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Abstract

While there is a strong intuition that word
alignments (e.g. synonymy, hyperonymy)
play a relevant role in recognizing text-
to-text semantic inferences (e.g. textual
entailment, semantic similarity), this in-
tuition is often not reflected in the sys-
tem performances and there is a general
need of a deeper comprehension of the role
of lexical resources. This paper provides
an empirical analysis of the dependen-
cies between data-sets, lexical resources
and algorithms that are commonly used
in text-to-text inference tasks. We define
a resource impact index, based on lexi-
cal alignments between pairs of texts, and
show that such index is significantly cor-
related with the performance of different
textual entailment algorithms. The result
is an operational, algorithm-independent,
procedure for predicting the performance
of a class of available RTE algorithms.

1 Introduction

In the last decade text-to-text semantic inference
has been a relevant topic in Computational Lin-
guistics. Driven by the assumption that language
understanding crucially depends on the ability to
recognize semantic relations among portions of
text, several text-to-text inference tasks have been
proposed, including recognizing paraphrasing
(Dolan and Brockett., 2005), recognizing textual
entailment (RTE) (Dagan et al., 2005), and se-
mantic similarity (Agirre et al., 2012). A common
characteristic of such tasks is that the input are
two portions of text, let’s call them Text1 and
Text2, and the output is a semantic relation
between the two texts, possibly with a degree of
confidence of the system. For instance, given the
following text fragments:

Text1: George Clooneys longest relationship ever
might have been with a pig. The actor owned
Max, a 300-pound pig.
Text2: Max is an animal.

a system should be able to recognize that there is
an ”entailment” relation among Text1 and Text2.

While the task is very complex, requiring in
principle to consider syntax, semantics and also
pragmatics, current systems adopt rather sim-
plified techniques, based on available linguistic
resources. For instance, many RTE systems (Da-
gan et al., 2012) would attempt to take advantage
of the fact that, according to WordNet, the word
animal in Text2 is a hypernym of the word pig
in Text1. A relevant aspect in text-to-text tasks
is that data-sets are usually composed of textual
pairs for positive cases, where a certain relation
(e.g. entailment) holds, and negative pairs, where
the semantic relation does not hold. For instance,
the following pair:

Text1: John has a cat, named Felix, in his farm,
it’s a Maine Coon, it’s the largest domesticated
breed of cat.
Text2: Felix is the largest domesticated animal in
John’s farm.

shows a case of ”non-entailment”. It is worth to
notice that in both the examples, although the en-
tailment judgment is different, still there is an high
degree of lexical alignments between words in
Text1 and Text2 (e.g. Max −→ Max, pig −→
animal, cat −→ animal).

In the paper we systematically investigate the
relations between the distribution of lexical as-
sociations in textual entailment data-sets and the
system performance. As a result we define a
”resource impact index” for a certain lexical re-
source with respect to a certain data-set, which
indicates the capacity of the resource to discrimi-
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nate between positive and negative pairs. We show
that the ”resource impact index” is homogeneous
across several data-sets and tasks, and that it corre-
lates with the performance of available entailment
systems.

The paper is structured as follows. Section 2
provides the relevant background about the ongo-
ing discussion on the use of lexical resources in
textual entailment. Section 3 defines the Resource
Impact Index that will be used in the experimental
section. Section 4 reports on the experimental set-
ting, including data-sets, resources and algorithms
that we have been using. Section 5 discusses the
results in term of the correlation between the Re-
source Index on a certain data-set and the accuracy
obtained by two different algorithms using a single
lexical relation at time. Section 6 shows how we
can combine the Resource Index in case of multi-
ple resources, while still maintaining the correla-
tion with the algorithm performance. Finally, Sec-
tion 7 highlights the potential impact of the paper
within the current research on text-to-text seman-
tic inferences.

2 Background on Lexical Resources and
Text-to-Text Inferences

The role of lexical resources for recognizing text-
to-text semantic relations (e.g. paraphrasing, tex-
tual entailment, textual similarity) has been under
discussion for several years. This discussion is
well reflected in the data reported by the RTE-5
”ablation tests” initiative (Bentivogli et al., 2009),
where the performance of an algorithm was mea-
sured removing one resource at a time.

