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Abstract

We present the results of the Joint Student
Response Analysis and 8th Recognizing Tex-
tual Entailment Challenge, aiming to bring to-
gether researchers in educational NLP tech-
nology and textual entailment. The task of
giving feedback on student answers requires
semantic inference and therefore is related to
recognizing textual entailment. Thus, we of-
fered to the community a 5-way student re-
sponse labeling task, as well as 3-way and 2-
way RTE-style tasks on educational data. In
addition, a partial entailment task was piloted.
We present and compare results from 9 partic-
ipating teams, and discuss future directions.

1 Introduction

One of the tasks in educational NLP systems is pro-
viding feedback to students in the context of exam
questions, homework or intelligent tutoring. Much
previous work has been devoted to the automated

scoring of essays (Attali and Burstein, 2006; Sher-
mis and Burstein, 2013), error detection and correc-
tion (Leacock et al., 2010), and classification of texts
by grade level (Petersen and Ostendorf, 2009; Shee-
han et al., 2010; Nelson et al., 2012). In these appli-
cations, NLP methods based on shallow features and
supervised learning are often highly effective. How-
ever, for the assessment of responses to short-answer
questions (Leacock and Chodorow, 2003; Pulman
and Sukkarieh, 2005; Nielsen et al., 2008a; Mohler
et al., 2011) and in tutorial dialog systems (Graesser
et al., 1999; Glass, 2000; Pon-Barry et al., 2004; Jor-
dan et al., 2006; VanLehn et al., 2007; Dzikovska et
al., 2010) deeper semantic processing is likely to be
appropriate.

Since the task of making and testing a full edu-
cational dialog system is daunting, Dzikovska et al.
(2012) identified a key subtask and proposed it as a
new shared task for the NLP community. Student
response analysis (henceforth SRA) is the task of
labeling student answers with categories that could
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Example 1 QUESTION You used several methods to separate and identify the substances in mock rocks. How did you
separate the salt from the water?

REF. ANS. The water was evaporated, leaving the salt.
STUD. ANS. The water dried up and left the salt.

Example 2 QUESTION Georgia found one brown mineral and one black mineral. How will she know which one is harder?
REF. ANS. The harder mineral will leave a scratch on the less hard mineral. If the black mineral is harder, the

brown mineral will have a scratch.
STUD. ANS. The harder will leave a scratch on the other.

Figure 1: Example questions and answers

help a full dialog system to generate appropriate and
effective feedback on errors. System designers typi-
cally create a repertoire of questions that the system
can ask a student, together with reference answers
(see Figure 1 for an example). For each student an-
swer, the system needs to decide on the appropriate
tutorial feedback, either confirming that the answer
was correct, or providing additional help to indicate
how the answer is flawed and help the student im-
prove. This task requires semantic inference, for ex-
ample, to detect when the student answers are ex-
plaining the same content but in different words, or
when they are contradicting the reference answers.

Recognizing Textual Entailment (RTE) is a se-
ries of highly successful challenges used to evalu-
ate tasks related to semantic inference, held annually
since 2005. Initial challenges used examples from
information retrieval, question answering, machine
translation and information extraction tasks (Dagan
et al., 2006; Giampiccolo et al., 2008). Later chal-
lenges started to explore the applicability and im-
pact of RTE technology on specific application set-
tings such as Summarization and Knowledge Base
Population (Bentivogli et al., 2009; Bentivogli et al.,
2010; Bentivogli et al., 2011). The SRA Task offers
a similar opportunity.

We therefore organized a joint challenge at
SemEval-2013, aiming to bring together the educa-
tional NLP and the semantic inference communities.
The goal of the challenge is to compare approaches
for student answer assessment and to evaluate the
methods typically used in RTE on data from educa-
tional applications.

We present the corpus used in the task (Section
2) and describe the Main task, including educational
NLP and textual entailment perspectives and data set
creation (Section 3). We discuss evaluation metrics

and results in Section 4. Section 5 describes the Pi-
lot task, including data set creation and evaluation
results. Section 6 presents conclusions and future
directions.

2 Student Response Analysis Corpus

We used the Student Response Analysis corpus
(henceforth SRA corpus) (Dzikovska et al., 2012)
as the basis for our data set creation. The corpus
contains manually labeled student responses to ex-
planation and definition questions typically seen in
practice exercises, tests, or tutorial dialogue.

Specifically, given a question, a known correct
‘reference answer’ and a 1- or 2-sentence ‘student
answer’, each student answer in the corpus is label-
led with one of the following judgments:

• ‘Correct’, if the student answer is a complete
and correct paraphrase of the reference answer;

• ‘Partially correct incomplete’, if it is a par-
tially correct answer containing some but not
all information from the reference answer;

• ‘Contradictory’, if the student answer explicitly
contradicts the reference answer;

• ‘Irrelevant’ if the student answer is talking
about domain content but not providing the
necessary information;

• ‘Non domain’ if the student utterance does not
include domain content, e.g., “I don’t know”,
“what the book says”, “you are stupid”.

