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Abstract
This paper presents the UNITOR system that
participated in the *SEM 2013 shared task on
Semantic Textual Similarity (STS). The task is
modeled as a Support Vector (SV) regression
problem, where a similarity scoring function
between text pairs is acquired from examples.
The proposed approach has been implemented
in a system that aims at providing high ap-
plicability and robustness, in order to reduce
the risk of over-fitting over a specific datasets.
Moreover, the approach does not require any
manually coded resource (e.g. WordNet), but
mainly exploits distributional analysis of un-
labeled corpora. A good level of accuracy is
achieved over the shared task: in the Typed
STS task the proposed system ranks in 1st and
2nd position.

1 Introduction

Semantic Textual Similarity (STS) measures the de-
gree of semantic equivalence between two phrases
or texts. An effective method to compute similarity
between sentences or semi-structured material has
many applications in Natural Language Processing
(Mihalcea et al., 2006) and related areas such as
Information Retrieval, improving the effectiveness
of semantic search engines (Sahami and Heilman,
2006), or databases, using text similarity in schema
matching to solve semantic heterogeneity (Islam and
Inkpen, 2008).

This paper describes the UNITOR system partic-
ipating in both tasks of the *SEM 2013 shared task
on Semantic Textual Similarity (STS), described in
(Agirre et al., 2013):
• the Core STS tasks: given two sentences, s1

and s2, participants are asked to provide a score

reflecting the corresponding text similarity. It is
the same task proposed in (Agirre et al., 2012).
• the Typed-similarity STS task: given two

semi-structured records t1 and t2, containing
several typed fields with textual values, partic-
ipants are asked to provide multiple similarity
scores: the types of similarity to be studied in-
clude location, author, people involved, time,
events or actions, subject and description.

In line with several participants of the STS 2012
challenge, such as (Banea et al., 2012; Croce et al.,
2012a; Šarić et al., 2012), STS is here modeled as
a Support Vector (SV) regression problem, where a
SV regressor learns the similarity function over text
pairs. The semantic relatedness between two sen-
tences is first modeled in an unsupervised fashion
by several similarity functions, each describing the
analogy between the two texts according to a spe-
cific semantic perspective. We aim at capturing sep-
arately syntactic and lexical equivalences between
sentences and exploiting either topical relatedness or
paradigmatic similarity between individual words.
Such information is then combined in a supervised
schema through a scoring function y = f(~x) over
individual measures from labeled data through SV
regression: y is the gold similarity score (provided
by human annotators), while ~x is the vector of the
different individual scores, provided by the chosen
similarity functions.

For the Typed STS task, given the specificity of
the involved information and the heterogeneity of
target scores, individual measures are not applied to
entire texts. Specific phrases are filtered according
to linguistic policies, e.g. words characterized by
specific Part-of-Speech (POS), such as nouns and
verbs, or Named Entity (NE) Category, i.e. men-
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tions to specific name classes, such as of a PER-
SON, LOCATION or DATE. The former allows to
focus the similarity functions over entities (nouns)
or actions (verbs), while the latter allows to focus on
some aspects connected with the targeted similarity
functions, such as person involved, location or time.

The proposed approach has been implemented in
a system that aims at providing high applicability
and robustness. This objective is pursued by adopt-
ing four similarity measures designed to avoid the
risk of over-fitting over each specific dataset. More-
over, the approach does not require any manually
coded resource (e.g. WordNet), but mainly exploits
distributional analysis of unlabeled corpora. Despite
of its simplicity, a good level of accuracy is achieved
over the 2013 STS challenge: in the Typed STS task
the proposed system ranks 1st and 2nd position (out
of 18); in the Core STS task, it ranks around the 37th

position (out of 90) and a simple refinement to our
model makes it 19th.

In the rest of the paper, in Section 2, the employed
similarity functions are described and the applica-
tion of SV regression is presented. Finally, Section
3 discusses results on the *SEM 2013 shared task.

2 Similarity functions, regression and
linguistic filtering

This section describes the approach behind the UN-
ITOR system. The basic similarity functions and
their combination via SV regressor are discussed in
Section 2.1, while the linguistic filters are presented
in Section 2.2.

2.1 STS functions

Each STS function depends on a variety of linguistic
aspects in data, e.g. syntactic or lexical information.
While their supervised combination can be derived
through SV regression, different unsupervised esti-
mators of STS exist.
Lexical Overlap. A basic similarity function is
modeled as the Lexical Overlap (LO) between sen-
tences. Given the sets Wa and Wb of words oc-
curring in two generic texts ta and tb, LO is esti-
mated as the Jaccard Similarity between the sets, i.e.
LO= |Wa∩Wb|

|Wa∪Wb| . In order to reduce data sparseness,
lemmatization is applied and each word is enriched
with its POS to avoid the confusion between words

from different grammatical classes.

