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Abstract

Vector-space models derived from corpora
are an effective way to learn a representa-
tion of word meaning directly from data,
and these models have many uses in prac-
tical applications. A number of unsu-
pervised approaches have been proposed
to automatically learn representations of
word senses directly from corpora, but
since these methods use no information
but the words themselves, they sometimes
miss distinctions that could be possible to
make if more information were available.

In this paper, we present a general frame-
work that we call context enrichment that
incorporates external information during
the training of multi-sense vector-space
models. Our approach is agnostic as to
which external signal is used to enrich the
context, but in this work we consider the
use of translations as the source of enrich-
ment. We evaluated the models trained us-
ing the translation-enriched context using
several similarity benchmarks and a word
analogy test set. In all our evaluations, the
enriched model outperformed the purely
word-based baseline soundly.

1 Introduction

Word meaning representations derived from cor-
pora have recently seen much attention in natural
language processing (NLP), most importantly be-
cause they can be used very effectively to abstract
over the word level in lexicalized NLP systems
(Miller et al., 2004; Koo et al., 2008; Turian et
al., 2010; Bansal et al., 2014; Guo et al., 2014;
Sienčnik, 2015). These representations are de-
rived from corpus statistics, building on the distri-
butional hypothesis that the meaning of a word is
reflected in statistical distributions of the contexts

in which it appears (Harris, 1954). This intuition
can be implemented in a number of ways in prac-
tice; in this work, we focus on models that rep-
resent word meaning as a point in a metric space
(Widdows, 2005; Sahlgren, 2006; Turney and Pan-
tel, 2010; Clark, 2015). In particular, one member
of this family that has been particularly influen-
tial recently is the skip-gram learning algorithm
(Mikolov et al., 2013a), which is derived from the
log-bilinear language model by Mnih and Hinton
(2007). The main reasons for its popularity are its
computational efficiency (Mikolov et al., 2013b),
its high performance in several evaluations, and
the availability of an implementation in the form
of the easily usable word2vec package.

In most cases distributional word representa-
tions disregard the fact that many words have more
than one possible interpretation, or word sense,
and in lexicographical descriptions of a language
we will typically list the senses of a word in dif-
ferent sub-entries (Cruse, 1986). For instance, the
English word bass can refer to a fish, a musical
instrument, the low part of a musical range, etc.
It is imaginable that we could use standard tech-
niques to learn a vector-space semantic represen-
tation from a sense-annotated corpus, but this is
infeasible in practice since fairly large corpora are
needed to induce data-driven representations of a
high quality, while corpora with hand-annotated
sense identifiers are small and scarce. Instead,
there have been several attempts to use unsuper-
vised methods that create vectors representing the
senses of ambiguous words, most of them based
on some variant of the idea that was first pro-
posed by Schütze (1998): that the different senses
of a word can be discovered by applying a clus-
tering algorithm to the set of contexts where it
has appeared. Variations on this idea have turned
up in a number of recent papers (Huang et al.,
2012; Moen et al., 2013; Neelakantan et al., 2014;
Kågebäck et al., 2015). However, unsupervised
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models for discovering word senses are solipsis-
tic in the sense that they are not grounded in the
external world in the way that a language user is.
This leads to the problem that they sometimes tend
to discover different discourses or domains, rather
than true word senses (Tahmasebi, 2013). Because
of this lack of external signals, it seems natural to
try to introduce additional sources of information
into the learning process.

In this paper, we enrich the multi-sense skip-
gram model (Neelakantan et al., 2014) by intro-
ducing external signals, which are implemented
as additional context features during training. In
particular, we use a parallel corpus, where the
foreign-language words work as a source of ex-
ternal information that helps the algorithm form
more distinct clusters. For instance, the fish sense
of bass can be clearly distinguished from the mu-
sical senses if we have access to a Swedish transla-
tion: the fish is called havsabborre, while most of
the musical senses would be translated as bas. Our
approach can be seen as a form of distant super-
vision (Mintz et al., 2009), in contrast to the fully
unsupervised approaches mentioned above.

We evaluated the context-enriched model on
a collection of word similarity benchmarks and
analogy tests, including the contextual word simi-
larity set used in previous work on learning repre-
sentations of different senses (Huang et al., 2012),
and we saw large improvements when comparing
to a baseline without access to the enriched con-
text.

