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Abstract

Optimal ensembling (OE) is a word sense 
disambiguation  (WSD)  method  using 
word-specific training factors (average pos-
itive vs negative training per sense,  posex 
and negex) to predict best system (classifier 
algorithm / applicable feature set) for given 
target  word.  Our  official  entry  (OE1)  in 
Senseval-4  Task  17  (coarse-grained  En-
glish lexical sample task) contained many 
design flaws and thus  failed to  show the 
whole  potential  of  the  method,  finishing 
-4.9% behind top system (+0.5 gain over 
best  base  system).  A fixed system (OE2) 
finished  only  -3.4%  behind  (+2.0%  net 
gain).  All  our  systems  were  'closed',  i.e. 
used the official training data only (average 
56 training examples per each sense).  We 
also show that the official evaluation mea-
sure  tends  to  favor  systems  that  do  well 
with high-trained words. 

1 Introduction

Optimal  ensembling  is  a  novel  method  for 
combining  WSD  systems  and  obtaining  higher 
classification  accuracy  (presented  more  fully  in 
Saarikoski  et  al.  2007).  The  essential  difference 
from other ensembling methods (such as various 
types  of  voting  ensembles  and  cross-validation 
based best machine selection) is that best machine 
is  predicted  using  factors  calculated  from words 
(e.g. number of senses) and their training data (e.g. 
number  of  training  examples  per  sense).  The 
method  is  loosely  based  on  findings  of  system 
performance  differences  in  both  WSD  (different 
machines by Yarowsky et al.,  2002 and different 
feature  sets  by  Mihalcea,  2002)  and  other 

classification  tasks  such  as  text  categorization 
(Forman et al., 2004, Bay et al., 2002).

2 Method

We  first  describe  in  detail  the  two  selection 
routines in OE as deployed in this experiment.

2.1 Machine (Mach) Selection

We  selected  support  vector  machine  (SVM) 
(Vapnik, 1995) and Naive Bayes (NB) (John et al. 
1995)  as  classifiers  for  our  base  systems  to  be 
optimally ensembled. This was mainly because of 
their  attested  strength  at  earlier  Senseval 
evaluations  (Edmonds et al. 2002, Mihalcea et al. 
2004)  and mutual complementarity discovered by 
us  (Saarikoski  et  al.,  2007).  Original  batch  of 
candidate  machines  that  we  tested  for  OE using 
Senseval-2  dataset  included  the  following 
classifiers:  Decision  Stump,  Decision  Tree  with 
various  values  of  confidence (c)  parameter  0.05, 
0.15,  0.25  and  instance-based  classifier  with  k 
values  ranging  from 1..15  at  intervals  of  two  1. 
After cross-validation runs against current dataset 
(see below), however, SVM and NB proved again 
to be overall strongest regardless of training input, 
so we built OE around those two classifiers.

2.2 Feature Set (Fset) Selection

We  extracted  three  contextual  feature  sets  from 
training data for all words to train the machines: 1-
grams  (1g)  and  sequential  2-grams  both  from 
whole instance (2g) as well as part-of-speech tags 
from local  1-word window around and including 
target word (pos3). We also used three 'multifsets' 
(1g-2g, 1g-pos3, 2g-pos3).

1We used Weka implementations (J48, Ibk, SMO, Decision 
Stump, NaiveBayes) of these algorithms (Witten, 2005).
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2.3 Best-System Prediction Factors

In Figure 1, we quote prediction factors used for 
predicting best system for some test words. 

Figure 1. Prediction factors and OE1 accuracy for 
some test words in Senseval-4 Task 17 (sorted by 
OE1 accuracy at the word).

3 System Descriptions

We designed and ran two systems: 
OE1 (official): For OE1, we used two machines 

in  three  configurations  (SVMc=0.1,  SVMc=1.0, 
NB) trained on 3 feature sets, totalling at 3*3 = 9 
base  systems  (number  of  machines  *  number  of 
fsets for each). Selection of c(omplexity) parameter 
for  SVM  was  based  on  previous  knowledge  of 
performance differences of c=0.1 and c=1.0 based 
systems  as  reported  in  Saarikoski  et  al.  (2007). 
This is based on accounts by e.g.  Vapnik (1995) 
that  lower  c  value makes  the classifier generate a 
more  complex  training  model  which  is  more 
suitable  for  tougher  words  (lower  posex,  higher 
negex).

We  learned  the  best-system  predictor  model 
using  performance  data  from  Senseval-4  10CV 

runs only. For 70 words where two fsets performed 
within +/-5% of each other, we added the next best 
fset into a 'multifset'. 

OE2 (unofficial): This system incorporated the 
following fixes to OE1 (see Discussion below for 
motivations for these fixes): First, we significantly 
reduced the base system grain. We only used two 
machines strongest in 10CV runs (SVMc=0.1 and 
NB)  and  these  machines  were  trained  with  fsets 
found best for those machines in 10CV runs: pos3 
for  both  machines,  SVMc=0.1  was  additionally 
trained with 1g and NB with 2g respectively. This 
resulted in a 2 * 2 = 4-system ensemble. Best fset 
was still selected on the basis of 10CV runs. 

