
together frequent senses, while senses which occur
rarely the train data are usually kept separate, adding
artificially to the overall polysemy figure.

In the future we would like to study whether it is
possible to make our algorithm more robust to this
tendency to join frequent senses, perhaps discount-
ing frequency from confusion measures.

7 Comparison to Supersenses

We also perform a qualitative study comparing our
coarse grained senses to WN Supersenses. Super-
senses are based on the lexicographer file names for
WordNet, where all senses of the word that belong to
the same lexicographer file (e.g. the artifact file) are
joined together. They include 15 sense for verbs and
26 for nouns. Although WordNet also provide su-
persenses for adjective and adverbs, these are not se-
mantically motivated and do not provide any higher
abstraction (Johannsen et al., 2014).

Table 2 show the results for the target 45 words
(adjectives included). The average polysemy of
the supersenses is lower for all parts of speech
with respect to our clustered senses and OntoNotes.
Note that, word-wise, polysemy varies significantly:
many words keep one or two senses, while others
maintain high polysemy level (roughly similar to
fine-grained senses). IMS and MFS performances
are similar to OntoNotes.

Tables 6 to 8 show the differences in clustering
for the same set of words (add-v, level-n, and help-
n). In the case of add-v (Table 6), we produce two
coarse grained sense against the 5 supersenses. The

only coarse sense in Supersenses groups the arith-
metic operation with state or say further, begin both
communication senses, while our algorithm keeps
groups them in separate sense clusters.

For level-n (Table 7) our algorithm produces more
senses than the number of supersenses (6 vs 4). Su-
persenses of state and attribute are distributed be-
tween our clusters #1 and #2. Our clusters #3, #4
and #6 are lumped together as an artifact, although
it would make sense to keep them separated. Finally,
in the case of help-n (Table 8), we obtain the same
amount of senses, but grouping differs considerably.
For example, WordNet senses #3 and #4 are grouped
under the stative supersense, although the definition
and use of the two senses are completely different.
On the other hand, our cluster #1 comprises the most
frequent 4 senses.

Overall, the comparison of supersenses and our
confusion-based coarse grained senses show com-
plicated overlaps, contrary to OntoNotes, in which
most of the clusters in one are subsumed in the other.
Each of the sense groupings represent very different
sense inventories. This shows the difficulty of hav-
ing a universal sense representation that is useful for
any application at hands. Actually, the choice of the
inventory will depend on the angle of the meanings
required by the application.

8 Conclusions and Future Work

This work explores the use of crowdsourced an-
notations to cluster senses that are often confused
by non-expert annotators. Our method can provide
clusters at different levels of granularity. We show
that, for instance, we can construct clusters yielding
around 90% accuracy for 45 words, with higher er-
ror reduction with respect to MFS than fine-grained
senses. By construction, we merge senses which
are often confused by annotators, yielding sensible
sense clusters, as corroborated by manual inspec-
tion. The comparison to OntoNotes groupings fares
well, with similar groupings, while the comparison
to Supersenses shows that Supersenses follow a dif-
ferent grouping criterion, with overlapping clusters.
The main weakness of our method seems to be the
tendency to cluster together frequent senses.

This work is a small contribution towards the
design of an ambitious annotation effort enabling

68



Conf SS WN # Gloss
1 change 1 421 make an addition (to); join or combine or unite with others; increase the qual-

ity, quantity, size or scope of
1 stative 6 94 constitute an addition
1 possession 3 92 bestow a quality on
1 communication 2 115 state or say further
2 communication 5 44 determine the sum of
2 cognition 4 47 make an addition by combining numbers

Table 6: Senses for add-v in WN, Supersenses (SS) and our clusters (Conf), including frequencies in train and glosses.

Conf SS WN # Gloss
1 state 2 197 a relative position or degree of value in a graded group
1 state 3 143 a specific identifiable position in a continuum or series or especially in a process
1 attribute 1 449 a position on a scale of intensity or amount or quality
2 attribute 4 11 height above ground
5 cognition 7 18 an abstract place usually conceived as having depth
6 artifact 8 13 a structure consisting of a room or set of rooms at a single position along a vert.

scale
4 artifact 6 3 a flat surface at right angles to a plumb line
3 artifact 5 2 indicator that establishes the horizontal when a bubble is centered in a tube of liq.

Table 7: Senses for level-n in WN, Supersenses (SS) and our clusters (Conf), including frequencies in train and glosses.

Conf SS WN # Gloss
1 social 1 285 give help or assistance; be of service
1 social 6 194 contribute to the furtherance of
1 body 2 80 improve the condition of
1 stative 3 217 be of use
2 stative 4 21 abstain from doing; always used with a negative
5 change 8 4 improve; change for the better
3 consumption 5 0 help to some food; help with food or drink
4 consumption 7 0 take or use

Table 8: Senses for help-n in WN, Supersenses (SS) and our clusters (Conf), including freq. in train and glosses.

widespread use of high accuracy WSD. For the near
future we would like to improve the error reduction
with respect to the MFS trying to factor out sense
frequency from clustering decisions. We would also
like to check out-of-domain corpora, and to contrast
the results of our confusion-based clusters with re-
spect to other sense-clustering methods. Finally, we
are aware that the final validity our technique needs
to be shown in a downstream application.
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