2 Background: the Skip-gram Model
and its Multi-sense Extension

In the skip-gram model (Mikolov et al., 2013a),
a target word w and a context feature c are rep-
resented using vectors from two different vector
spaces, denoted vt(w) and vc(c) respectively. In-
tuitively, we would like the training algorithm to fit
the vectors so that vc(c) · vt(w) is a high number
if we are likely to see c near w, and a low number
otherwise.

In the original formulation of the model, these
two vectors are combined into probability of the
occurrence of a context feature c near a target word
w using the following equation:

logP (c|w) = vc(c) · vt(w)− logZ(c)

where Z(c) is a normalization factor so that the
probabilities sum to 1. In principle, the model

could be fit to a training corpus by maximizing
the likelihood of all the contexts in the corpus, but
due to the normalization factors Z(c) – which are
computed by summing over the whole vocabulary
– this is computationally inefficient, leading to a
number of approximations. Mikolov et al. (2013a)
used a hierarchical decomposition, but after a sim-
plification of the the idea of noise-contrastive es-
timation (Mnih and Kavukcuoglu, 2013), the most
recent word2vec implementation estimates the
word vectors using an approach called skip-gram
with negative sampling (SGNS) (Mikolov et al.,
2013b). This model treats word–context pairs ac-
tually occurring in a corpus as positive training
examples, and synthetic pairs that were generated
randomly as negative examples, and then fits a lo-
gistic model that discriminates between positive
and negative examples:

P (true pair|c, w) =
1

1 + e−vc(c)·vt(w)

During training of the SGNS model, when we con-
sider a true pair (w, c), we generate N synthetic
pairs (w, c′) with the same word but with the c′

randomly selected from the context vocabulary.
While SGNS is not guaranteed to converge to the
same solution as the original skip-gram model, it
is more efficient and has achieved comparable re-
sults in evaluations.

The multi-sense skip-gram model (MSSG) by
Neelakantan et al. (2014) generalizes SGNS by
taking multiple senses into account. This algo-
rithm uses context vectors as in the original skip-
gram model, but it replaces the target word vector
vt(w) for a word w with K different sense vectors
vs(w, k).1 In addition, it uses K vectors µ(w, k)
that represent the centers of the clusters of con-
texts. The learning algorithm works in a fashion
similar to SGNS, but extends it by introducing an
additional sense discrimination step. When the al-
gorithm encounters a wordw, it first represents the
full context window by building a sum v̄c of the
context vectors of the words appearing in the win-
dow. It then selects sense k whose context cluster
µ(w, k) maximizes the dot product with v̄c. Fi-
nally, it carries out a gradient update (similar to
that in SGNS) of the sense vector vs(w, k) and the
context vectors vc(c), and adds v̄c to the context
cluster µ(w, k).

1Neelakantan et al. (2014) also described a nonparametric
variant where the number of senses was determined automat-
ically. We did not use that model since the distributed code
did not include that part.
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3 Context Enrichment

One of the fundamental criticisms against distri-
butional word learning claims that the disembod-
iment from physical world will cause problems
due to the fact that many concepts are actually
grounded in perception and a sample text from
a language alone does not carry all information
about the concept behind the word (Andrews et
al., 2009).2 The perceptual information which has
been claimed to improve these models are usually
multi-modal data, for instance images as visual
context of word usage in a language. In this work,
we will instead enrich the training context with an-
other type of supplementary text – the translation
of the English text into Swedish – in order to im-
prove the final word sense discrimination model.

In our method, we use a parallel corpus such as
Europarl (Koehn, 2005), which provides sentence-
by-sentence translations. Then by aligning words
in each sentence we will add corresponding list of
words in enhancing language into the list of words
in skip-gram context window. Figure 1 illustrates
why we expect this to be useful for forming bet-
ter word sense clusters. In the figure, the first oc-
currence of the word plant, meaning an industrial
or power plant, is translated by the Swedish word
anläggning; the second example means a botani-
cal plant and is translated as planta. This shows
clearly that the external context in the form of
a translation can be useful for discriminating be-
tween senses: an industrial plant would never oc-
cur in Swedish as planta, or vice versa.

Figure 1: Examples of two occurrences in Eu-
roparl of the English word plant and their respec-
tive translations into Swedish.

2One can also relate this problem to the “symbol ground-
ing problem”, by saying that the result of a distributional
learning algorithm will be just meaningless symbolic rela-
tions between words. But the symbol grounding problem is a
problem for specific application of these models in cognitive
modeling, which is also mentioned by Harnad (1990).