The SRA corpus consists of two distinct subsets:
BEETLE data, based on transcripts of students in-
teracting with BEETLE II tutorial dialogue system
(Dzikovska et al., 2010), and SCIENTSBANK data,
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based on the corpus of student answers to assess-
ment questions collected by Nielsen et al. (2008b).

The BEETLE corpus consists of 56 questions in
the basic electricity and electronics domain requir-
ing 1- or 2- sentence answers, and approximately
3000 student answers to those questions. The SCI-
ENTSBANK corpus contains approximately 10,000
answers to 197 assessment questions in 15 different
science domains (after filtering, see Section 3.3)

Student answers in the BEETLE corpus were man-
ually labeled by trained human annotators using a
scheme that straightforwardly mapped into SRA an-
notations. The annotations in the SCIENTSBANK

corpus were converted into SRA labels from a sub-
stantially more fine-grained scheme by first auto-
matically labeling them using a set of question-
specific heuristics and then manually revising them
according to the class definitions (Dzikovska et al.,
2012). We further filtered and transformed the cor-
pus to produce training and test data sets as dis-
cussed in the next section.

3 Main Task

3.1 Educational NLP perspective

The 5-way SRA task focuses on associating student
answers with categorical labels that can be used in
providing tutoring feedback. Most NLP research on
short answer scoring reports agreement with a nu-
meric score (Leacock and Chodorow, 2003; Pulman
and Sukkarieh, 2005; Mohler et al., 2011), which
is a potential contrast with our task. However, the
majority of the NLP work makes use of underlying
representations in terms of concepts, so the 5-way
task is still likely to mesh well with the available
technology. Research on tutorial dialog has empha-
sized generic methods that use latent semantic anal-
ysis or other machine learning methods to determine
when text strings express similar concepts (Hu et al.,
2003; Jordan et al., 2004; VanLehn et al., 2007; Mc-
Carthy et al., 2008). Most of these methods, like
the NLP methods, (with the notable exception of
(Nielsen et al., 2008a)), are however strongly depen-
dent on domain expertise for the definitions of the
concepts. In educational applications, there would
be great value in a system that could operate more
or less unchanged across a range of domains and
question-types, requiring only a question text and a

reference answer supplied by the instructional de-
signers. Thus, the 5-way classification task at Se-
mEval was set up to evaluate the feasibility of such
answer assessment, either by adapting the existing
educational NLP methods to the categorical labeling
task or by employing the RTE approaches.

3.2 RTE perspective and 2- and 3-way Tasks
According to the standard definition of Textual En-
tailment, given two text fragments called Text (T)
and Hypothesis (H), it is said that T entails H if, typ-
ically, a human reading T would infer that H is most
likely true (Dagan et al., 2006).

In a typical answer assessment scenario, we ex-
pect that a correct student answer would entail the
reference answer, while an incorrect answer would
not. However, students often skip details that are
mentioned in the question or may be inferred from
it, while reference answers often repeat or make ex-
plicit information that appears in or is implied from
the question, as in Example 2 in Figure 1. Hence, a
more precise formulation of the task in this context
considers the entailing text T as consisting of both
the original question and the student answer, while
H is the reference answer.

We carried out a feasibility study to check how
well the entailment judgments in this formulation
align with the annotated response assessment, by an-
notating a sample of the data used in the SRA task
with entailment judgments. We found that some an-
swers labeled as “correct” implied inferred or as-
sumed pieces of information not present in the text.
These reflected the teachers’ assessment of student
understanding but would not be considered entailed
from the traditional RTE perspective. However, we
observed that in most such cases, a substantial part
of the hypothesis was still implied by the text. More-
over, answers assigned labels other than “correct”
were always judged as “not entailed”.

Overall, we concluded that the correlation be-
tween assessment judgments of the two types was
sufficiently high to consider an RTE approach. The
challenge for the textual entailment community was
to address the answer assessment task at varying
levels of granularity, using textual entailment tech-
niques, and explore how well these techniques can
help in this real-world educational setting.

In order to make the setup more similar to pre-

265



vious RTE tasks, we introduced 3-way and 2-way
versions of the task. The data for those tasks were
obtained by automatically collapsing the 5-way la-
bels. In the 3-way task, the systems were required to
classify the student answer as either (i) correct; (ii)
contradictory; or (iii) incorrect (combining the cat-
egories partially correct but incomplete, irrelevant
and not in the domain from the 5-way classification).

