
Proceedings of Recent Advances in Natural Language Processing, pages 526–533,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_062

526

Classification of Micro-Texts Using Sub-Word Embeddings

Mihir Joshi
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

mihir@dal.ca

Nur Zincir-Heywood
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada
zincir@cs.dal.ca

Abstract

Extracting features and writing styles from
short text messages is always a challenge.
Short messages, like tweets, do not have
enough data to perform statistical author-
ship attribution. Besides, the vocabulary
used in these texts is sometimes impro-
vised or misspelled. Therefore, in this
paper, we propose combining four fea-
ture extraction techniques namely charac-
ter n-grams, word n-grams, Flexible Pat-
terns and a new sub-word embedding us-
ing the skip-gram model. Our system uses
a Multi-Layer Perceptron to utilize these
features from tweets to analyze short text
messages. This proposed system achieves
85% accuracy, which is a considerable im-
provement over previous systems.

1 Introduction

One of the most challenging problems in text anal-
ysis is identifying the author of a micro-text, i.e.
short text messages. Most of the data created on
social media applications whether a Tweet, Face-
book comment or text on a messaging application
is a micro text. A micro or short text message
could be a tweet or a comment which is around
140 characters or less. In general, text analysis
and natural language processing approaches em-
ploy statistical feature extraction techniques such
as term frequency, inverse document frequency
and a bag of words. Due to the feature extraction
process being statistical in nature, all these tech-
niques require a certain amount of data to use them
effectively for determining patterns or perform au-
thorship attribution. Thus, having short text mes-
sages such as tweets which is around 140 charac-
ters or less makes it difficult to identify the pat-
terns on a given text and make predictions about

the author.
Shrestha et al. (2017) used a convolutional neu-

ral network (CNN) architecture using character
embeddings instead of word embeddings for short
texts. With this approach they showed less than
five percent improvement on previous researches
(Qian et al., 2015; Schwartz et al., 2013) in this
area. In this paper, we start by implementing a
simpler approach; combining the two consecutive
records from the same author to train our model
and then apply the feature known as Flexible pat-
terns (Schwartz et al., 2013) after modifying the
existing method and finally introducing our new
feature based on the word vector approach (Bo-
janowski et al., 2017).

The paper is organized in the following sec-
tions. Section 2 represents related works. In
section 3 we define our model architecture fol-
lowed by the dataset and the feature extraction
techniques. Section 4 shows the results of our ap-
proach compared with previous works. Lastly, in
section 5, we discuss conclusion and future work.

2 Related Works

In short-text analysis, one of the earlier works by
Layton et al. (2010) aims to identify the author
based on the data collected from micro-blogging
websites like Twitter. The authors create author
profiles using character level n-grams. They find
the frequency of the most common n-grams in
an author profile and assume that text from the
same author would have a similar pattern. This
approach is further extended by Schwartz et al.
(2013); they use two more features namely word
n-grams and a Hyponyms acquisition technique
(Hearst, 1992) called Flexible patterns along with
character n-grams. They then input a combination
of these features into a linear SVM and ten-fold
cross validation is applied to evaluate the model.

527

Figure 1: Overview of the proposed system

One of the first deep learning approaches by
Rhodes (2015) used word embeddings and a con-
volutional neural network. Skip-gram method
with negative sampling is used for word vector-
ization from the Google news dataset while using
random initialization for unseen words. Further-
more, the convolutional neural network was based
on a similar model (Collobert et al., 2011) for lan-
guage processing, where the activation function is
changed to rectified linear units and introducing
dropouts. Finally, it demonstrated that the system
performs well on longer text sequences.

Shrestha et al. (2017) makes use of a similar ar-
chitecture; a convolutional neural network (CNN)
using character embeddings instead of word em-
beddings for short texts. The CNN model takes
character unigram or bigram as an input that
passes through the character embedding layer be-
fore feeding it to the convolutional layer. Similar
datasets and evaluation criteria as Schwartz et al.
(2013) are used to determine the performance of
the system. This approach increases the overall
accuracy to approximately 76%. Even though the
results are better than all previous researches there
is a scope for further improvement.