Challenge T1/T2 Overlap (%)
YES NO ENTAILMENT

Unknown Contradiction
RTE - 1 68.64 64.12
RTE - 2 70.63 63.32
RTE - 3 69.62 55.54
RTE - 4 68.95 57.36 67.97
RTE - 5 77.14 62.28 78.93

Table 1: Comparison among the structure of dif-
ferent RTE data-sets (Bentivogli et al., 2009).

As an example, participants at the RTE evalu-
ation reported that WordNet was useful (i.e. im-
proved performance) 9 of the times, while 7 out of
16 it was not. In addition, Table 1, again extracted
from (Bentivogli et al., 2009), suggests that the de-

gree of word overlap among positive and negative
pairs might be a key to understand the complex-
ity of a text-to-text inference task, and, as a con-
sequence, a key to interpret the system’s perfor-
mance. Particularly, we can notice that the word
overlap for the ”Yes” cases and the ”Contradic-
tion” cases in the RTE-4 data-set is very similar,
and even higher for the RTE-5 data-set. While
this fact confirms the intuition that contradiction
is generated when there is high overlap in mean-
ing (de Marneffe, 2012), it also means that word
overlap is not a discriminatory feature.

In this paper we claim that the two issues raised
at RTE-5 (i.e. mixed evidence for the use of Word-
Net, and the fact that word overlap was not dis-
criminative) are very much related, and, actually,
are part of the same phenomenon. To support our
claim, we build on top of previous work (Magno-
lini and Magnini, 2014), which we generalize con-
sidering: (i) lexical associations with different po-
larity (e.g. synonyms and antonyms); (ii) data-sets
with different characteristics, (e.g. task, length of
the pairs, languages); (iii) different algorithms for
calculating textual entailment. We are interested
to capture correlations between the use of lexical
resources (both single resources and in combina-
tion) and the performance of inference algorithms.
Particularly, the goal is to predict the behavior of
an entailment algorithm given the characteristics
of both the resource and the data-set.

There are several factors which, in principle,
can affect our experiments, and that we have care-
fully considered.

Lexical Resources. First, the impact of a re-
source depends on the quality of the resource it-
self. Lexical resources, particularly those that are
automatically acquired, might include noisy data,
which can negatively affect performance. On the
other hand, manually developed resources such as
WordNet (Fellbaum, 1998) are particularly com-
plex (i.e. a dozen of different relations, deep
taxonomic structure, fine grained sense distinc-
tions) and their use needs tuning. In order to face
with these issues, we have selected manually con-
structed lexical resources, with a high degree of
precision. In our experiments we have used lexi-
cal relations separately, in order to keep as much as
possible under control their effect. Under this use,
when we refer to a lexical resource we actually
mean a resource that provides a specific lexical re-
lation: for instance, a resource for lexical deriva-
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tion, a resource for the hyperonymy relation, and
so on. In addition, in the paper we consider both
lexical resources that are supposed to provide sim-
ilarity/compatibility alignments (e.g. synonyms)
and resources/relations that are supposed to pro-
vide lexical oppositions (e.g. antonyms).

Inference Algorithms. Second, different algo-
rithms may use different strategies to take advan-
tage of resources. For instance, algorithms that
calculate a distance or a similarity between Text1
and Text2 may assign different weights to a cer-
tain word association, on the basis on human in-
tuitions (e.g. synonyms preserve entailment more
than hypernyms). In our experiments we avoided
as much as possible the use of settings not sup-
ported by empirical evidences and we use algo-
rithms that are publicly available in order to max-
imize the replicability of the experiments.

Data-sets. Finally, data-sets representing differ-
ent inference phenomena, may manifest different
behaviors with respect to the impact of a certain
resource, which can be specific for each inference
type (e.g. entailment and semantic similarity). Al-
though reaching a high level of generalization is
limited by the existence of a limited number of
data-sets, we have conducted experiments both on
several textual entailment data-sets, also for differ-
ent languages, and on a semantic similarity data-
set.

3 Resource Impact Index

In this Section we define the general model
through which we estimate the impact of a lexical
resource. The idea behind the model is quite sim-
ple: the impact of a resource on a data-set should
be correlated to the capacity of the resource to dis-
criminate positive pairs from negative pairs in the
data-set. We measure such capacity as the number
of lexical alignments that the resource can estab-
lish on positive and negative pairs, and then we
calculate the difference among them. We call this
measure the resource impact differential - RID.
The smaller the RID, the smaller the impact of
the resource on that data-set. In the following we
provide a more precise definition both of lexical
alignments (Section 3.1) and of the model for cal-
culating the resource impact differential (Section
3.2).