In the two-way task, the systems were required to
classify the student answer as either correct or in-
correct (combining the categories contradictory and
incorrect from the 3-way classification)

3.3 Data Preparation and Training Data
In preparation of the task four of the organizers ex-
amined all questions in the SRA corpus, and decided
that to remove some of the questions to make the
dataset more uniform.

We observed two main issues. First, a num-
ber of questions relied on external material, e.g.,
charts and graphs. In some cases, the information
in the reference answer was sufficient to make a rea-
sonable assessment of student answer correctness,
but in other cases the information contained in the
questions was deemed insufficient and the questions
were removed.

Second, some questions in the SCIENTSBANK

dataset could have multiple possible correct an-
swers, e.g., a question asking for any example out
of two or more unrelated possibilities. Such ques-
tions were also removed as they do not align well
with the RTE perspective.

Finally, parts of the data were re-checked for re-
liability. In BEETLE data, a second manual annota-
tion pass was carried out on a subset of questions
to check for consistency. In SCIENTSBANK, we
manually re-checked the test data. The automatic
conversion from the original SCIENTSBANK anno-
tations into SRA labels was not perfectly accurate
(Dzikovska et al., 2012). We did not have the re-
sources to check the entire data set. However, four of
the organizers jointly hand-checked approximately
100 examples to establish consensus, and then one
organizer hand-checked all of the test data set.

3.4 Test Data
We followed the evaluation methodology of Nielsen
et al. (2008a) for creating the test data. Since our

goal is to support systems that generalize across
problems and domains (see Section 3.1), we created
three distinct test sets:

1. Unseen answers (UA): a held-out set to assess
system performance on the answers to ques-
tions contained in the training set (for which
the system has seen example student answers).
It was created by setting aside a subset if ran-
domly selected learner answers to each ques-
tion included in the training data set.

2. Unseen questions (UQ): a test set to assess
system performance on responses to previously
unseen questions but which still fall within the
application domains represented in the training
data. It was created by holding back all student
answers to a subset of randomly selected ques-
tions in each dataset.

3. Unseen domains (UD): a domain-independent
test set of responses to topics not seen in the
training data, available only in the SCIENTS-
BANK dataset. It was created by setting aside
the complete set of questions and answers from
three science modules from the fifteen modules
in the SCIENTSBANK data.

The final label distribution for train and test data
is shown in Table 1.

4 Main Task Results

4.1 Participants
The participants were invited to submit up to three
runs in any combination of the tasks. Nine teams
participated in the main task, most choosing to at-
tempt all subtasks (5-way, 3-way and 2-way), with
1 team entering only the 5-way and 1 team entering
only the 2-way task.

At least 6 (CNGL, CoMeT, CU, BIU, EHUALM,
LIMSI) of the 9 systems used some form of syn-
tactic processing, in most cases going beyond parts
of speech to dependencies or constituency structure.
CNGL emphasized this as an important aspect of the
system. At least 5 (CoMeT, CU, EHUALM, ETS
UKP) of the 9 systems used a system combination
approach, with several components feeding into a
final decision made by some form of stacked clas-
sifier. The majority of the systems used some kind
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label BEETLE SCIENTSBANK

train (%) UA UQ Test-Total (%) train (%) UA UQ UD Test-Total (%)
correct 1665 (0.42) 176 344 520 (0.41) 2008 (0.40) 233 301 1917 2451 (0.42)
pc inc 919 (0.23) 112 172 284 (0.23) 1324 (0.27) 113 175 986 1274 (0.22)
contra 1049 (0.27) 111 244 355 (0.28) 499 (0.10) 58 64 417 539 (0.09)
irrlvnt 113 (0.03) 17 19 36 (0.03) 1115 (0.22) 133 193 1222 1548 (0.27)
non dom 195 (0.05) 23 40 63 (0.05) 23 (0.005) 3 0 20 23 (0.004)
incorr-3way 1227 (0.31) 152 231 383 (0.30) 2462 (0.495) 249 368 2228 2845 (0.49)
incorr-2way 2276 (0.58) 263 475 538 (0.59) 2961 (0.596) 307 432 2645 3384 (0.58)

Table 1: Label distribution. Percentages in parentheses. UA, UQ, UD correspond to individual test sets.

of measure of text-to-text similarity, whether the in-
spiration was LSA, MT measures such as BLEU
or in-house methods. These methods were em-
phasized as especially important by Celi, ETS and
SOFTCARDINALITY. These impressions are based
on short summaries sent to us by the participants
prior to the availability of the full system descrip-
tions. Check the individual system papers for detail.

4.2 Evaluation Metrics

For each evaluation data set (test set), we computed
the per-class precision, recall and F1 score. We also
computed three main summary metrics: accuracy,
macro-average F1 and weighted average F1.

Accuracy is the overall percentage of correctly
classified examples.