A more recent study on this field (Phan and
Zincir-Heywood, 2018) used word embeddings
and the neural network to identify the authors of
short text messages. They used the three dif-
ferent datasets namely Reuters Corpora (RCVI)

(Lewis et al., 2004), Enron dataset (Klimt and
Yang, 2004), and Twitter dataset (Yilu et al.,
2016). The RCVI is used to train the embed-
dings which in turn generated the high-level fea-
tures from the other two corpora by concatenat-
ing the vector of means and standard deviations.
They then used the feed forward neural network to
identify the authors.Therefor, in this work, we also
used the same five authors (Ashley Nunn75, brad-
shaw1984, shawnevans81 , terrymarvin63, and
WhieRose65) from the twitter dataset that they
used to test our proposed system.

3 Methodology

In this section, we describe our proposed approach
and the features we used to train our system. Fig-
ure 1 shows an overview of our system in which
we worked on two datasets: one by Schwartz et al.
(2013) and the other one by Yilu et al. (2016). Sec-
tion 3.1 explains more about the data.

We carried our pre-processing on the data be-
fore preforming feature extraction. There are a to-
tal of four features that are obtained from the text
namely word n-grams, character n-grams, flexi-
ble patterns and word embeddings. An n-gram
(section 3.2) is a sequence of n words where n is
a positive integer. For example, in the phrase -
”This is a sentence” -, a word unigram would be
- ”This”, ”is”, ”a” - and a word bigram would be
”this is”, ”is a”, ”a sentence” - and so on. On

528

the other hand, character n-grams are similar to
word n-grams except, they are a sequence of char-
acters. For instance, if we use the previous ex-
ample, ”This is a sentence”, a character unigram
would be - ”T”, ”h”, ”i”, ”s” - and a character
bigram would be - ”th”, ”hi”, ”is”.

In section 3.3 we define Flexible patterns, ex-
plain the existing method and our new approach to
create them. The idea behind flexible patterns is
that some users tend to use the same sequence of
words in their writing style and only change a few
keywords called content words (CW). For exam-
ple, the flexible pattern of the following phrases;
”I read the paper today” and ”I drove the car yes-
terday” is ”I CW the CW CW”. The words read,
paper, today, drove, car and yesterday are replaced
by the word CW based on the pre-defined condi-
tion. Therefore, masking some words, would cre-
ate a pattern and separate the texts of some users
from other users. We modified the existing ap-
proach (Schwartz et al., 2013) to make it suitable
for smaller datasets and also to make it easier to
implement.

Next, we talked about the word embeddings
(Mikolov et al., 2013) feature set in section 3.4.
We used the skip-gram technique to create the
300-dimensional vector representation of our data
and used that to create the embeddings by com-
bining them using the weights obtained by using
TF-IDF.

Later we analyzed (section 3.5) all the models
we used and the reason for choosing a Multi-Layer
Perceptron (MLP) architecture (Gillian, 2014).
We also explained the architecture of our MLP
model and the parameters we used to further op-
timize. Lastly, in section 4 we will compare the
results of our approach to both datasets.

3.1 Datasets

To compare our results with the previously men-
tioned approaches, we used the same dataset that
Schwartz et al. (2013) used. The dataset contains
a total of 7000 authors, out of which we selected
50 authors at random, where each author has 1000
tweets. We masked the username (@user), num-
bers, links, date and time from the texts to min-
imize the bias and noise in the data. We also
changed all of the letter characters to lowercase
and employ word stemming to reduce the size of
the vocabulary used.

Before extracting features and feeding data into

the MLP, we concatenated sets of two adjacent
records. For example, the first text is combined
with the second, the third with the fourth and so
forth. Though the initial number of records re-
mains the same, combining the original texts en-
ables us to have a larger sequence, which achieves
better accuracy even with the earlier approaches of
feature extraction (Schwartz et al., 2013; Shrestha
et al., 2017). The larger sequence also helps us
to achieve more meaningful patterns which is not
otherwise possible.