As training data for the best-machine predictor, 
we  used  the  performance  profiles  of  about  50 
systems (both our own and Senseval systems) run 
mainly against Senseval-2 English lexical sample 
dataset.  We  decided  to  use  only  two  prediction 
factors (posex and negex,  see Figure 1) to predict 
best  machine  for  each  word.  This  was  because 
previously  we  had  found  these  two  machines 
(SVM and NB) particularly differing with regard 
to  the  combination or cross-section of  these  two 
factors.  (For  illustration  of  the  predictor  model 
with  posex  and  negex  as  the  two  axes  and 
discussion of other possible factors, see Saarikoski 
et. al, 2007. As to reasons for such a performance 
difference  between  any  two  classification 
machines, see also Yarowsky et al., 2002). 

Difference  in  the  best-system  predictions  of 
these two systems (OE1 vs OE2) was substantial: 
33  words  fully  changed  machine  (from SVM to 
NB or vice versa), 40 words partially changed the 
system (change of SVM configuration or change of 
fset from multifset to single fset). Only 27 words 
kept the same machine in same configuration and 
fset. We  can  therefore  call  OE2  a  substantial 
revision of OE1 (in effect a  rather total  departure 
from CV-based selection toward actual word factor 
based optimal ensembling). 

In  both  OEs,  the  mach-fset  combination 
predicted to be the best for a word was run against 
the  test  instances  of  that  word  2.  In  case  of 
'multifsets', each single fset had equal probability-
based vote in disambiguating the test instances of 
2 SyntaLex  code  (Mohammad  and  Pedersen,  2002, 
http://www.d.umn.edu/~tpederse/syntalex.html)  was  used  for 
extracting  n-grams  and  carrying  out  disambiguation.  Brill 
Tagger (Brill, 1995) was used for extracting PoS tags. Weka 
library of classifiers (Witten, 2005) was used to run cross-vali-
dations and best-system predictors.
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that  word.  As  usual,  the  sense  with  highest 
probability  was  chosen  as  answer  for  each 
instance.

4 Test Results

Here are the results:

system name gross gain net gain accuracy3

OE1 +3.0 (+7.8) +0.5 (+4.4) 83.8 

OE2 +2.3 (+7.0) +2.0 (+5.8) 85.3

Table 1.  Results of OE systems. In columns 2-3, 
macro  (micro)  averaged  per-word  gross  and  net 
gains calculated from actual  test  runs (not 10CV 
runs) are  reported.  Column  4 reports  the  official 
macro-averaged  accuracy  for  all  words  of  our 
systems. (Differences of the respective benefits of 
these  evaluation  measures  are  outlined  in 
Discussion below and more generally in Sebastiani 
(2002).  Terms 'gross (or  potential)  gain'  and 'net 
(realized)  gain'  are  defined  in  Saarikoski  et  al. 
(2007).). 

5 Discussion

We now turn to analyze these results. We can first 
note  that  results  are  largely  in  line  with  our 
previous  findings  with  OEs  and  other  types  of 
ensembles  (see  Saarikoski  et  al.,  2007).  In  what 
follows we attempt to account for the results: why 
OE1 finished as much behind top system and also 
why OE2 performed that  much better  than OE1. 
This first 'known issue' concerns both OEs:

(1) Base system accuracy was low because we 
did  not  use  strong  fsets: Our  official  entry 
finished at 7th place in the evaluation, -4.9% behind 
top system while the inofficial entry would have 
finished in 5th place (-3.4% behind).  We attribute 
this  mainly  to  the  absence  of  more  advanced 
feature  sets.  For  example,  we  did  not  employ 
syntactic  parse  features  (such  as  predicate-object 
pairs) from which Yarowsky et al. (2002) showed 
+2% gain.  We would  also  naturally  lose  to  any 
systems using extra training or lexical knowledge 
(e.g.  2nd place  finisher  UBC-ALM,  at  86.9 
accuracy, used both semantic domains and SemCor 
corpus).  But  without  knowing  how  much  extra 
knowledge  such  'open'  systems  used,  we  cannot 
say by how much.
3 Best base system in both OEs was NB-pos3 (83.3).

Specifically in OE1 entry, there were two basic 
design flaws which we address next.

(2) Base system grain was too high to produce 
enough net gain: The base  system grain (18 base 
systems) we attempted to predict in OE1 was far 
too  great  since  prediction  accuracy  rapidly 
decreases  when  adding  new  systems.  The  grain 
was also unnecessarily great, since the 4-grain we 
used for OE2 could harvest most of the gross gain 
(cf. gross gains of the two systems in Table 1). 