Macroaverage is the average value of each met-
ric (precision, recall, F1) across classes, without
taking class size into account. It is defined as
1/Nc

∑
c metric(c), where Nc is the number of

classes (2, 3, or 5 depending on the task). Note
that in the 5-way SCIENTSBANK dataset the ‘non-
domain’ class is severely underrepresented, with
only 23 examples out of 4335 total (see Table 1).
Therefore, we calculated macro-averaged P/R/F1

over only 4 classes (i.e. excluding the ‘non-domain’
class) for SCIENTSBANK 5-way data.

Weighted Average (or simply weighted) is the
average value for each metric weighted by class size,
defined as 1/N

∑
c |c| ∗ metric(c) where N is the

total number of test items and |c| is the number of
items labeled as c in gold-standard data.1

1This metric is called microaverage in (Dzikovska et al.,
2012). However, microaverage is used to define a different
metric in tasks where more than one label can be associated
with each data item (Tsoumakas et al., 2010). therefore, we use
weighted average to match the terminology used by the Weka
toolkit. The micro-average precision, recall and F1 computed

In general, macro-averaging favors systems that
perform well across all classes regardless of class
size. Accuracy and weighted average prefer systems
that perform best on the largest number of examples,
favoring higher performance on the most frequent
classes. In practice, only a small number of the sys-
tems were ranked differently by the different met-
rics. We discuss this further in Section 4.7. Results
for all metrics are available online, and this paper
focuses on two metrics for brevity: weighted and
macro-average F1 scores.

4.3 Results

The evaluation results for all metrics and all partic-
ipant runs are provided online.2 The tables in this
paper present the F1 scores for the best system runs.
Results are shown separately for each test set (TS),
with the simple mean over the five TSs reported in
the final column.

We used two baselines: the majority (most fre-
quent) class baseline and a lexical overlap baseline
described in detail in (Dzikovska et al., 2012). The
performance of the baselines is presented jointly
with system scores in the results tables.

For each participant, we report the single run with
the best average TS performance, identified by the
subscript in the run title, with the exception of ETS.
With all other participants, there was almost always
one run that performed best for a given metric on all
the TSs. In the small number of cases where another
run performed best on a given TS, we instead report
that value and indicate its run with a subscript (these
changes never resulted in meaningful changes in the
performance rankings). ETS, on the other hand, sub-

using the multi-label metric are all equal and mathematically
equivalent to accuracy.

2http://bit.ly/11a7QpP
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Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.423 0.386 0.372 0.389 0.367 0.387
CNGL2 0.547 0.469 0.266 0.297 0.294 0.375
CoMeT1 0.675 0.445 0.598 0.299 0.252 0.454
EHUALM2 0.566 0.4163 0.5253 0.446 0.437 0.471
ETS1 0.552 0.547 0.535 0.487 0.447 0.514
ETS2 0.705 0.614 0.625 0.356 0.434 0.547
LIMSIILES1 0.505 0.424 0.419 0.456 0.422 0.445
SoftCardinality1 0.558 0.450 0.537 0.492 0.471 0.502
UKP-BIU1 0.448 0.269 0.590 0.3972 0.407 0.418
Median 0.552 0.445 0.535 0.397 0.422 0.454
Baselines:
Lexical 0.483 0.463 0.435 0.402 0.396 0.436
Majority 0.229 0.248 0.260 0.239 0.249 0.245

Table 2: Five-way task weighted-average F1

mitted results for systems that were substantially dif-
ferent from one another, with performance varying
from being the top rank to nearly the lowest. Hence,
it seemed more appropriate to report two separate
runs.3 In the rest of the discussion system is used to
refer to a row in the tables as just described.

Systems with performance that was not statisti-
cally different from the best results for a given TS
are all shown in bold (significance was not cal-
culated for the TS mean). Systems with perfor-
mance statistically better than the lexical baseline
are displayed in italics. Statistical significance tests
were conducted using approximate randomization
test (Yeh, 2000) with 10,000 iterations; p ≤ 0.05
was considered statistically significant.

4.4 Five-way Task

The results for the five-way task are shown in Tables
2 and 3.

Comparison to baselines All of the systems per-
formed substantially better than the majority class
baseline (“correct” for both BEETLE and SCIENTS-
BANK), on average exceeding it on the TS mean by
0.21 on the weighted F1 and 0.24 on the macro-
average F1. Six systems outperformed the lexical
baseline on the mean TS results for the weighted
F1 and five for the macro-average F1. Nearly all
of the top results on a given TS (shown in bold in
the tables) were statistically better than correspond-
ing lexical baselines according to significance tests

3In a small number of cases, ETS’s third run performed
marginally better, see full results online.