We also applied the above approach on a dif-
ferent dataset (Yilu et al., 2016) used in Phan and
Zincir-Heywood (2018). We used the same 5 au-
thors (users) as they did, with 2000 tweets each.
In that paper (Phan and Zincir-Heywood, 2018),
the names of the tagged users in a tweet were not
masked. However, we masked them, i.e. whenever
we encounter a tagged user - @user - we change
it to a specific word preventing our system from
overfitting.

3.2 Word and Character N-Grams

Both word and character n-grams were extracted
from the datasets used. For the value of n in n-
grams and the minimum occurrence of each n-
gram, we used the same parameters as used by
Schwartz et al. (2013) for comparison purposes.
We also took into consideration the maximum oc-
currence of the n-grams. For example, a pattern
including prepositions (as shown in 1 below) or a
masked username (as shown in 2 below) are very
common in tweets.

1. for a
2. <User> I
This is even more common in character n-

grams. For this reason, we kept the upper limit of
the n-grams to 0.9, which means we do not con-
sider any word or character n-grams that appear in
more than 90 percent of the documents. This fur-
ther helps us identify the unique writing style of
an author.

We restricted each feature to a maximum of
50,000 in our experiments where each author had
1000 tweets. To assign weights to the n-grams,
we used the term frequency-inverse document fre-
quency (TF-IDF) weighted scheme.

TF-IDF (Manning et al., 2008) calculates the
importance of the word based on how frequently
it appeared in a text, which was then balanced by
the frequency of the word in the entire corpus.

529

Figure 2: Skip-Gram word embeddings

In a text document d, the frequency of term t is:
tft,d= ft,d. This shows the total number of times
(frequency count) the term occurs in the docu-
ment, whereas the inverse document frequency is:

idf(t,d) = log
N

t ∈ D
, where �N is the total number

of documents D in the corpus. Moreover, we em-
ployed sub-linear scaling to the TF-IDF by taking
the log of the term frequency, Eq.1.

wft,d=

{
1 + logtf td, if tftd = 1

0, otherwise
(1)

3.3 Flexible Patterns
Flexible patterns are a branch of word n-grams,
where each word is either a high-frequency word
or a content word and some words can be both
(Schwartz et al., 2013). For a corpus size s if
a word appears more than 10−4 × s times it is
a High-Frequency Word (HFW) and if it appears
less than 10−3 × s times it is a Common Word
(CW). Also, the previous method takes into con-
sideration that flexible patterns start/end with an
HFW and there can be no consecutive HFWs.

The problem with this approach is that it does
not work with a smaller corpus. For a corpus
where the value of s is 1000, no word is a CW.
Thus, to overcome this limitation, Eq.2 is used to
calculate the CW for a bigger corpus. Therefore
in a corpus with a vocabulary size n, the CW is
calculated as the common log of the threshold for
CW is selected as twice of log of s which are total
number of words in the training dataset vocabu-

lary. This method is based on the various experi-
ments we carried out to choose the optimum num-
ber.

CW 6 2× log10n (2)

After replacing all the CWs in the corpus, we then
used the same approach as we did for word n-
grams. Then we applied the TF-IDF weighted
scheme to those flexible n-grams before inputting
them into the model.

3.4 TF-IDF Weighted Word Embeddings
Word embedding (Mikolov et al., 2013) is a se-
mantic parsing technique used to create the vec-
tor representation of a text in a smaller dimen-
sional space compared to the classic Bag of words
approach (Zhang et al., 2010). The idea be-
hind word embedding is that semantically similar
words should be close to each other. That is, in an
n-dimensional space, the angle between the simi-
lar words should be close to zero. There are two
types of methods to achieve this; namely, Continu-
ous Bag of Words (CBOW) and Skip-Gram meth-
ods (Mikolov et al., 2013). While CBOW predicts
the target words by taking the context word as in-
put, Skip-gram predicts the probability of the con-
text words using the target words.