3.1 Defining Lexical Alignments

The idea that the entailment relation is related
to the degree of lexical alignments between the
words in a (T1, T2) pair was introduced in (Da-
gan et al., 2012) as a useful generalization over
the use of lexical resources in Recognizing Textual
Entailment. In our work we adopt their definition
of alignment, and we apply it to the RID calcula-
tion. More precisely, we say that two tokens in a
(T1, T2) pair are aligned when there is at least one
semantic association relation, including equality,
between the two tokens. For instance, synonyms
and morphological derivations are different types
of lexical alignments.

In addition, we extend the (Dagan et al., 2012)
definition, allowing both positive and negative
alignments. In fact, alignments inherit the polarity
of the resource from which they are generated. We
have a Positive Alignment when the semantic rela-
tion of the alignment is derived from a resource
bringing positive associations (see Section 2), and
we have a Negative Alignment when the source is
negative (e.g. antonyms).

Finally, in the experiments reported in this pa-
per we consider both word-to-word alignments
and phrase alignments, where n-gram sequences
are involved.

3.2 Defining the Impact Index

The Resource Impact Index is defined over a cer-
tain data-set D and a certain lexical resource LR.

Data-set (D). A data-set is a set of text pairs
D = {(T1, T2)}, including both positive
(T1, T2)p and negative (T1, T2)n pairs for a cer-
tain semantic relation (e.g. entailment, similarity).
As reported in Section 2, this is a quite standard
composition of benchmarks for text-to-text infer-
ences.

Lexical Resource (LR). We define a Lexical
Resource as any potential source of alignments
among words. In most of the cases, rather than
generic lexical resources (e.g. WordNet) we are
interested in specific semantic relations provided
by a resource. For instance, WordNet is a source
for alignments based on synonyms. As discussed
in Section 2, we consider both resources that are
supposed to provide similarity-based alignments,
which we call positive lexical resources, denoted
with LR+, and resources that are supposed to pro-
vide opposition-based alignments, which we call
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negative lexical resources, denoted with LR−.

Resource Impact (RI). The impact of a re-
source LR on a data-set D is calculated as the
number of lexical alignments returned by LR on
all pairs, both positive and negative, normalized
on the number of potential alignments for the data-
set D. We use |T1| ∗ |T2| (|T | is the number of
tokens in text T) as potential number of potential
alignments (Dagan et al., 2012, page 52), although
there might be other options, such as |T1|+ |T2|,
and max(|T1|, |T2|).

RI ranges from 0, when no alignment is found,
to 1, when all potential alignments are returned by
LR.

RI(LR,D) =
∑

i∈D LexAl(T1i, T2i)∑
i∈D |T1i| ∗ |T2i| (1)

Resource Impact Differential (RID). The im-
pact of a resource LR on a certain data-set D is
given by the difference between the RI on posi-
tive pairs (T1, T2) ∈ Dp and on negative pairs
(T1, T2) ∈ Dn.

A RID for a positive lexical resource ranges
from -1, when the RI is 0 for the positive pairs
(i.e. when entailment holds) and 1 for negative
entailed pairs, to 1, when the RI is 1 for entailed
and 0 for not-entailed pairs.

RID(LR+,D) = RI(LR,Dp) −RI(LR,Dn) (2)

For a resource with negative polarity (e.g.
antonyms) the RID is expected to be the differ-
ence between the Resource Impact on negative and
on positive pairs (equation 3).

RID(LR−,D) = RI(LR,Dn) −RI(LR,Dp) (3)

The RID measure is not affected by the length
of the pairs in the data-set, because it is normalized
on the potential number of alignments for each
pair. As far as the relation between RID and the
impact of the lexical resource (i.e. the number of
lexical alignments produced by the resource), be-
ing the RID a difference, we can consider the im-
pact as an upper bound of the RID (see equation
4).

∣∣RID(LR,D)

∣∣ ≤ ∑i∈D LexAl(T1i, T2i)∑
i∈D |T1i| ∗ |T2i| (4)

4 Experiments

In this section we apply the model described in
Section 3 to different data-sets and resources, tak-
ing advantage of different sources of lexical and
phrase alignments.