Dataset: BEETLE 5way SCIENTSBANK 4way
Run UA UQ UA UQ UD Mean
CELI1 0.315 0.300 0.278 0.286 0.269 0.270
CNGL2 0.431 0.382 0.252 0.262 0.239 0.274
CoMeT1 0.569 0.300 0.551 0.201 0.151 0.312
EHUALM2 0.526 0.3703 0.4473 0.353 0.340 0.382
ETS1 0.444 0.461 0.467 0.372 0.334 0.377
ETS2 0.619 0.552 0.581 0.274 0.339 0.428
LIMSIILES1 0.327 0.280 0.335 0.361 0.337 0.308
SoftCardinality1 0.455 0.436 0.474 0.384 0.375 0.389
UKP-BIU1 0.423 0.285 0.560 0.3252 0.348 0.364
Median 0.444 0.370 0.467 0.325 0.337 0.367
Baselines:
Lexical 0.424 0.414 0.375 0.329 0.311 0.333
Majority 0.114 0.118 0.151 0.146 0.148 0.129

Table 3: Five-way task macro-average F1

(indicated by italics in the tables).

Comparing UA and UQ/UD performance The
BEETLE UA (BUA) and SCIENTSBANK UA (SUA)
test sets represent questions with example answers
in training data, while the UQ and UD test sets repre-
sent transfer performance to new questions and new
domains respectively.

The top performers on UA test sets were CoMeT1

and ETS2, with the addition of UKP-BIU1 on SUA.
However, there was not a single best performer on
UQ and UD sets. ETS2 performed statistically bet-
ter than all other systems on BEETLE UQ (BUQ),
but it performed statistically worse than the lexical
baseline on SCIENTSBANK UQ (SUQ), resulting in
no overlap in the top performing systems on the two
UQ test sets. SoftCardinality1 performed statisti-
cally better than all other systems on SUD and was
among the three or four top performers on SUQ, but
was not a top performer on the other three TSs, gen-
erally not performing statistically better than the lex-
ical baseline on the BEETLE TSs.

Group performance The two UA TSs had more
systems that performed statistically better than the
lexical baseline (generally six systems) than did the
UQ TSs where on average only two systems per-
formed statistically better than the lexical baseline.
Over twice as many systems outperformed the lexi-
cal baseline on UD as on the UQ TSs. The top per-
forming systems according to the macro-average F1

were nearly identical to the top performing systems
according to the weighted F1.
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4.5 Three-way Task

The results for the three-way task are shown in Ta-
bles 4 and 5.

Comparison to baselines All of the systems per-
formed substantially better than the majority base-
line (“correct” for BEETLE and “incorrect” for SCI-
ENTSBANK), on average exceeding it on the TS
mean by 0.28 on the weighted F1 and 0.31 on the
macro-average F1. Five of the eight systems out-
performed the lexical baseline on the mean TS re-
sults for the weighted F1 and five on the macro-
average F1, and all top systems outperformed the
lexical baseline with statistical significance.

Comparing UA and UQ/UD performance The top
performers on both BUA and SUA were CoMeT1

and ETS2. As for the 5-way task there was no single
best performer for UQ and UD sets, and no overlap
in top performing systems on BUQ and SUQ test
sets, with ETS2 being the top performer on BUQ,
but statistically worse than the baseline on SUQ
and SUD. On the weighted F1, SoftCardinality1

performed statistically better than all other systems
on SUD and was among the two statistically best
systems on SUQ, but was not a top performer on
BUQ or BUA/SUA TSs. On the macro-average F1,
UKP-BIU1 became one of the statistically best per-
formers on all SCIENTSBANK TSs but, along with
SoftCardinality1, never performed statistically bet-
ter than the lexical baseline on the BEETLE TSs.

Group performance With the exception of SUA,
only around two systems performed statistically bet-
ter than the lexical baseline on each TS. The top per-
forming systems were nearly the same according to
the weighted F1 and the macro-average F1.

4.6 Two-way Task

The results for the two-way task are shown in Ta-
ble 6. Because the labels are roughly balanced in
the two-way task, the results on the weighted and
macro-average F1 are very similar and the top per-
forming systems are identical. Hence this section
will focus only on the macro-average F1.

As in the previous tasks, all of the systems per-
formed substantially better than the majority base-
line (“incorrect” for all sets), on average exceeding
it on the TS mean by 0.25 on the weighted F1 and
0.30 on the macro-average F1. However, just four of

Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.519 0.463 0.500 0.555 0.534 0.514
CNGL2 0.592 0.471 0.383 0.367 0.360 0.435
CoMeT1 0.728 0.488 0.707 0.522 0.550 0.599
ETS1 0.619 0.542 0.603 0.631 0.600 0.599
ETS2 0.723 0.597 0.709 0.537 0.505 0.614
LIMSIILES1 0.587 0.454 0.532 0.553 0.564 0.538
SoftCardinality1 0.616 0.451 0.647 0.634 0.620 0.594
UKP-BIU1 0.472 0.313 0.670 0.573 0.5772 0.521
Median 0.604 0.467 0.625 0.554 0.557 0.566
Baselines:
Lexical 0.578 0.500 0.523 0.520 0.554 0.535
Majority 0.229 0.248 0.260 0.239 0.249 0.245