We used the word embedding approach from
Bojanowski et al. (2017), which is based on the
assumption that tweets contain several words, in-
cluding, but not limited to, hashtags that are rare
and sparsely occur in a corpus. To address this
sparsity issue, each word is represented by the sum

530

of the vector representations of its n-grams. Hav-
ing a dictionary as size D and a word w belongs
to this dictionary having Dw ⊂ {1, ..., D}, the set
of n-grams appearing in w. Associating a vector
representation of zd to each n-gram d, the scoring
function for w can be represented by Eq.3:

s(w, c) =
∑
d∈Dw

zTd vc (3)

For the value of n, we chose 2 6 n 6 6. Em-
pirically, instead of using pre-trained embedding,
we trained it on our corpus with a 300-dimension
vector space. We constructed the embedding using
the Skip Gram approach which works better for
a smaller amount of data and is preferable when
there are a greater number of rare words in the cor-
pus (Schwartz et al., 2013). Figure 2 shows the
created vector representation from the dataset.

Using t-distributed Stochastic Neighbor Em-
bedding technique (Maaten and Hinton, 2008),
we visualized the 300-dimensional data in a two-
dimensional space (Figure 2). This shows that
words which are used in the same context are
grouped closer to each other. The idea behind this
approach is that a particular author would use the
same combination of words in his/her tweets and
therefore, they should be close to each other.

Before using this as an input feature for our
model, we weighted the embedding of each word
in a text with the IDF value of that word. The re-
sulting dimension is the same as the dimension of
each word, which in our case is 300. Ultimately,
we calculated the mean of the words to keep the
dimensionality of the entire text the same as our
vector space. Having a text of size T and words
w where Tw ⊂ {1, ..., T}, the TF-IDF weighted
embedding feature f(w) of a word wT is given by
using Eq.4:

f(w) =

∑
w∈Tw idf(wT)× emb(wT)

T
(4)

4 Experiments and Results

As shown in Figure 1, four different machine
learning algorithms are employed at the learning
phase of the proposed system in this work. We
implemented SVM, Naive Bayes, Random For-
est (Decision Trees) and MLP classifiers using the
Scikit-Learn Python machine learning library (Pe-
dregosa et al., 2011). As discussed earlier, the goal
is to classify micro-text. In doing so, we aim to

Figure 3: Confusion matrix for 5 authors

choose the most suitable classifier using the ex-
tracted features proposed in the previous section.
To this end, we employed the same small dataset
used in Phan and Zincir-Heywood (2018). Table
1 shows the 10-fold cross validation accuracy of
the four classifiers on that dataset for the 5 authors
previously mentioned, where 2000 tweets are used
for each author. In this case, our system (Table 1)
achieves more than 99% 10-fold cross-validation
accuracy which is 15% more than the best re-
sult reported in Phan and Zincir-Heywood (2018).
Moreover, Figure 3 (confusion matrix) demon-
strates that these results are not biased to any spe-
cific author in the dataset used. Additionally, Ta-
ble 2 shows how the 10-fold cross-validation accu-
racy improved the proposed MLP classifier as the
different feature extraction techniques are used,
where the first three columns show the accuracy of
the combination of extraction techniques and the
last column is the best test results given in Phan
and Zincir-Heywood (2018).

MLP SVM Naive Bayes Random Forest

.99 .979 .96 .82

Table 1: Accuracy for 5 users with 2000 tweets using
different classifiers having combination of same four

features

Given the above observations, MLP was cho-
sen as the most suitable classifier for our research
purpose: classifying the tweets according to their

TFIDF Emb. Mod. flex Joining rec. Phan2018

.99 .983 .972 .841

Table 2: Accuracy for 5 users with 2000 tweets each using
proposed system with different feature sets

531

authors. Figure 4 presents the overview of the pro-
posed MLP model. The number of nodes in the
input layer depend on the size of the input feature.
None represents that the dimension is variable, and
in this case, it is 86121. Then, there is a dense
layer, which is a fully connected layer, where each
input node is connected to each output node. In
the proposed model, there are two Dense layers.
One is a hidden layer of 1000 nodes and the other
is the output layer of 50 nodes, which corresponds
to 50 authors. This can be changed depending on
the number of authors (output classes). Inbetween
the two dense layers, there is a dropout layer for
regularization.