Compositional Distributional Semantics. Other
similarity functions are obtained by accounting for
the syntactic composition of the lexical information
involved in the sentences. Basic lexical information
is obtained by a co-occurrence Word Space that is
built according to (Sahlgren, 2006; Croce and Pre-
vitali, 2010). Every word appearing in a sentence is
then projected in such space. A sentence can be thus
represented neglecting its syntactic structure, by ap-
plying an additive linear combination, i.e. the so-
called SUM operator. The similarity function be-
tween two sentences is then the cosine similarity be-
tween their corresponding vectors.

A second function is obtained by applying a Dis-
tributional Compositional Semantics operator, in
line with the approaches introduced in (Mitchell and
Lapata, 2010), and it is adopted to account for se-
mantic composition. In particular, the approach de-
scribed in (Croce et al., 2012c) has been applied.
It is based on space projection operations over ba-
sic geometric lexical representations: syntactic bi-
grams are projected in the so called Support Sub-
space (Annesi et al., 2012), aimed at emphasiz-
ing the semantic features shared by the compound
words. The aim is to model semantics of syntac-
tic bi-grams as projections in lexically-driven sub-
spaces. In order to extend this approach to handle
entire sentences, we need to convert them in syn-
tactic representations compatible with the compo-
sitional operators proposed. A dependency gram-
mar based formalism captures binary syntactic re-
lations between the words, expressed as nodes in
a dependency graph. Given a sentence, the parse
structure is acquired and different triples (w1, w2, r)
are generated, where w1 is the relation governor, w2

is the dependent and r is the grammatical type. In
(Croce et al., 2012c) a simple approach is defined,
and it is inspired by the notion of Soft Cardinal-
ity, (Jimenez et al., 2012). Given a triple set T =
{t1, . . . , tn} extracted from a sentence S and a sim-
ilarity sim(ti, tj), the Soft Cardinality is estimated
as |S|′sim u

∑|T |
ti

(
∑|T |

tj
sim(ti, tj)

p)−1, where pa-
rameter p controls the “softness” of the cardinality:
with p = 1 element similarities are unchanged while
higher value will tend to the Classical Cardinality
measure. Notice that differently from the previous
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usage of the Soft Cardinality notion, we did not ap-
ply it to sets of individual words, but to the sets of
dependencies (i.e. triples) derived from the two sen-
tences. The sim function here can be thus replaced
by any compositional operator among the ones dis-
cussed in (Annesi et al., 2012). Given two sen-
tences, higher Soft Cardinality values mean that the
elements in both sentences (i.e. triples) are different,
while the lower values mean that common triples are
identical or very similar, suggesting that sentences
contain the same kind of information. Given the sets
of triples A and B extracted from the two candidate
sentences, our approach estimates a syntactically re-
stricted soft cardinality operator, the Syntactic Soft
Cardinality (SSC) as SSC(A, B) = 2|A∩B|′

|A|′+|B|′ , as
a “soft approximation” of Dice’s coefficient calcu-
lated on both sets1.

capture::v

VBNROOTmarine::n

NNSPREP-BYmexico::n

NNPPREP-IN

lord::n

NNNSUBJdrug::n

NNNN

Figure 1: Lexical Centered Tree (LCT)

Convolution kernel-based similarity. The similar-
ity function is here the Smoothed Partial Tree Ker-
nel (SPTK) proposed in (Croce et al., 2011). SPTK
is a generalized formulation of a Convolution Ker-
nel function (Haussler, 1999), i.e. the Tree Kernel
(TK), by extending the similarity between tree struc-
tures with a function of node similarity. The main
characteristic of SPTK is its ability to measure the
similarity between syntactic tree structures, which
are partially similar and whose nodes can differ but
are semantically related. One of the most important
outcomes is that SPTK allows “embedding” exter-
nal lexical information in the kernel function only
through a similarity function among lexical nodes,
namely words. Moreover, SPTK only requires this
similarity to be a valid kernel itself. This means that
such lexical information can be derived from lexical
resources or it can be automatically acquired by a
Word Space. The SPTK is applied to a specific tree
representation that allowed to achieve state-of-the-

1Notice that, since the intersection |A ∩ B|′ tends to be too
strict, we approximate it from the union cardinality estimation
|A|′ + |B|′ − |A ∪B|′.