Table 4: Three-way task weighted-average F1

Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.494 0.441 0.373 0.412 0.415 0.427
CNGL2 0.567 0.450 0.330 0.308 0.311 0.393
CoMeT1 0.715 0.466 0.640 0.380 0.404 0.521
ETS1 0.592 0.521 0.477 0.459 0.439 0.498
ETS2 0.710 0.585 0.643 0.389 0.367 0.539
LIMSIILES1 0.563 0.431 0.404 0.409 0.429 0.447
SoftCardinality1 0.596 0.439 0.555 0.469 0.486 0.509
UKP-BIU1 0.468 0.333 0.620 0.458 0.487 0.473
Median 0.580 0.446 0.516 0.411 0.422 0.485
Baselines:
Lexical 0.552 0.477 0.405 0.390 0.416 0.448
Majority 0.191 0.197 0.201 0.194 0.197 0.196

Table 5: Three-way task macro-average F1

the nine systems in the two-way task outperformed
the lexical baseline on the mean TS results. In fact,
the average performance fell below the lexical base-
line. The differences in the macro-average F1 be-
tween the top results on a SCIENTSBANK TS and
the corresponding lexical baselines were all statis-
tically significant. Two of the top results on BUA
were not statistically better than the lexical base-
line, and all systems performed below the baseline
on BUQ.

4.7 Discussion

All of the systems consistently outperformed the
most frequent class baseline. Beating the lexical
overlap baseline proved to be more challenging, be-
ing achieved by just over half of the results with
about half of those being statistically significant im-
provements. This underscores the fact that there is
still a considerable opportunity to improve student
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Dataset: BEETLE SCIENTSBANK

Run UA UQ UA UQ UD Mean
CELI1 0.640 0.656 0.588 0.619 0.615 0.624
CNGL2 0.800 0.666 0.5911 0.561 0.556 0.635
CoMeT1 0.833 0.695 0.768 0.579 0.670 0.709
CU1 0.778 0.689 0.603 0.638 0.673 0.676
ETS1 0.802 0.720 0.705 0.688 0.683 0.720
ETS2 0.833 0.702 0.762 0.602 0.543 0.688
LIMSIILES1 0.723 0.641 0.583 0.629 0.648 0.645
SoftCardinality1 0.774 0.635 0.715 0.737 0.705 0.713
UKP-BIU1 0.608 0.481 0.726 0.669 0.6662 0.630
Median 0.778 0.666 0.705 0.629 0.666 0.676
Baselines:
Lexical 0.788 0.725 0.617 0.630 0.650 0.682
Majority 0.375 0.367 0.362 0.371 0.367 0.368

Table 6: Two-way task macro-average F1

response assessment systems.
The set of top performing systems on the

weighted F1 for a given TS were also always in the
top on the macro-average F1, but a small number of
additional systems joined the top performing set on
the macro-average F1. Specifically, one, three, and
two results joined the top set in the five-way, three-
way, and two-way tasks, respectively. In principle,
the metrics could differ substantially, because of the
treatment of minority classes, but in practice they
rarely did. Only one pair of participants swap adja-
cent TS mean rankings on the macro-average F1 rel-
ative to the weighted F1 on the two-way task. On the
five-way task, two pairs swap rankings and another
participant moved up two positions in the ranking,
ending at the median value.

Most (28/34) rank changes were only one position
and most (21/34) were in positions at or below the
median ranking. In the five-way task, a pair of sys-
tems, UKP-BIU1 and ETS1, had a meaningful per-
formance rank swap on the macro-average F1 rela-
tive to the weighted F1 on the UD test set. Specifi-
cally, UKP-BIU1 moved up four positions from rank
6, where it was not statistically better than the lexical
baseline, to the second best performance.

Not surprisingly, performance on UA was sub-
stantially higher than on UQ and UD, since the UA
is the only set which contains questions with exam-
ple answers in training data. Performance on BUA
was usually better than performance on SUA, most
likely because BUA contains more similar questions
and answers, focusing on a single science area, Elec-

tricity and Magnetism, compared to 12 distinct sci-
ence topics in SUA). In addition, the BEETLE study
participants may have used simpler language, since
they were aware that they were talking to a computer
system instead of writing down answers for human
teachers to assess as in SCIENTSBANK.