4.1 Data-sets
We use four different data-sets in order to exper-
iment different characteristics of the corpora used
for benchmarking text-to-text inferences.

RTE-3 eng. The RTE-3 data-set (Giampiccolo
et al., 2007) for English has been used in the con-
text of the Recognizing Textual Entailment shared
tasks. It has been constructed mainly using appli-
cation derived text fragments, and it is balanced
between positive and negative pairs (about 1600
in total).

RTE-3 ita. The Italian RTE-3 data-set1 is the
translation of the English one. The goal is to mon-
itor the behaviour of the RID while changing the
language.

RTE-5 eng. The RTE-5 data-set (Bentivogli et
al., 2009) is similar to RTE-3, although T1 pairs
are usually much longer, which, in our terms,
means that a higher number of alignments can be
potentially generated by the same number of pairs.

SICK eng. Finally the SICK data-set (Sentences
Involving Compositional Knowledge) (Marelli et
al., 2014) has been recently used to highlight dis-
tributional properties. SICK is not balanced (1299
positive and 3201 negative pairs), and T1 and T2,
differently from RTE pairs, have similar length.

4.2 Sources for Lexical Alignments
We carried out experiments using six different
sources of lexical alignments, whose use is quite
diffused in the practice of text-to-text inference
systems, and with different expected behavior, as
far as the polarity of the lexical resource is con-
cerned.

Lemmas. The first source consists of a simple
match among the lemmas in T1 and T2: if two
lemmas are equal (case insensitive), then we count
it as an alignment between T1 and T2. The ex-
pected polarity of alignments based on lemmas is
positive, as we assume that they increase the simi-
larity between T1 and T2.

1http://www.excitement-project.eu/index.php/results/178-
public-resources
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Synonyms. The second source considers align-
ments due to the synonymy relation (e.g. home
and habitation). The sources are WordNet (Fell-
baum, 1998), version 3.0 for English, and Multi-
WordNet (Pianta et al., 2002) for Italian. If two
lemmas are found in the same synset, then we
count it as an alignment.The expected polarity of
alignments based on synonyms is positive.

Hypernyms. The third source considers the hy-
peronymy relation (e.g. dog and mammal): as for
synonymy we use WordNet and MultiWordNet,
counting as an alignment all the cases where two
lemmas are in the hypernym hierarchy, at any dis-
tance. The expected polarity of alignments based
on hypernyms is positive.

Morphological Derivations. The fourth source
of alignment are morphological derivations (e.g.
invention and invent). As for English, deriva-
tions are covered again by WordNet, while for
Italian we used MorphoDerivIT, a resource devel-
oped within the EXCITEMENT project2, which
has the same structure of CATVAR (Habash and
Dorr, 2003) for English. The expected polarity of
alignments based on morphological derivations is
positive.

Antonyms. The fifth source of alignment are
antonyms (e.g. man and woman). Antonyms are
provided by WordNet for English and by Mul-
tiWordNet for Italian. The expected polarity of
alignments based on antonyms is negative, as we
assume that they increase the opposition between
T1 and T2.

Paraphrase Tables. The sixth source of align-
ment are paraphrase tables (e.g. can be modified
and may be revised). We built paraphrase tables
from the Meteor translation tables (Denkowski
and Lavie, 2014). The idea is that if an n-gram ns

in the source language s is translated into n-gram
nt in the target language t, and if nt has multi-
ple translations back into s, then all these transla-
tions are potential paraphrases of each other. The
probability of translation from one language to
another can be used to compute the probability
that two n-grams in language s are paraphrases of
each other. To compute this probability we use all
shared translations into the target language t of the
two n-grams (both in source language s). There

2http://www.excitement-project.eu/index.php/results/178-
public-resources

are two main reasons to consider paraphrase ta-
bles: (i) they cover alignments that are only par-
tially covered by the other sources that we consid-
ered; (ii) most of the phrases are n-grams, which
allows us to test the RID behavior on sequences
longer than single tokens. The expected polarity of
alignments based on paraphrase tables is positive.

0-Knowledge. Finally, in order to investigate the
behavior of the RID in absence of any lexical
alignment, we include a 0-Knowledge experimen-
tal baseline, where the system does not have ac-
cess to any source of lexical alignment. As no
alignment is produced (including token match),
the RID of the 0-Knowledge baseline is always
0.