3.1 Preprocessed Corpus
In order to facilitate and simplify the training pro-
cess, we isolated the word alignment process from
the rest of the training. In this isolated process
in addition to the word alignment process which
takes two parallel corpora and suggests one-to-
many word alignments per sentence 3, we produce
an enriched corpus by annotating the source cor-
pus with words from the target corpus.

In order to get better results from word align-
ments, we applied a part-of-speech tagger on the
Swedish and English words before running the
aligner. Then we by taking the union of two word
alignments with fast align (Dyer et al., 2013) in
both forward and reverse setups, we produced one-
to-many mappings. We then read sentences from
both corpora in parallel with their word mappings
and generated the annotated corpus, which we re-
fer to as the enriched or augmented corpus. The
enriched corpus simply is the annotated source
corpus which each word has its list of aligned
words from target corpus.

During the training process, the Enriched Multi-
Sense Skip-Gram Model will parse the annotated
tokens, and add the enriched context to the skip-
gram contexts as we describe in next section.

3.2 Enriched Multi-Sense Skip-Gram Model
The Enriched Multi-Sense Skip-Gram Model
(EMSSG) extends the previous work by Neelakan-
tan et al. (2014) by adding an extra step that incor-
porates external information into the context rep-
resentation. In this procedure, sense vectors will
be trained only for words in the source language;
however, for any token occurring as context – in-
cluding the translations – we produce a context
vector. The enriched corpus is made of words and
their enriched context (w,C). From each word
from the source corpus wt ∈ W the correspond-
ing enrichment is a subset of tokens from a parallel
corpus Ct ⊂W ′:

W = {wt}t∈1,...,T ,W
′ = {w′t}t∈1,...,T ′

Basically, each token (wt, Ct) is a result of word
alignment which we produce in the preprocessing
phase:

Ct = {w′at(1)...w
′
at(mt)

}
3In more complicated translation alignments, such as

phrase-to-phrase mappings, we still can take the one-to-many
implementation of these alignments in our one directional
process.
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In the training process, the enrichment context
Ct will be added to the skip-gram context words
Csg = {wt−Rt , . . . , wt−1, wt+1, . . . , wt+Rt} to
create a combined context: C = Ct ∪ Csg. As
in the original MSSG, the vector representation of
the combined context will then be used to predict
the right sense for the observed context. We first
build a representation of the full context by sum-
ming all the individual context vectors:

v̄c =
∑
w∈C

vc(w)

This vector is then compared to all the context
cluster centroids in order to predict the sense:

st = argmax
k=1,2,...,K

sim(µ(wt, k), v̄c)

Algorithm 1 shows the pseudocode of how we
use the enriched context representation to improve
the sense prediction and their corresponding clus-
ters. The enriched context is only used during
training as a form of distant supervision: at test
time, only the skip-gram contexts are used when
predicting the sense.

4 Experiments

To evaluate the enrichment model, we trained a
baseline MSSG model without enrichment from
English Europarl. Then by enriching the En-
glish Europarl with Swedish parallel corpus, as
described in previous section, we trained the en-
riched model with the same setup.

In these models the dimension size is d = 300
and window size is N = 5, and number of senses
is k = 2. To enable faster training we chose to
train sense vectors only for top 1000 most frequent
words, excluding stop words.

4.1 Word similarity tests

We evaluate our models with 3 different word sim-
ilarity tests:

• the SimLex999 similarity test (Hill et al.,
2014)
• the WordSim353 tests in both similarity and

relatedness (Ponzetto and Strube, 2011)
• the Stanford Contextual Word Similarity test

(Huang et al., 2012)

The evaluation procedures for word sense mod-
els in all of these test sets are identical:

Algorithm 1 Training Algorithm of EMSSG
model
input (wt, Ct)t∈{1,2,...,T}, d, K, N .
for t = 1, 2, . . . , T
for k ∈ {1, . . . ,K}

initialize µ(wt, k) = 0
randomly initialize vs(wt, k), vc(wt)

for t = 1, 2, . . . , T ′

randomly initialize vc(w′t)
for t = 1, 2, . . . , T

Rt ∼ {1, . . . , N}
Csg ← {wt−Rt , . . . , wt−1, wt+1, . . . , wt+Rt}
C ← Ct ∪ Csg

v̄c ←
∑

w∈C vc(w)
st ← argmaxk=1,2,...,K sim(µ(wt, k), v̄c)
update cluster center:
µ(wt, st) with new context C

for c words in C
gradient update: vs(wt, st) with vc(c)
gradient update: vc(c) with vs(wt, st)

C ′ ← Noisy Samples(C)
for c words in C ′.

negative gradient update:
vs(wt, st) with vc(c)

return vs(w, k), vc(w), vc(w′) ,µ(w, k)
for w ∈W,w′ ∈W ′, k ∈ 1, ...,K

• Disambiguate word senses for each pair of
words.