Performance on BUQ versus SUQ was much
more varied, presumably since there was no direct
training data for either TS. For the five-way task, the
best performance on the weighted F1 measure for
BUQ is 0.09 below the best result for BUA and the
analogous decrease from SUA to SUQ is 0.13, with
an additional 0.02 drop on SUD. On the two-way
task, the best weighted F1 for BUQ drops 0.11 from
the best BUA value, but the decrease from SUA to
SUQ is just 0.03, with another 0.03 drop to SUD.
While the drop in performance is fairly similar from
BUA to BUQ on all tasks and either metric, the de-
crease from SUA to SUQ seems to potentially be
dependent on the task, ranging from 0.13 on the five-
way task to 0.08 on the three-way task and 0.03 on
the two-way task.

5 Pilot Task on Partial Entailment

The SCIENTSBANK corpus was originally devel-
oped to assess student answers at a very fine-grained
level and contains additional annotations that break
down the answers into “facets”, or low-level con-
cepts and relationships connecting them (hence-
forth, SCIENTSBANK Extra). This annotation aims
to support educational systems in recognizing when
specific parts of a reference answer are expressed
in the student answer, even if the reference answer
is not entailed as a whole (Nielsen et al., 2008b).
The task of recognizing such partial entailment rela-
tionships may also have various uses in applications
such as summarization or question answering, but it
has not been explored in previous RTE challenges.

Therefore, we proposed a pilot task on partial en-
tailment, in which systems are required to recognize
whether the semantic relation between specific parts
of the Hypothesis is expressed by the Text, directly
or by implication, even though entailment might not
be recognized for the Hypothesis as a whole, based
on the SCIENTSBANK facet annotation.

Each reference answer in SCIENTSBANK data is
broken down into facets, where a facet is a triplet
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consisting of two key terms (both single words and
multi-words, e.g. carbon dioxide, each other, burns
out) and a relation linking them, as shown in Figure
2. The student answers were then annotated with
regards to each reference answer facet in order to
indicate whether the facet was (i) expressed, either
explicitly or by assumption or easy inference; (ii)
contradicted; or (iii) left unaddressed. Considering
the SCIENTSBANK reference answers as Hypothe-
ses, the facets capture their atomic components, and
facet annotations may correspond to the judgments
on the sub-parts of the H which are entailed by T.

We carried out a feasibility study to explore this
idea and to verify how well the facet annotations
align with traditional entailment judgments. We
focused on the reference answer facets labeled in
the gold standard annotation as Expressed or Unad-
dressed. The working hypothesis was that Expressed
labels assigned in SCIENTSBANK annotations cor-
responded to Entailed judgments in traditional tex-
tual entailment annotations, while Unaddressed la-
bels corresponded to No-entailment judgments.

Similarly to the feasibility study reported in Sec-
tion 3.2, we concluded that the correspondence be-
tween educational labels and entailment judgments
was not perfect due to the difference in educational
and textual entailment perspectives. Nevertheless,
the two classes of assessment appeared to be suffi-
ciently well correlated so as to offer a good testbed
for partial entailment in a natural setting.

5.1 Task Definition
Given (i) a text T, made up of a Question and a Stu-
dent Answer; (ii) a hypothesis H, i.e. the Reference
Answer for that question and (iii) a facet, i.e. a pair
of key terms in H, the task consists of determining
whether T expresses, either directly or by implica-
tion, the same relationship between the facet words
as in H. In other words, for each of H’s facets the
system assign one of the following judgments: Ex-
pressed, if the Student Answer expresses the same
relationship between the meaning of the facet terms
as in H; Unaddressed, if it does not.

Consider the example shown in Figure 2. For
facet 3, the system must decide whether the same re-
lation between the two terms ‘contains’ and ‘seeds’
in H (the reference answer) is expressed, explicitly
or implicitly, in T (the combination of question and

student response). If the student answer is ‘The part
of a plant you are observing is a fruit if it has seeds.’,
the answer to the question is ‘yes’ and the correct
judgment is ‘Expressed’. But if the student says
‘My rule is has to be sweet.’, T does not express
the same semantic relationship between ‘contains’
and ‘seeds’ exhibited in H, thus the correct judgment
is ‘Unaddressed’. Note that even though this is an
exercise in textual entailment, student response as-
sessment labels were used instead of traditional en-
tailment judgments, due to the partial mismatch be-
tween the two assessment classes found in the feasi-
bility study.

5.2 Dataset

We used a subset of the SCIENTSBANK Extra cor-
pus (Nielsen et al., 2008b) with the same problem-
atic questions filtered out as the main task (see Sec-
tion 3.3). We further filtered out all the student
answer facets which were labeled other than ‘Ex-
pressed’ or ‘Unaddressed’ in the gold standard an-
notation; the facets in which the relationship be-
tween the two key terms, as classified in the manual
annotation, proved to be problematic to define and
judge, namely Topic, Agent, Root, Cause, Quanti-
fier, Neg; and inter-propositional facets, i.e. facets
that expressed relations between higher-level propo-
sitions. Finally, the facet relations were removed
from the dataset, leaving the relationship between
the two facet terms unspecified so as to allow a more
fuzzy approach to the inference problem posed by
the exercise.