art results on several complex semantic tasks, such
as Question Classification (Croce et al., 2011) or
Verb Classification (Croce et al., 2012b): each sen-
tence is represented through the Lexical Centered
Tree (LCT), as shown in Figure 1 for the sentence
“Drug lord captured by Marines in Mexico”. It is de-
rived from the dependency parse tree: nodes reflect
lexemes and edges encode their syntactic dependen-
cies; then, we add to each lexical node two leftmost
children, encoding the grammatical function and the
POS-Tag respectively.
Combining STSs with SV Regression The similar-
ity functions described above provide scores captur-
ing different linguistic aspects and an effective way
to combine such information is made available by
Support Vector (SV) regression, described in (Smola
and Schölkopf, 2004). The idea is to learn a higher
level model by weighting scores according to spe-
cific needs implicit in training data. Given similar-
ity scores ~xi for the i-th sentence pair, the regressor
learns a function yi = f(~xi), where yi is the score
provided by human annotators. Moreover, since the
combination of kernel is still a kernel, we can ap-
ply polynomial and RBF kernels (Shawe-Taylor and
Cristianini, 2004) to the regressor.

2.2 Semantic constraints for the Typed STS

Typed STS insists on records, i.e. sequence of typed
textual fields, rather than on individual sentences.
Our aim is to model the typed task with the same
spirit as the core one, through a combination of
different linguistic evidences, which are modeled
through independent kernels. The overall similarity
model described in 2.1 has been thus applied also to
the typed task according to two main model changes:

• Semantic Modeling. Although SV regression
is still applied to model one similarity type,
each type depends on a subset of the multiple
evidences originating from individual fields:
one similarity type acts as a filter on the set of
fields, on which kernels will be then applied.

• Learning Constraints. The selected fields pro-
vide different evidences to the regression steps.
Correspondingly, each similarity type corre-
sponds to specific kernels and features for its
fields. These constraints are applied by select-
ing features and kernels for each field.
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dcTitle dcSubject dcDescription dcCreator dcDate dcSource

author - - PER ∗ - -
people inv. PER PER PER - - -
time DATE DATE DATE - ∗ -
location LOC LOC LOC - - -
event N , V , N ∪ V N , V , N ∪ V N , V , N ∪ V - - -
subject N , V , J , N ∪ J ∪ V N , V , J , N ∪ J ∪ V - - - -
description - - N , V , J , N ∪ J ∪ V - - -
general + + + ∗ ∗ ∗

Table 1: Filtering Schema adopted for the Typed STS task.

Notice how some kernels loose significance in the
typed STS task. Syntactic information is no useful
so that no tree kernel and compositional kernel is
applied here. Most of the fields are non-sentential2.
Moreover, not all morpho-syntactic information are
extracted as feature from some fields. Filters usu-
ally specify some syntactic categories or Named En-
tities (NEs): they are textual mentions to specific
real-world categories, such as of PERSONS (PER),
LOCATIONS (LOC) or DATES. They are detected
in a field and made available as feature to the cor-
responding kernel: this introduces a bias on typed
measures and emphasizes specific semantic aspects
(e.g. places LOC or persons PER, in location or au-
thor measures, respectively). For example, in the
sentence “The chemist R.S. Hudson began manufac-
turing soap in the back of his small shop in West
Bomich in 1837”, when POS tag filters are applied,
only verbs (V), nouns (N) or adjectives (J) can be
selected as features. This allows to focus on spe-
cific actions, e.g. the verb “manufacture”, entities,
e.g. nouns “soap” and “shop”, or some properties,
e.g. the adjective “small”. When Named Entity cat-
egories are used, a mention to a person like “R.S.
Hudson” or to a location, e.g. “West Bomich’, or
date, e.g. “1837”, can be useful to model the the
person involved, the location or time similarity mea-
sures, respectively.

The Semantic Modeling and the Learning Con-
straints system adopted to model the Typed STS
task are defined in Table 1. There rows are the
different target similarities, while columns indicate
document fields, such as dcTitle, dcSubject,
dcDescription, dcCreator, dcDate and

2The dcDescription is also made of multiple sen-
tences and it reduces the applicability of SPTK and SSC: parse
trees have no clear alignment.

dcSource, as described in the *SEM 2013 shared
task description. Each entry in the Table represents
the feature set for that fields, i.e. POS tags (i.e. V ,
N , J) or Named Entity classes. The “∗” symbol
corresponds to all features, i.e. no restriction is
applied to any POS tag or NE class. Finally, the
general similarity function makes use of every NE
class and POS tags adopted for that field in any
measure, as expressed by the special notation +, i.e.
“all of the above features”.