• Quantify the similarity of pairs with the co-
sine similarity measure between two sense
vectors.

• Calculate the correlation between gold stan-
dard and the estimated similarity.

In order to disambiguate the sense for a word,
we need its context to find the most likely sense
vector for that word. The sense disambiguation
separate these tests in two groups: those with word
contexts and those without word contexts.

4.1.1 Non-contextual tests
Both SimLex999 and WordSim353 are designed
for evaluating word vector representations. Al-
though the lack of context to describe the actual
usage of word makes them unsuitable for word
sense evaluation, they have been used to evaluate
sense-aware vector-space models (Reisinger and
Mooney, 2010; Neelakantan et al., 2014), so we
include a comparison for completeness. However,
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despite the absence of context, human judges es-
timate their similarity based on their own under-
standing of senses of those words. Similar to pas-
sive sense selection in humans4, we consider each
word as context for the other word to select the
best sense. With a twist, instead of using context
vectors to predict the sense of the other one, we ba-
sically choose the most similar vectors pairs as de-
sired vectors. This is equivalent to what Reisinger
and Mooney (2010) term the MaxSim score.

To understand why we use this procedure, con-
sider two very different words: in this case, we
expect that all of their senses should be very dif-
ferent. Considering two words that the evaluators
considered to be similar, it is likely that this does
not apply to all of the senses, but only a specific
pair. This motivates why we take the highest sim-
ilarity of senses, and we think that this procedure
is more meaningful than the AvgSim score used by
(Reisinger and Mooney, 2010).

The English-Swedish Europarl’s vocabulary
covers 758 of word pairs in SimLex999 and 163
pairs in WordSim353 similarity test and 218 pairs
WordSim353 relatedness test.

Table 1 shows the results of the evaluations on
the three non-contextual benchmarks. As is cus-
tomary in this type of evaluation, the similarity
scores output by the model are compared to the
gold standard using the Spearman correlation co-
efficient. In all three tests, the model with access
to an enriched context representation clearly out-
performs the baseline MSSG model.

Model SL999 WS353-sim WS353-rel
MSSG 0.29 0.44 0.35

EMSSG 0.36 0.52 0.39

Table 1: Spearman correlation values of the
two systems when evaluated on the three non-
contextual similarity test sets.

4.1.2 Contextual test
The Stanford Contextual Word Similarity test
(Huang et al., 2012) consists of pairs of words and
a sentence as an example for their usage. The

4Cruse (1986) used this term “passive selection” in con-
trast with “productive selection” as psycholinguistic matter,
to describe sense selection among pre-established senses.
Whenever we use this type of corpus driven word sense mod-
els, we only have passive selection because we only have
pre-established senses. By using this term here, we want to
emphasize that even in absence of context we can take most
related senses as most obvious choice of sense

sense disambiguation with the provided sample
will be done by making a context vector as we
have in MSSG models: the evaluation using this
procedure is equivalent to the localSim procedure
used by Neelakantan et al. (2014).

The English-Swedish Europarl’s vocabulary
covers 1498 samples of this dataset. In Table 2,
we present the results (again, Spearman correla-
tions) of the evaluation with this set. Again, the
enriched model outperforms the baseline.

Model Correlation
MSSG 0.45

EMSSG 0.53

Table 2: Evaluation on the Stanford contextual
word similarity test set.

4.2 Word analogy test

The word analogy data set provided by Google
(Mikolov et al., 2013c) is also another test for
vector representations of words. The judgement
on the word relation are based on their seman-
tic or syntactic identity. For instance, an ex-
ample of a semantic analogy is Paris:France =
Stockholm:Sweden, while sleeping:sleep = break-
ing:break is an example of a syntactic analogy.