(3) Using 10CV runs uncritically for best fset 
selection: This  was  ill-advised  because  of  many 
reasons. First, selecting best fset for WSD based on 
CV runs is known to be a difficult task (Mihalcea, 
2002). Prediction accuracy for the three fsets we 
used for OE1 was 0.74, i.e. for 26 words out of 100 
best  fset  was  mispredicted.  About  half  of  these 
were  cases  where  machine  was  mispredicted  as 
well  and average loss tended to be even greater. 
Second,  multifsets could not be 10CV-tested with 
the  Weka  machine-learning  toolkit  we  used 
(Witten,  2005).  Our  custom  resolution  to  this 
multifset selection task was to select best and next 
best  fset.  This turned out  to produce many false 
predictions, some of which were quite substantial 
(> 10% loss to best fset). For instance, at system.n 
we lost  > 30% from selecting  NB-2g instead  of 
actual  best  system  (NB-pos3).  Third,  only  after 
submitting the entry, we also realized two strongest 
fsets  are not necessarily complementary (i.e.  that 
each would contain relevant clues for different test 
instances)  and  that  learning  machines  might  be 
confused  (i.e.  could  not  effectively  carry  out 
feature selection and weighting) by the profusion 
and heterogeneity of features in multifsets. In fact, 
we found that omitting multifsets from  OE1 (i.e. 
having  3 single fsets with the same 3 machines = 
6-system OE) would have worked slightly better 
than OE1 (3*3=9): the accuracy rose from 83.8 to 
84.1. Fourth, it was found previously (Saarikoski et 
al.,  2007)  that  CV-based  best  system  prediction 
scheme  tends  to  produce  less  gain  than  OE (cf. 
accuracy of OE1 < OE2 in Table 1).

The  remaining  argument  discusses  Senseval 
evaluation measure (applies to all OE systems):

(4) Official evaluation measure is particularly 
unfavorable  to  OE  systems:  Senseval  scoring 
scheme4 is calculated as the  number of  instances 
disambiguated correctly divided by number of all 
4 Documentation for scoring scheme can be found at: 
http://www.cse.unt.edu/~rada/senseval/senseval3/scoring/
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instances  in  test  dataset.  This  measure  (termed 
'macro-averaged accuracy' in Sebastiani,  2002) is 
known to upweigh classification cases (words) that 
have more test instances.  While we recognize the 
usefulness of this measure, we calculated in Table 
1 the alternative measure (termed 'micro-averaged 
accuracy' in Sebastiani, 2002). It  differs from the 
former  (defined by e.g.  Sebastiani,  2002) in that 
all  words  are  treated  equally (i.e.  'normalized') 
regardless of number of test instances. In addition, 
it has been Senseval practice (Edmonds et al. 2002, 
Mihalcea et al. 2004) that words with great number 
of  test  instances  tend  to  have  an  equally  great 
number  of  training  instances.  At  such  'easier' 
words,  system  performance  differences  (sysdiff) 
occur much less and since OE is based on locating 
and making use of sysdiff, it cannot perform well. 
Therefore,  it  is  liable  to  lose  to  single-machine 
systems with inherently stronger fsets (see point 1 
above).  For these reasons, the measures are very 
different with the latter revealing the OE potential 
more appropriately.

In fact, we estimate that only 40 out of the 100 
test words in this dataset show any kind of sysdiff 
between most participating systems (> 5% macro-
averaged sysdiff per word). Furthermore, only 20 
of  them  only  are  likely  to  produce  substantial 
sysdiff (> 10%).  For example, in our 10CV runs, 
we got 0.99 accuracies by all base systems for the 
very highly trained word say.v with posex > 500. If 
there was a participating system that achieved 1.00 
in such a single high-train word (say.v), the huge 
number  of  test  instances  of  that  word  raised  its 
macro-averaged  accuracy,  winning  considerably 
over systems performing well with low-train words 
(e.g.  propose.v with posex=11 and negex=24 and 
grain=3 where  both  OE1 and OE2 performed at 
0.93  accuracy  owing  to  correct  best  system 
choice). In other words, the official measure does 
not account for the finding (Yarowsky et al., 2002 
and  Saarikoski  et  al.,  2007)  that  systems 
considerably  differ  precisely  in  terms  of  their 
ability  to  disambiguate  high/low-train  words 
(measured  by  posex/negex  factors).  Therefore,  it 
can be said that the official measure fails to treat 
all systems equally.

6 Conclusion and Further Work

Since OE is a generic method that can be applied 
to any base systems, we believe it has a place in 

WSD  methodology.  With  remaining  open 
questions  resolved  (optimizing  system  grain  to 
feasible  prediction  accuracy,  discovering  more 
predictive  factors  for  both  machines  and  fsets, 
understanding  how  the  evaluation  measures 
complete each other),  it  is  probable  that  OE can 
improve  current  state  of  the  art  WSD  systems 
(especially  if  provided  with  stronger  while  still 
complementary base systems). Though OE systems 
run the risk that OE may in fact be inferior to its 
best base system, we would like to note that thus 
far no OE of ours (around 10-15 different tests) has 
failed to produce net gain. 
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