Every feature set denoted in the Table 1 sup-
ports the application of a lexical kernel, such as
the LO described in Section 2.1. When different
POS tags are requested (such as N and V ) mul-
tiple feature sets and kernels are made available.
The “-” symbol means that the source field is fully
neglected from the SV regression. As an exam-
ple, the SV regressor for the location similarity
has been acquired considering the fields dcTitle,
dcSubject, dcDescription. Only features used
for the kernel correspond to LOCATIONs (LOC). For
each of the three feature, the LO and SUM simi-
larity function has been applied, giving rise to an
input 6-dimensional feature space for the regressor.
Differently, in the subject similarity, nouns, adjec-
tives and verbs are the only features adopted from
the fields dcSubject, dcTitle, so that 8 feature
sets are used to model these fields, giving rise to a
16-dimensional feature space.

3 Results and discussion

This section describes results obtained in the *SEM
2013 shared task. The experimental setup of differ-
ent similarity functions is described in Section 3.1.
Results obtained over the Core STS task and Typed
STS task are described in Section 3.2 and 3.3.
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3.1 Experimental setup

In all experiments, sentences are processed with the
Stanford CoreNLP3 system, for Part-of-Speech tag-
ging, lemmatization, named entity recognition4 and
dependency parsing.

In order to estimate the basic lexical similarity
function employed in the SUM, SSC and SPTK
operators, a co-occurrence Word Space is acquired
through the distributional analysis of the UkWaC
corpus (Baroni et al., 2009), a Web document col-
lection made of about 2 billion tokens. The same
setting of (Croce et al., 2012a) has been adopted
for the space acquisition. The same setup described
in (Croce et al., 2012c) is applied to estimate the
SSC function. The similarity between pairs of syn-
tactically restricted word compound is evaluated
through a Symmetric model: it selects the best 200
dimensions of the space, selected by maximizing the
component-wise product of each compound as in
(Annesi et al., 2012), and combines the similarity
scores measured in each couple subspace with the
product function. The similarity score in each sub-
space is obtained by summing the cosine similarity
of the corresponding projected words. The “soft car-
dinality” is estimated with the parameter p = 2.

The estimation of the semantically Smoothed Par-
tial Tree Kernel (SPTK) is made available by an ex-
tended version of SVM-LightTK software5 (Mos-
chitti, 2006) implementing the smooth matching
between tree nodes. Similarity between lexical
nodes is estimated as the cosine similarity in the
co-occurrence Word Space described above, as in
(Croce et al., 2011). Finally, SVM-LightTK is em-
ployed for the SV regression learning to combine
specific similarity functions.

3.2 Results over the Core STS

In the Core STS task, the resulting text similarity
score is measured by the regressor: each sentence
pair from all datasets is modeled according to a 13
dimensional feature space derived from the different
functions introduced in Section 2.1, as follows.

The first 5 dimensions are derived by applying
3
http://nlp.stanford.edu/software/corenlp.shtml

4The TIME and DURATION classes are collapsed with
DATE, while the PERSON and LOCATION classes are consid-
ered without any modification.

5
http://disi.unitn.it/moschitti/Tree-Kernel.htm

Run1 Run2 Run3 Run∗1
headlines .635 (50) .651 (39) .603 (58) .671 (30)
OnWN .574 (33) .561 (36) .549 (40) .637 (25)
FNWN .352 (35) .358 (32) .327 (44) .459 (07)
SMT .328 (39) .310 (49) .319 (44) .348 (21)
Mean .494 (37) .490 (42) .472 (52) .537 (19)

Table 2: Results over the Core STS task

the LO operator over lemmatized words in the noun,
verb, adjective and adverb POS categories: 4 ker-
nels look at individual categories, while a fifth ker-
nel insists on the union of all POS. A second set of
5 dimensions is derived by the same application of
the SUM operator to the same syntactic selection of
features. The SPTK is then applied to estimate the
similarity between the LCT structures derived from
the dependency parse trees of sentences. Then, the
SPTK is applied to derive an additional score with-
out considering any specific similarity function be-
tween lexical nodes; in this setting, the SPTK can be
considered as a traditional Partial Tree Kernel (Mos-
chitti, 2006), in order to capture a more strict syn-
tactical similarity between texts. The last score is
generated by applying the SSC operator.