The test is about guessing the correct word vec-
tor by only having the three other word vectors.
For instance, if the missing vector is vgold =
v(“queen′′), the nearest neighbour word vector to
the vector vanalogy = v(“king′′) − v(“man′′) +
v(“woman′′) should be vgold. Similar to non-
contextual word similarity tests, this test also
needs a novel sense disambiguation method.

To find those word-senses that intended to be
in each analogy test, we can suppose that correct
senses in these tests should lead to only one cor-
rect answer. It means that the nearest neighbour to
analogy vector vanalogy should have a significant
similarity comparing to other close neighbours of
this vector. We can define a score to find the best
analogy vector based on maximized margin from
other neighbours. With k number of senses per
word in the model, there are k3 possible vanalogy.

For each possible vanalogy and its top 10 clos-
est sense vectors V = {v1, ..., v10}, we define the
score of vanalogy based on similarity of the nearest
neighbour and its margin with other neighbours:

• δi is the similarity margin between vi ∈ V
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and the nearest neighbour v1:

δi = sim(v1, vanalogy)− sim(vi, vanalogy)

• The score of vanalogy:

score =
∑10

i=1 δ
2
i

δ210

× sim(v1, vanalogy)

Higher score in this formula indicates that v1,
the most similar vector to vanalogy, has a sig-
nificant similarity to vanalogy compering to other
possible neighbour vectors. By taking the best
vanalogy from all possible vanalogy, we automati-
cally pick 3 sense vectors for analogy test.

Table 3 shows the results of the evaluation
on the Google analogy test set (Mikolov et al.,
2013c). For the third time, the translation-
enriched model outperforms the MSSG baseline
in all tests.

Model Total Syntactic Semantic
MSSG 0.13 0.04 0.17

EMSSG 0.25 0.09 0.32

Table 3: Evaluation on the Google analogy test set.

5 Related Work

The idea of integrating different modalities into
corpus-based vector representations has generated
much interest recently (Lazaridou et al., 2014;
Socher et al., 2014). The work in this area that is
most similar to ours is that by Hill and Korhonen
(2014) and : they extend the context representation
of the skip-gram model with features representing
the external information like we do, although they
do not take word senses into account.

Parallel corpora have been used in a number of
research projects in order to derive crosslingual
word representations; this is different from our
goal, which is to use them to help the monolin-
gual model form better sense clusters. Klementiev
et al. (2012) presented a neural multi-task learn-
ing model that used bilingual cooccurrence data
as a way to connect the models in two languages,
and Utt and Padó (2014) described a syntactically
informed context-counting method. Faruqui and
Dyer (2014) presented a method that combine two
monolingual vector spaces into a multilingual one
by Canonical Correlation Analysis. In addition
to vector-space models, bilingual and multilingual

corpora have been used to derive a number of non-
geometric corpus-based representations, such as
Brown clusters (Täckström et al., 2012) and topic
models (Vulić et al., 2015).

Finally, the use of word translations as a way
to distantly supervise word sense disambigua-
tion and discrimination systems is an idea that
goes far back (Dagan et al., 1991; Dyvik, 2004)
and has reappeared many times. This intuition
was behind a number of SemEval cross-lingual
word sense disambiguation and lexical substitu-
tion tasks (Lefever and Hoste, 2010; Mihalcea et
al., 2010).

6 Conclusions

We have presented a general technique called con-
text enrichment that allows us to use external in-
formation to multi-prototype vector-space models
of word meaning. The intention of this approach
is that the external signal helps the model form
more coherent and well-separated clusters during
the training process, and it is not necessary during
testing. The approach that we have evaluated is a
straightforward extension of the multi-sense skip-
gram model by Neelakantan et al. (2014), but we
imagine that other models (for instance Huang el
al., 2012) could be extended in a similar fashion.
The model can integrate any kind of language-
external signal as long as it can be represented as
a contextual feature taken from a finite vocabu-
lary. In this work, we enriched the context using
word translations taken from the Europarl corpus
(Koehn, 2005).

We evaluated the multi-sense vector models
trained with translation-enriched contexts using a
number of different benchmarks: word similarity
tests, a contextual similarity test, and a word anal-
ogy test. In every experiment we tried, the en-
riched model outperformed the non-enriched base-
line.

It seems straightforward to extend our work to
a setting where other types of features are used,
and we would like to explore this area further. In
particular, we would like to integrate multimodal
input (Hill and Korhonen, 2014), for instance with
information extracted from images. This could
lead to several interesting experiments where the
effect of different modalities on word sense dis-
covery could be investigated.
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