Figure 4: Overview of the proposed model using a Multi-Layer Perceptron as
the classifier with one hidden layer and a dropout layer

The input layer of the MLP model depends on
the number of features, which increases as the
number of tweets increases to train the model.
There is only one hidden layer with 1000 nodes.
It should be noted, that increasing the hidden lay-
ers did not improve the validation accuracy in our
experiments. The Tanh activation function (Weis-
stein, 2002) is used for the hidden layer. The last
layer consists of the same number of nodes as the
number of authors where the SoftMax activation
function (Nwankpa et al., 2018) is used. Further-
more, we have a 30% dropout after the hidden
layer to prevent overfitting. In the proposed sys-
tem, ADAM (Kingma and Ba, 2014) is adapted
as the optimization algorithm with a learning rate
of 0.001. We divided the data into batches of
64 and trained our model for a maximum of 40
epochs. Figure 5 and Figure 6 show the number
of epochs vs loss, and the number of epochs vs
accuracy graphs for training and validation data,
respectively. These results show that both the loss
and accuracy are optimal at around 40 epochs.

In the following experiments, we incrementally

Figure 5: Epochs vs Loss for 50 epochs

Figure 6: Epochs vs Accuracy for 50 epochs

TFIDF Emb. Flex Joining rec. CNN-C SCH Char LSTM-2

.852 .829 .81 .761 .712 .703 .645

Table 3: Accuracy for 50 users with 1000 tweets each

applied all three feature extraction techniques us-
ing the MLP classifier and observed the improve-
ments compared to the previous research results
(see Section 2). To this end, we first combined
the subsequent tweets and applied the approach
presented by Schwartz et al. (2013), then we im-
proved that method to calculate flexible patterns
and their effect on the accuracy of the system. Last
but not the least, we built weighted TF-IDF em-
beddings and combined them with the improved
flexible patterns to form the combined set of fea-
tures as input into the proposed MLP model. Ten-
fold cross-validation approach was used to eval-
uate the performance of the proposed system. We
evaluated the proposed system on the same dataset
as used by Schwartz et al. (2013); Shrestha et al.
(2017), where the dataset consisted of 50 authors,
each having 1000 tweets.

Columns 1-3, in Table 3, shows the results of
all three feature extraction techniques used with

532

TFIDF Emb. Mod. flex Joining rec. CNN-C SCH Char LSTM-2

500 .791 .76 .748 .724 .672 .655 .597
200 .730 .694 .679 .665 .614 .585 .528
100 .648 .619 .608 .617 .565 .517 .438
50 .589 .563 .53 .562 .505 .466 .364

Table 4: Accuracy for 50 users from 500 to 50 tweets for each

the MLP, and columns 4-7 represents the results
from the previous works on the same dataset. Our
results are mutually inclusive, and the results are
built upon combining all the feature extraction
techniques. For example, we used the weighted
TF-IDF embeddings in combination with the flex-
ible patterns.

CNN-C, shown in Table 3, represents the best
result obtained by Shrestha et al. (2017) where a
convolutional neural network architecture is pro-
posed using character n-grams, specifically uni-
grams and bigrams as input. The convolutional
model used was a three-level architecture with the
input layer as the character embedding layer, a
convolutional module, and finally, a dense layer
with a Softmax activation function for classifica-
tion. The unigram model performed well on the
smaller dataset. Alternatively, the bigram model
had better accuracy on the bigger dataset.

SCH, shown in Table 3, represents the best re-
sult obtained by Schwartz et al. (2013). They used
a linear SVM for classification and their model
was a combination of word and character n-grams
along with a new feature set called flexible pat-
terns (see section 3.3), which is modified and used
in our system as well.

Char, shown in Table 3, represents one of the
systems used by Shrestha et al. (2017) in which
they compared the performance of their system
based on the earlier character n-gram approaches
(Layton et al., 2010; Schwartz et al., 2013) and
proposed a logistic regression model that em-
ployed character n-grams of sizes two to four.

LSTM-2, shown in Table 3, represents the state-
of-the-art LSTM model based on the success of
previous implementations (Tai et al., 2015; Tang
et al., 2015). This model was also used with
bigrams as input to evaluate the performance of
those systems, with respect to other models on the
same dataset.