4.3 Algorithms

In order to verify our hypothesis that the RID
index is correlated with the capacity of a system
to correctly recognize textual entailment, we run
experiments using two different RTE algorithms,
i.e. EDITS and P1EDA, which take advantage of
lexical resources in different ways. The two algo-
rithms are both supervised, in the sense that they
use training data to build a model. As the goal
of our experiments is to monitor the behavior of
the RID index in different settings, rather than to
assess the performance of the two algorithms, we
decided to simplify as much as possible the experi-
mental setting, and we calculated accuracy and F1
for the two algorithms using the training section of
the data-sets3.

EDITS (Negri et al., 2009), is a distance-based
RTE algorithm based on calculating the Edit
Distance between T1 and T2, defined as the
minimum-weight sequence of edit operations
(i.e. deletion, insertion and substitution) that
transforms T1 into T2. The intuition is that the
less the cost of transforming T1 into T2, the more
likely the entailment relation between the two
texts. The final decision is taken on the basis of
a threshold, empirically estimated over training
data. For all the experiments, the cost of edit
operations is set as follows: 0 for substitution
if two words are aligned; 1 for substitution if
two words are not aligned; 1 for insertion; 0
for deletion. The algorithm is normalized on
the number of words of T1 and T2, after stop

3We will investigate the behavior of the RID between
test and training data-sets in future work.
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words are removed. As for linguistic processing,
the Edit Distance algorithm needs tokenization,
lemmatization and Part-of-Speech tagging (in
order to access resources). We used TreeTagger
(Schmid, 1995) for English and TextPro (Pianta et
al., 2008) for Italian. In addition we removed stop
words, including some very common verbs.

P1EDA (Noh et al., 2015) is an alignment-based
RTE algorithm, developed and fully documented
in the software website4, based on alignments
between T1 and T2. The intuition is that the more
the portions of T2 are aligned with portions of
T1, the higher the probability of the entailment
relation. First the algorithm extracts all possible
alignments between portions in T1 and T2,
then it extracts a number of features from the
alignments, which are finally given as input to a
multinomial logistic regression classifier trained
on annotated data. The features implemented in
the P1EDA version used for our experiments are
the following: (i) the ratio of words in T2 aligned
with T1; (ii) the ratio of content words in T2
aligned with T1 and, (iii) the ratio of verbs in T2
aligned with T1. As for linguistic processing,
P1EDA needs tokenization, lemmatization and
Part-of-Speech tagging. As in the case of EDITS
we used TreeTagger (Schmid, 1995) for English
and TextPro (Pianta et al., 2008) for Italian.

All the experiments reported in the paper have
been conducted using the Excitement Open Plat-
form (EOP), (Padó et al., 2014) (Magnini et al.,
2014), a generic architecture and a comprehensive
implementation for textual inference in multiple
languages. The platform includes state-of-art al-
gorithms, a large number of knowledge resources
and facilities for experimenting and testing inno-
vative approaches. The architecture is based on
the concept of modularization with pluggable and
replaceable components to enable extensions and
customizations, this way helping to control that
experiments are conducted in the proper way, with
easily observable intermediate steps. The EOP
platform includes both the algorithms and the lex-
ical resources used in our experiments, and it is
distributed as an open source software.5

4https://github.com/hltfbk/EOP-
1.2.3/wiki/AlignmentEDAP1

5http://hltfbk.github.io/Excitement-Open-Platform/

5 Results

Table 2 and Table 3 report the results of the exper-
iments on the four data-sets and the seven sources
of alignment (including the 0-Knowledge base-
line) described in Section 46. For each resource
we show the RID of the resource (given the very
low values, RIDs are shown multiplied by a 104

factor), and the accuracy achieved both by the ED-
ITS and the P1EDA algorithms. The last row of
the tables shows the Pearson correlation between
the RID and the accuracy of the algorithms for
each data-set, calculated as the mean of the corre-
lations obtained for each resource on that data-set.

A first observation is that all RID values are
very close to 0, indicating a low expected im-
pact of the resources. Even the highest RID (i.e.
523.342 for lemmas on SICK), corresponds to a
5% of the potential impact of the resource. Nega-
tive RID values for positive resources, mean that
the resource, somehow contrary to the expecta-
tion, produces more alignments for negative pairs
than for positive (this is the case, for instance, of
synonyms on the English RTE-3). On the same
line, negative RID values for negative resources
mean that a resource with negative polarity pro-
duces more alignments for positive pairs than for
negative (this case does not appear in the results).

