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Abstract

We present a simple, two-steps supervised
strategy for the identification and classifica-
tion of thematic roles in natural language
texts. We employ no external source of in-
formation but automatic parse trees of the in-
put sentences. We use a few attribute-value
features and tree kernel functions applied to
specialized structured features. The result-
ing system has an F1 of 75.44 on the Se-
mEval2007 closed task on semantic role la-
beling.

1 Introduction

In this paper we present a system for the labeling
of semantic roles that produces VerbNet (Kipper et
al., 2000) like annotations of free text sentences us-
ing only full syntactic parses of the input sentences.
The labeling process is modeled as a cascade of two
distinct classification steps: (1) boundary detection
(BD), in which the word sequences that encode a
thematic role for a given predicate are recognized,
and (2) role classification (RC), in which the type
of thematic role with respect to the predicate is as-
signed. After role classification, a set of simple
heuristics are applied in order to ensure that only
well formed annotations are output.

We designed our system on a per-predicate basis,
training one boundary classifier and a battery of role
classifiers for each predicate word. We clustered all
the senses of the same verb together and ended up
with 50 distinct boundary classifiers (one for each
target predicate word) and 619 role classifiers to rec-
ognize the 47 distinct role labels that appear in the
training set.

The remainder of this paper is structured as fol-
lows: Section 2 describes in some detail the archi-

tecture of our labeling system; Section 3 describes
the features that we use to represent the classifier
examples; Section 4 describes the experimental set-
ting and reports the accuracy of the system on the
SemEval2007 semantic role labeling closed task; fi-
nally, Section 5 discusses the results and presents
our conclusions.

2 System Description

Given a target predicate word in a natural language
sentence, a SRL system is meant to correctly iden-
tify all the arguments of the predicate. This problem
is usually divided in two sub-tasks: (a) the detection
of the boundaries (i. e. the word span) of each argu-
ment and (b) the classification of the argument type,
e.g. Arg0 or ArgM in PropBank orAgentandGoal
in FrameNet or VerbNet.

The standard approach to learn both the detection
and the classification of predicate arguments is sum-
marized by the following steps:

1 Given a sentence from thetraining-set, gener-
ate a full syntactic parse-tree;

2 let P andA be the set of predicates and the
set of parse-tree nodes (i.e. the potential argu-
ments), respectively;

3 for each pair〈p, a〉 ∈ P ×A:

3.1 extract the feature representation set,Fp,a;

3.2 if the sub-tree rooted ina covers exactly the
words of one argument ofp, put Fp,a in T+

(positive examples), otherwise put it inT−

(negative examples).

For instance, in Figure 1.a, for each combination
of the predicateapprovewith any other tree nodea
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that does not overlap with the predicate, a classifier
exampleFapprove,a is generated. Ifa exactly covers
one of the predicate arguments (in this case: ”The
charter”, ”by the EC Commission” or ”on Sept. 21”)
it is regarded as a positive instance, otherwise it will
be a negative one, e. g.Fapprove,(NN charter).

TheT+ andT− sets are used to train the bound-
ary classifier. To train the role multi-class classifier,
T+ can be reorganized as positiveT+

argi
and nega-

tive T−argi
examples for each argumenti. In this way,

an individual ONE-vs-ALL classifier for each argu-
menti can be trained. We adopted this solution, ac-
cording to (Pradhan et al., 2005), since it is simple
and effective. In the classification phase, given an
unseen sentence, all itsFp,a are generated and clas-
sified by each individual role classifier. The role la-
bel associated with the maximum among the scores
provided by the individual classifiers is eventually
selected.

To make the annotations consistent with the un-
derlying linguistic model, we employ a few simple
heuristics to resolve the overlap situations that may
occur, e. g. both “charter” and “the charter” in Figure
1 may be assigned a role:

• if more than two nodes are involved, i. e. a node
d and two or more of its descendantsni are
classified as arguments, then assume thatd is
not an argument. This choice is justified by pre-
vious studies (Moschitti et al., 2006b) showing
that the accuracy of classification is higher for
lower nodes;

• if only two nodes are involved, i. e. they dom-
inate each other, then keep the one with the
highest classification score.

3 Features for Semantic Role Labeling

We explicitly represent as attribute-value pairs the
following features of eachFp,a pair:

• Phrase Type, Predicate Word, Head Word, Po-
sitionandVoiceas defined in (Gildea and Juras-
fky, 2002);

• Partial Path, No Direction Path, Head Word
POS, First and Last Word/POS in Constituent
andSubCategorizationas proposed in (Pradhan
et al., 2005);
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Figure 1: A sentence parse tree (a) and two example ASTm
1

structures relative to the predicateapprove(b).