We participated in the *SEM challenge with three
different runs. The main difference between each
run is the dataset employed in the training phase
and the employed kernel within the regressor. With-
out any specific information about the test datasets,
a strategy to prevent the regressor to over-fit train-
ing material has been applied. We decided to use
a training dataset that achieved the best results over
datasets radically different from the training material
in the STS challenge of Semeval 2012. In particular,
for the FNWN and OnWN datasets, we arbitrarily
selected the training material achieving best results
over the 2012 surprise.OnWN; for the headlines and
SMT datasets we maximized performance training
over surprise.SMTnews. In Run1 the SVM regres-
sor is trained using dataset combinations providing
best results according to the above criteria: MSR-
par, MSRvid, SMTeuroparl and surprise.OnWN are
employed against FNWN and OnWN; MSRpar,
SMTeuroparl and surprise.SMTnews are employed
against headline and SMT. A linear kernel is ap-
plied when training the regressor. In Run2, differ-
ently from the previous one, the SVM regressor is
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rank general author people inv. time location event subject description mean
Run1 1 .7981 .8158 .6922 .7471 .7723 .6835 .7875 .7996 .7620
Run2 2 .7564 .8076 .6758 .7090 .7351 .6623 .7520 .7745 .7341

Table 3: Results over the Typed STS task

trained using all examples from the training datasets.
A linear kernel is applied when training the regres-
sor. Finally, in Run3 the same training dataset selec-
tion schema of Run1 is applied and a gaussian kernel
is employed in the regressor.

Table 2 reports the general outcome for the UN-
ITOR systems in term of Pearson Correlation. The
best system, based on the linear kernel, ranks around
the 35th position (out of 90 systems), that reflects
the mean rank of all the systems in the ranking of
the different datasets. The gaussian kernel, em-
ployed for the Run3 does not provide any contri-
bution, as it ranks 50th. We think that the main
reason of these results is due to the intrinsic dif-
ferences between training and testing datasets that
have been heuristically coupled. This is first mo-
tivated by lower rank achieved by Run2. More-
over, it is in line with the experimental findings of
(Croce et al., 2012a), where a performance drop is
shown when the regressor is trained over data that
is not constrained over the corresponding source.
In Run∗1 we thus optimized the system by manu-
ally selecting the training material that does provides
best performance on the test dataset: MSRvid, SM-
Teuroparl and surprise.OnWN are employed against
OnWN; surprise.OnWN against FNWN, SMTeu-
roparl against headlines; SMTeuroparl and sur-
prise.SMTnews against SMT. A linear kernel within
the regressor allow to reach the 19th position, even
reducing the complexity of the representation to a
five dimensional feature space: LO and SUM with-
out any specific filter, SPTK, PTK and SSC.

3.3 Results over the Typed STS

SV regression has been also applied to the Typed
STS task through seven type-specific regressors plus
a general one. Each SV regressor insists on the LO
and SUM kernel as applied to the features in Table
1. Notice that it was mainly due to the lack of rich
syntactic structures in almost all fields.

As described in Section 2.2, a specific modeling
strategy has been applied to derive the feature space

of each target similarity. For example, the regres-
sor associated with the event similarity score is fed
with 18 scores. Each of the 3 fields, , i.e. dcTitle,
dcSubject and dcDescription, provides the 2
kernels (LO and SUM) with 3 feature sets (i.e. N ,
V and N ∪ V ). In particular, the general simi-
larity function considers all extracted features for
each field, giving rise to a space of 51 dimensions.
We participated in the task with two different runs,
whose main difference is the adopted kernel within
the SV regressor. In Run1, a linear kernel is used,
while in Run2 a RBF kernel is applied.

Table 3 reports the general outcome for the UN-
ITOR system. The adopted semantic modeling, as
well as the selection of the proper information, e.g.
the proper named entity, allows the system to rank
in the 1st and 2nd positions (out of 18 systems). The
proposed selection schema in Table 1 is very effec-
tive, as confirmed by the results for almost all typed
similarity scores. Again, the RBF kernel does not
improve result over the linear kernel. The impact
of the proposed approach can be noticed for very
specific scores, such as time and location, especially
for text pairs where structured information is absent,
such as in the dcDate field. Moreover, the regres-
sor is not affected by the differences between train-
ing and test dataset as for the previous Core STS
task. A deep result analysis showed that some simi-
larity scores are not correctly estimated within pairs
showing partial similarities. For example, the events
or actions typed similarity is overestimated for the
texts pairs “The Octagon and Pavilions, Pavilion
Garden, Buxton, c 1875” and “The Beatles, The Oc-
tagon, Pavillion Gardens, St John’s Road, Buxton,
1963” because they mention the same location (i.e.
“Pavillion Gardens”).
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Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
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