Alignment on lemmas is by far the resource
with the best impact, while alignments produced
by paraphrases produce very negative RID.

Finally, results fully confirm the initial hypothe-
sis that the RID is correlated with the system per-
formance; i.e. the accuracy for balanced data-sets
and the F1 for the unbalanced one. The Pearson
correlation shows that R is close to 1 for all the
RTE data-sets (the slightly lower value on SICK
reveals the different characteristics of the data-
set), indicating that the RID is a very good pre-
dictor of the system performance, at least for the
class of inference algorithms represented by ED-
ITS and P1EDA. The low values for RID are
also reflected in absolute low performance, show-
ing again that when the system uses a low impact
resource the accuracy is close to the baseline (i.e.
the 0-Knowledge configuration).

Although improving the performance of RTE
systems is not the direct goal of our experiments, it
is worth noting that P1EDA outperformed EDITS,

6The EDITS implementation available in the EOP plat-
form does not allow n-gram alignments, so we could not run
paraphrases with EDITS.
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EDITS RTE-3 eng RTE-3 ita RTE-5 eng SICK eng
RID Accuracy RID Accuracy RID Accuracy RID F1

0-Knowledge 0 0.542 0 0.543 0 0.536 0 0.004
Lemmas 97.215 0.635 84.594 0.641 43.221 0.62 523.342 0.347
Synonyms -4.876 0.536 5.343 0.537 10.138 0.561 12.386 0.093
Hypernyms -5.333 0.532 -1.791 0.543 12.921 0.555 48.665 0.221
Derivations -1.747 0.571 -0.024 0.536 5.722 0.553 -6.436 0
Antonyms (*) 1.076 0.542 0 0.543 1.013 0.54 28.479 0
R Correlation 0.943 0.990 0.988 0.862

Table 2: Experimental results on different data-sets with different resources using EDITS. (*) Antonyms
have negative polarity.

P1EDA
RTE-3 eng RTE-3 ita RTE-5 eng SICK eng

RID Accuracy RID Accuracy RID Accuracy RID F1
0-Knowledge 0 0.527 0 0.517 0 0.506 0 0
Lemmas 97.215 0.682 84.594 0.706 43.221 0.601 523.342 0.485
Synonyms -4.876 0.533 5.343 0.516 10.138 0.521 12.386 0
Hypernyms -5.333 0.527 -1.791 0.512 12.921 0.543 48.665 0.038
Derivations -1.747 0.553 -0.024 0.512 5.722 0.528 -6.436 0.018
Antonyms (*) 1.076 0.532 0 0.517 1.013 0.52 28.479 0
Paraphrases -11.668 0.52 18.049 0.5075 33.803 0.563 -67.148 0.015
R Correlation 0.987 0.967 0.959 0.983

Table 3: Experimental results on different data-sets with different resources using P1EDA. (*) Antonyms
have negative polarity.

RIDC Accuracy (P1EDA) R Correlation
0-knowledge 0 0.527
Lemmas+Synonyms 92.338 0.683
Synonyms+Hypernyms -10.209 0.526
Hypernyms+Antonyms -6.409 0.528

0.996
ALL resources 84.181 0.687

0.995
Paraphrases+Synonyms -16.296 0.523

0.993

Table 4: Results on combining multiple resources using P1EDA.

and it achieved results (i.e. 0.68 on English RTE-
3, 0.70 on Italian RTE-3, 0.60 on RTE-5) which
can be considered at the state-of-art for publicly
available systems.

6 Combining RIDs of Multiple Sources

While the previous sections have confirmed our
hypothesis that the RID index is correlated with
the performance of RTE algorithms using sin-
gle resources, the aim of this Section is to show
that the RID obtained from a combination of re-

sources is still correlated with the algorithm per-
formance.