Introducing the concatenation of the consecu-
tive records enables the accuracy of the proposed
system to be improved by 5% compared to the pre-

vious approaches. Then applying the flexible pat-
terns, further improved the accuracy by approxi-
mately 2%. Finally, implementing the weighted
TF-IDF word embedding, and combining it with
all the other features increases the accuracy of the
proposed system to approximately 85%, Table 3.

In Table 4, we also compared the proposed
system’s accuracy to other approaches as we re-
duced the number of tweets from 500 to 50 for
each author (50). After reducing the number of
tweets, the proposed system still outperformed
all the other previous approaches and performed
well even when the dataset became as small as 50
tweets per author.

5 Conclusion and Future Work

In this paper, we explored a feature extraction
technique that was based on a word embedding
model weighted by TF-IDF. We also worked on
modifying and improving the existing implemen-
tation of flexible patterns and proposed a neural
network architecture that makes use of a combina-
tion of these features to perform authorship attri-
bution. Our model outperformed all the existing
systems based on similar testing criteria and using
the same datasets. Since we trained our embed-
dings from scratch our system performs equally
well, irrespective of the language.

With the success of word embeddings, we look
forward to working upon new word embedding
techniques such as Elmo (Peters et al., 2018) and
Bert (Devlin et al., 2018), which are based on the
context of a word in a corpus. Alongside that, we
are also interested to improve our neural network
architecture using transfer learning models such as
ULMFit (Howard and Ruder, 2018).

6 Acknowledgments

This research is supported by the Natural Science
and Engineering Research Council of Canada.
This research is conducted as part of the Dalhousie
NIMS Lab at: https://projects.cs.dal.ca/projectx/.

533

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics 5:135–146.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research
12(Aug):2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 .

Nick Gillian. 2014. Mlp nickgillianwiki.
http://www.nickgillian.com/wiki/
pmwiki.php/GRT/MLP. (Accessed on
04/25/2019).

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2. Association for Computational Linguis-
tics, pages 539–545.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146 .

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Bryan Klimt and Yiming Yang. 2004. The enron
corpus: A new dataset for email classification re-
search. In European Conference on Machine Learn-
ing. Springer, pages 217–226.

Robert Layton, Paul Watters, and Richard Dazeley.
2010. Authorship attribution for twitter in 140 char-
acters or less. In 2010 Second Cybercrime and
Trustworthy Computing Workshop. IEEE, pages 1–
8.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of machine
learning research 5(Apr):361–397.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research 9(Nov):2579–2605.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schtze. 2008. Introduction to Information
Retrieval. Cambridge University Press, Cambridge,
UK. http://nlp.stanford.edu/IR-book/information-
retrieval-book.html.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Chigozie Nwankpa, Winifred Ijomah, Anthony Gacha-
gan, and Stephen Marshall. 2018. Activation func-
tions: Comparison of trends in practice and research
for deep learning. arXiv preprint arXiv:1811.03378
.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine Learn-
ing in Python . Journal of Machine Learning Re-
search 12:2825–2830.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365 .

Tien D Phan and Nur Zincir-Heywood. 2018. User
identification via neural network based language
models. International Journal of Network Manage-
ment page https://doi.org/10.1002/nem.2049.

Tie-Yun Qian, Bing Liu, Qing Li, and Jianfeng Si.
2015. Review authorship attribution in a similarity
space. Journal of Computer Science and Technology
30(1):200–213.

Dylan Rhodes. 2015. Author attribution with cnns
cs224.

Roy Schwartz, Oren Tsur, Ari Rappoport, and Moshe
Koppel. 2013. Authorship attribution of micro-
messages. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. pages 1880–1891.

Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional neural networks for authorship
attribution of short texts. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. volume 2, pages 669–674.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing. pages 1422–1432.

Eric W Weisstein. 2002. Inverse hyperbolic tangent .

Zhou Yilu, Alsarkal Yaqoub, and Zhang Nan. 2016.
Linking virtual and real-world identities twitter
dataset.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Un-
derstanding bag-of-words model: a statistical frame-
work. International Journal of Machine Learning
and Cybernetics 1(1-4):43–52.

http://www.nickgillian.com/wiki/pmwiki.php/GRT/MLP
http://www.nickgillian.com/wiki/pmwiki.php/GRT/MLP
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