Set Props T T
+

T
−

Train 15,838 793,104 45,157 747,947
Dev 1,606 75,302 4,291 71,011

Train - Dev 14,232 717,802 40,866 676,936

Table 1: Composition of the dataset in terms of: number of
annotations (Props); number of candidate argument nodes (T );
positive (T+) and negative (T−) boundary classifier examples.

• Syntactic Frameas designed in (Xue and
Palmer, 2004).

We also employ structured features derived by the
full parses in an attempt to capture relevant aspects
that may not be emphasized by the explicit feature
representation. (Moschitti et al., 2006a) and (Mos-
chitti et al., 2006b) defined several classes of struc-
tured features that were successfully employed with
tree kernels for the different stages of an SRL pro-
cess. Figure 1 shows an example of the ASTm

1 struc-
tures that we used for both the boundary detection
and the role classification stages.

4 Experiments

In this section we discuss the setup and the results
of the experiments carried out on the dataset of the
SemEval2007 closed task on SRL.
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Task Kernel(s) Precision Recall Fβ=1

BD poly 94.34% 71.26% 81.19
poly + TK 92.89% 76.09% 83.65

BD + RC
poly 88.72% 68.76% 77.47

poly + TK 86.60% 72.40% 78.86

Table 2:SRL accuracy on the development test for the bound-
ary detection (BD) and the complete SRL task (BD+RC) using
the polynomial kernel alone (poly) or combined with a tree ker-
nel function (poly + TK).

4.1 Setup

The training set comprises 15,8381 training annota-
tions organized on a per-verb basis. In order to build
a development set (Dev), we sampled about one
tenth, i. e. 1,606 annotations, of the original train-
ing set. For the final evaluation on the test set (Test),
consisting of 3,094 annotations, we trained our clas-
sifiers on the whole training data. Statistics on the
dataset composition are shown in Table 1.

The evaluations were carried out with the SVM-
Light-TK2 software (Moschitti, 2004) which ex-
tends the SVM-Light package (Joachims, 1999)
with tree kernel functions. We used the default
polynomial kernel (degree=3) for the linear features
and a SubSet Tree (SST) kernel (Collins and Duffy,
2002) for the comparison of ASTm1 structured fea-
tures. The kernels are normalized and summed by
assigning a weight of 0.3 to the TK contribution.

Training all the 50 boundary classifiers and the
619 role classifiers on the whole dataset took about
4 hours on a 64 bits machine (2.2GHz, 1GB RAM)3.

4.2 Evaluation

All the evaluations were carried out using
the CoNLL2005 evaluator tool available at
http://www.lsi.upc.es/∼srlconll/soft.html.

Table 2 shows the aggregate results on boundary
detection (BD) and the complete SRL task (BD+RC)
on the development set using the polynomial kernel
alone (poly) or in conjunction with the tree kernels
and structured features (poly+TK). For both tasks,
tree kernel functions do trigger automatic feature se-

1A bunch of unaligned annotations were removed from the
dataset.

2
http://ai-nlp.info.uniroma2.it/moschitti/

3In order to have a faster development cycle, we only used
60k training examples to train the boundary classifier of theverb
say. The accuracy on this relation is still very high, as we mea-
sured an overall F1 of 87.18 on the development set and of 85.13
on the test set.