We define the RID of multiple resources,
called Combined Resource Index Differential
(RIDC) as the sum of the RIDs of the single re-
sources. For instance, in Table 4, the combined
RIDC of Lemmas+Synonyms (i.e. 92.338) is ob-
tained summing the RID for Lemmas (97.215,
see Table 3) with the RID for Synonyms (i.e. -
4.876). Intuitively, the sum of two RIDs for the
resources LR1 and LR2 corresponds to the RID
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of a single resource composed by LR1 and LR2,
under the assumption that they are disjoint, i.e.
that the set of alignments that LR1 and LR2 pro-
duce is disjoint. In order to take into consider-
ation the combination of non-disjoint resources,
the RID of the intersection has to be subtracted,
as shown in equation 5 (combining positive re-
sources) and equation 6 (combining a positive and
a negative resource).

RIDC (LR+
1 ,LR+

2 ,D) = RID(LR+
1 ,D)+

RID(LR+
2 ,D) −RID(LR+

1 ∩LR+
2 ,D)

(5)

RIDC (LR+
1 ,LR−2 ,D) = RID(LR+

1 ,D)−
RID(LR−2 ,D) −RID(LR+

1 ∩LR−2 ,D)

(6)

We conducted a number of RID combination
experiments, reported in Table 4. First, we used
four disjoint resources, whose RIDs show differ-
ent characteristics on the RTE-3 dataset. As re-
ported in Table 3, lemmas have a high and pos-
itive RID; synomyms and hypernyms are both
resources with positive polarity, and both have a
slightly negative RID; antonyms is a resource
with negative polarity and slightly positive RID.
For each pairwise combination, we run P1EDA
for calculating entailment judgments, and then we
computed the correlation between the accuracy of
the algorithm and the RID of the combination,
calculated summing the RIDs.

Then, we experimented a combination of the
five resources (including the 0-Knowledge base-
line). The result (”All resources” line in Table 4),
again shows very high correlation with the accu-
racy of the system. We think that the minor de-
crease in the correlation (i.e. from 0.996 to 0.995)
is due to few cases of overlap among the resources,
particularly some synonyms are also hypernyms,
which we did not filter out.

Finally, we run a combination experiment us-
ing paraphrases and synonyms, two resources that
show a relatively high level of overlap in RTE-3.
Here the goal is to test that subtracting the RID
of the intersection of the two resources results in
a better correlation. Accordingly, we have calcu-
lated both the simple RID (i.e. without subtract-
ing the RID of the intersection) and the combined
RIDC . We note that the alignments in the in-
tersection are almost equally distributed between
positive and negative pairs, resulting in very close

RIDs, namely -16.544 for the simple RID, and
-16.296 for the combined one.

7 Final Discussion and Conclusion

According to the initial working hypothesis, we
have shown that the RID index is highly corre-
lated with the accuracy of RTE systems, a result
that allows to use the RID as a reliable indica-
tor of the impact both of a single resource and
of a combination of them. We now have both
an empirical explanation of the impact of a lexi-
cal resource over a certain inference task, and an
operational, algorithm-independent procedure for
predicting the performance of a class of available
RTE algorithms.

We now discuss what we can learn from the
achievements reported in the paper, and how we
can take advantage of our findings in order to de-
sign more effective text-to-text inference systems.

A first finding is that RIDs of popular lexi-
cal relations among words are quite close to 0,
which indicates that their distribution is not use-
ful to discriminate positive and negative pairs in
current text-to-text data-sets. As a second find-
ing, the Resource Impact RI (equation 1), which
tells us how much a resource is used for a cer-
tain data-set, is very dis-homogeneous. To give
an idea, the following are the RIs of our resources
on the English RTE-3 data-set: lemmas 682.266,
synonyms 72.709, hypernyms 157.055, morpho-
logical derivations 62.757, antonyms 3.885, para-
phrases 316.717. Finally, although we do not have
quantitative data supporting our intuition, we are
convinced that the coverage of our resources (i.e.
the alignments produced by a resources with re-
spect to the alignments it should produce) is pretty
good, indicating that there is no much room for
improving the resources themselves.

Given the above three elements, i.e. low RID
of resources (even in combination), not homoge-
neous impact of different semantic relations, and
good coverage over the data-sets, we think that fu-
ture improvements in text-to-text inference should
consider more discriminative features, i.e. re-
sources with higher absolute value of RID (e.g.
a wider range of lexical opposition phenomena).
In addition, our findings support the intuition that
lexical phenomena do not exhaust the complexity
of textual entailment and that local compositional
aspects of meaning (e.g. verb argument structure,
scope of negation), need to be exploited.
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