We used the same training/test split as reported in
Section 3.4. The training set created from the Train-
ing SCIENTSBANK Extra corpus contains 13,145
reference answer facets, 5,939 of which were la-
beled as ‘Expressed’ in the student answers and
7,206 as ‘Unaddressed’. The Test set was created
from the SCIENTSBANK Extra unseen data and is
divided into the same subsets as the main task (Un-
seen Answers, Unseen Questions and Unseen Do-
mains). It contains 16,263 facets total, with 5,945
instances labeled as ‘Expressed’, and 10,318 labeled
as ‘Unaddressed’.

5.3 Evaluation Metrics and Baselines

The metrics used in the Pilot task were the same as in
the Main task, i.e. Overall Accuracy, Macroaverage
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QUESTION: What is your ”rule” for deciding if the part of a plant you are observing is a fruit?
REFERENCE ANSWER: If a part of the plant contains seeds, that part is the fruit.
FACET 1: Relation NMod of Term1 part Term2 plant
FACET 2: Relation Theme Term1 contains Term2 part
FACET 3: Relation Material Term1 contains Term2 seeds
FACET 4: Relation Be Term1 fruit Term2 part

Figure 2: Example of facet annotations supporting the partial entailment task

Run UA UQ UD UA UQ UD
Weighted Averaged Macro Average

Run1 0.756 0.71 0.76 0.7370 0.686 0.755
Run 2 0.782 0.765 0.816 0.753 0.73 0.804
Run 3 0.744 0.733 0.77 0.719 0.7050 0.761
Baseline 0.54 0.547 0.478 0.402 0.404 0.384

Table 7: Weighted-average and macro-average F1 scores
(UA: Unseen Answers; UQ: Unseen Questions; UD Un-
seen Domains)
.

and Weighted Average Precision, Recall and F1, and
computed as described in Section 4.2. We used only
a majority class baseline, which labeled all facets
as ‘Unaddressed’. Its performance is presented in
Section 5.4 jointly with the system results.

5.4 Participants and results

Only one participant, UKP-BIU, participated in the
Partial Entailment Pilot task. The UKP-BIU system
is a hybrid of two semantic relationship approaches,
namely (i) computing semantic textual similarity
by combining multiple content similarity measures
(Bär et al., 2012), and (ii) recognizing textual en-
tailment with BIUTEE (Stern and Dagan, 2011).
The two approaches are combined by generating in-
dicative features from each one and then applying
standard supervised machine learning techniques to
train a classifier. The system used several lexical-
semantic resources as part of the BIUTEE entail-
ment system, together with SCIENTSBANK depen-
dency parses and ESA semantic relatedness indexes
from Wikipedia.

The team submitted the maximum allowed of 3
runs. Table 7 shows Weighted Average and Macro
Average F1 scores respectively, also for the major-
ity baseline. The system outperformed the majority
baseline on both metrics. The best performance was
observed on Run 2, with the highest results on the
Unseen Domains test set.

6 Conclusions and Future Work

The Joint Student Response Analysis and 8th Rec-
ognizing Textual Entailment challenge has proven
to be a useful, interdisciplinary task using a realis-
tic dataset from the educational domain. In almost
all cases the best systems significantly outperformed
the lexical overlap baseline, sometimes by a large
margin, showing that computational linguistics ap-
proaches can contribute to educational tasks. How-
ever, the lexical baseline was not trivial to beat, par-
ticularly in the 2-way task. These results are consis-
tent with similar findings in previous RTE exercises.
Moreover, there is still significant room for improve-
ment in the absolute scores, reflecting the interesting
challenges that both educational data and RTE tasks
present to computational linguistics.

The educational setting places new stresses on
semantic inference technology because the educa-
tional notion of ‘Expressed’ and the RTE notion of
‘Entailed’ are slightly different. This raises the ed-
ucational question of whether RTE can work in this
setting, and the RTE question of whether this set-
ting is meaningful for evaluating RTE system per-
formance. The experimental results suggests that the
answer to both questions is ‘yes’, a significant find-
ing for both educators and RTE technologists going
forward.

The Pilot task, aimed at exploring notions of par-
tial entailment, so far not explored in the series of
RTE challenges, has proven to be an interesting,
though challenging exercise. The novelty of the
task, namely performing textual entailment not on a
pair of full texts, but between a text and a hypothesis
consisting of a pair of words, may have represented
a more complex task than expected for some textual
entailment engines. Despite this, the encouraging
results obtained by the team which carried out the
exercise has shown that this partial entailment task
is worthy of further investigation.
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