Role #TI Precision Recall Fβ=1

Ov(BD)
6931

87.09% 72.96% 79.40
Ov(BD+RC) 81.58% 70.16% 75.44
ARG2 4 100.00% 25.00% 40.00
ARG3 17 61.11% 64.71% 62.86
ARG4 4 0.00% 0.00% 0.00
ARGM-ADV 188 55.14% 31.38% 40.00
ARGM-CAU 13 50.00% 23.08% 31.58
ARGM-DIR 4 100.00% 25.00% 40.00
ARGM-EXT 3 0.00% 0.00% 0.00
ARGM-LOC 151 51.66% 51.66% 51.66
ARGM-MNR 85 41.94% 15.29% 22.41
ARGM-PNC 28 38.46% 17.86% 24.39
ARGM-PRD 9 83.33% 55.56% 66.67
ARGM-REC 1 0.00% 0.00% 0.00
ARGM-TMP 386 55.65% 35.75% 43.53
Actor1 12 85.71% 50.00% 63.16
Actor2 1 100.00% 100.00% 100.00
Agent 2551 91.38% 77.34% 83.78
Asset 21 42.42% 66.67% 51.85
Attribute 17 60.00% 70.59% 64.86
Beneficiary 24 65.00% 54.17% 59.09
Cause 48 75.56% 70.83% 73.12
Experiencer 132 86.49% 72.73% 79.01
Location 12 83.33% 41.67% 55.56
Material 7 100.00% 14.29% 25.00
Patient 37 76.67% 62.16% 68.66
Patient1 20 72.73% 40.00% 51.61
Predicate 181 63.75% 56.35% 59.82
Product 106 70.79% 59.43% 64.62
R-ARGM-LOC 2 0.00% 0.00% 0.00
R-ARGM-MNR 2 0.00% 0.00% 0.00
R-ARGM-TMP 4 0.00% 0.00% 0.00
R-Agent 74 70.15% 63.51% 66.67
R-Experiencer 5 100.00% 20.00% 33.33
R-Patient 2 0.00% 0.00% 0.00
R-Predicate 1 0.00% 0.00% 0.00
R-Product 2 0.00% 0.00% 0.00
R-Recipient 8 100.00% 87.50% 93.33
R-Theme 7 75.00% 42.86% 54.55
R-Theme1 7 100.00% 85.71% 92.31
R-Theme2 1 50.00% 100.00% 66.67
R-Topic 14 66.67% 42.86% 52.17
Recipient 48 75.51% 77.08% 76.29
Source 25 65.22% 60.00% 62.50
Stimulus 21 33.33% 19.05% 24.24
Theme 650 79.22% 68.62% 73.54
Theme1 69 77.42% 69.57% 73.28
Theme2 60 74.55% 68.33% 71.30
Topic 1867 84.26% 82.27% 83.25

Table 3:Evaluation of the semantic role labeling accuracy on
the SemEval2007 - Task 17 test set using the poly + TK kernel.
Column#TI reports the number of instances of each role label
in the test set. RowsOv(BD)andOv(BD + RC)show the overall
accuracy on the boundary detection and the complete SRL task,
respectively.

lection and improve the polynomial kernel by 2.46
and 1.39 F1 points, respectively.

The SRL accuracy for each one of the 47 dis-
tinct role labels is shown in Table 3. Column 2 lists
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the number of instances of each role in the test set.
Many roles have very few positive examples both in
the training and the test sets, and therefore have little
or no impact on the overall accuracy which is domi-
nated by the few roles which are very frequent, such
asTheme, Agent, TopicandARGM-TMPwhich ac-
count for almost 80% of all the test roles.

5 Final Remarks

In this paper we presented a system that employs
tree kernels and a basic set of flat features for the
classification of thematic roles.

We adopted a very simple approach that is meant
to be as general and fast as possible. The issue
of generality is addressed by training the bound-
ary and role classifiers on a per-predicate basis and
by employing tree kernel and structured features in
the learning algorithm. The resulting architecture
can indeed be used to learn the classification of
roles of non-verbal predicates as well, and the au-
tomatic feature selection triggered by the tree kernel
should compensate for the lack ofad-hoc, well es-
tablished explicit features for some classes of non-
verbal predicates, e. g. adverbs or prepositions.

Splitting the learning problem also has the clear
advantage of noticeably improving the efficiency of
the classifiers, thus reducing training and classifica-
tion time. On the other hand, this split results in
some classifiers having too few training instances
and therefore being very inaccurate. This is espe-
cially true for the boundary classifiers, which con-
versely need to be very accurate in order to posi-
tively support the following stages of the SRL pro-
cess. The solution of a monolithic boundary classi-
fier that we previously employed (Moschitti et al.,
2006b) is noticeably more accurate though much
less efficient, especially for training. Indeed, after
the SemEval2007 evaluation period was over, we
ran another experiment using a monolithic boundary
classifier. On the test set, we measured F1 values of
82.09 vs 79.40 and 77.17 vs 75.44 for the boundary
detection and the complete SRL tasks, respectively.

Although it was provided as part of both the train-
ing and test data, we chose not to use the verb sense
information. This choice is motivated by our in-
tention to depend on as less external resources as
possible in order to be able to port our SRL system

to other linguistic models and languages, for which
such resources may not exist. Still, identifying the
predicate sense is a key issue especially for role clas-
sification, as the argument structure of a predicate is
largely determined by its sense. In the near feature
we plan to use larger structured features, i. e. span-
ning all the potential arguments of a predicate, to
improve the accuracy of our role classifiers.
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