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Abstract 

Analyzing how people discuss about health-related 
topics on dedicated forums and social networks such 
as Twitter, can provide valuable insight for syndromic 
surveillance and to predict disease outbreaks. In this 
paper we present a minimally trained algorithm to 
learn associations between technical and everyday 
language terms, based on pattern generalization and 
complete linkage clustering, and we then assess its 
utility on a case study of five common syndromes for 
surveillance purposes.  

1. Introduction 
Infodemiology is defined as “the science of 
distribution and determinants of information in 
an electronic medium, specifically the Internet, 
with the ultimate aim to inform public health and 
public policy” (Eysenbach, 2006). A seminal 
work in this area is (Ginsberg et al., 2009), in 
which the level of influenza in the U.S. is 
estimated using the relative frequency of search 
queries related to influenza-like illness. 
Similarly, in (Althouse et al., 2011), the authors 
demonstrate that query search volumes 
associated to Dengue fever can predict the 
incidence of Dengue. Another recent study (Xu 
et al., 2011) analyses the problem of predicting 
the tendency of hand-foot-and-mouth disease  
(HFMD), clustering HFMD-related search 
queries, medical pages and news reports. Query 
search volumes are estimated using Google 
Trends (GT) 1 or Google Flu, however, forums 
and micro-blogs (like Twitter) appear to be a 
better source of information, since keywords 
occur in contexts. Contexts make it possible to 
use text mining techniques for sense 
disambiguation, topic filtering and mood 
analysis (Berendt, 2011; Corley, 2009; Von Etter 
et al., 2010; Cohen and Hersh, 2005; Paul  and 
                                                                    
1 http://www.google.com/trends/ 

Dredze, 2011). Among the others, the problem of 
tracing patient’s naïve medical terminology is a 
very  crucial one (Dahm, 2011; Molina 
Healthcare, 2004). Consider the following 
striking difference in the usage of terms 
describing the same health conditions, the first 
by a clinician, the second by a patient: 
“Clinicians should maintain a high index of 
suspicion for this diagnosis in patients 
presenting with influenza-like symptoms that 
progress quickly to respiratory distress and 
extensive pulmonary involvement.”2  “For the 
past 3 days I have had a stuffy, runny nose, 
congested chest, fever, sore ears and throat and 
burning eyes.  I’ve been taking cold and flu 
medication, and it doesn't help”3. Clearly, the 
patient’s symptoms should induce “a high index 
of suspicion”, but for an automated system to 
capture a similarity between the two symptom 
descriptions is not obvious. Being able to 
understand the way people talk about their health 
conditions in “peer to peer” communications is 
crucial for an effective monitoring of health-
related behaviors based on social data.  

In this paper we present a minimally 
supervised algorithm to learn patient’s jargon 
and we apply it to the analysis of 5 common 
syndromes. We obtain an impressive correlation 
with existing official data, and furthermore, we 
are able to monitor not only a disease outbreak, 
but its related symptoms, which is a clear 
advancement over previous works in this area. 
The paper is organized as follows: in Section 2 
we present the algorithm in detail, in Section 3 
we describe the corpora and tools used to 
monitor patients’ discussions and we analyze 
five cases of interest for epidemiologic 
surveillance. Section 4 is dedicated to the 

                                                                    
2 www.ncbi.nlm.nih.gov/pubmed/20085663 
3 ehealthforum.com 
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analysis of related work, and Section 5 presents 
our concluding remarks. 
2. Mapping Medical Jargon And 

Everyday Language 
In this Section we present a minimally 
supervised algorithm to learn from the web 
(Wikipedia, Google snippets, and other 
resources) a set of generalized patterns to 
establish a correspondence between technical 
and naïve jargon, and to identify common 
expressions used by patients to describe their 
medical conditions.  The algorithm starts with a 
relatively small learning set MC of medical 
conditions, composed by pairs (tti ,nt j ) , where tti
is a technical term and nt j a naïve term4, e.g. 

<myocardial infarction, heart attack>, <emesis, 
vomiting> etc. The set MC is divided in three 
subsets So , S1and S2  used for learning, refining 

and testing.  The algorithm has four steps: 
1. Web mining step: using S0 , we extract from 

the Web sentence snippets including both 
terms; 

2. Clustering step: we generalize lexical 
patterns between a tti and an nt j  (or vice  
versa) and create weighted clusters of similar 
patterns; we also learn generalized 
expressions for tti and nt j ;   

3. Reinforcement step: using S1 , we test the 
precision and recall of each pattern and 
adjust cluster weights; 

4. Testing phase: The algorithm is tested on S2  
and  the steps are repeated for any possible 
permutation of So , S1and S2 .  

As a preliminary step, we define a policy to 
generalize lexical patterns and terminological 
expressions for medical conditions, as well as a 
distance measure to compute the similarity 
between patterns. Let tti and nt j be single or 
multi-word expressions describing a technical or 
naïve medical condition, respectively, and let 
p = w1,w2,...w p  be a word sequence between 

them, found on some document or web resource, 
e.g. “abdominal obesity, colloquially known as 
belly fat”. Note that we can have tti < p > nt j , as 

                                                                    
4 In what follows, whenever a preposition applies to either a 

technical term or a naïve term, we use the notation t and 
pt (term and partner term) or ct (candidate partner term).   

in previous example, or nt j < p ' > tti  as in “belly 
fat is known clinically as abdominal obesity”. A 

pattern p is  generalized as  p ' = w1
' ,w2

' ...w p
'

where: 

(1) wi
' =

POS (wi ) otherwise

wi
*if POS (wi )∈ NOUN ,VERB,PREP,PUNCT ,"or"{ }"

#
$

%$  
where wi* is the word lemma and POS(wi ) is the 
part of speech obtained with a POS tagger5. For 
example, if p=”is another word for”, then p’=be 
#DT  word for. Since tti and nt j  are often multi-
word expressions, e.g. “high level of potassium”, 
we apply pattern generalization also to these 
terminological strings.   A multi-word expression 
for a term describing a medical condition is 
generalized as follows: 

(2) wi
' =

else w
i
' =wi if freq(wi )>ϑ

else w
i
' =POS (wi )

BODYPART if wi∈ eye,nose,skeleton..{ }
DISCOMFORT if wi∈ pain,itch,ache,.miserable,...{ }

"

#
$
$

%
$
$

 

For example, muscle weakness, heart attack, hair 
fungus, generalize as BODYPART #NN. 
Discomfort words and body parts have been 
retrieved from publicly available Web 
resources6. The third generalization rule in (2) 
captures additional frequent words such as 
illness, inflammation, infection, etc. Rules in (2) 
are used to learn generalized sequences sk  for 
medical conditions, using the examples in MC, 
and group them by frequency. We denote with T 
the set of learned generalized medical condition 
patterns. Table 1 shows some of the most 
frequent sequences. 

Sequence Examples 

NN bilharzia,	  fainting,	  clenching,	  chickenpox 

BODYPART NN muscle	   weakness,	   heart	   attack,	   hair	  
fungus 

JJ BODYPART crooked	   tooth,	   stuffy	   nose,	   crooked	  
back,	  dry	  mouth 

inflammation of 
BODYPART 

inflammation	   of	   the	   heart,	  
inflammation	  of	  the	   liver,	   inflammation	  
of	  the	  skin 

Table 1. Four most frequent generalized 
sequences for medical conditions (both tt and nt) 

                                                                    
5 We use the Treetagger http://www.cis.uni-

muenchen.de/~schmid/tools/TreeTagger/ 
6 E.g. for discomfort: 

http://www.macmillandictionary.com/thesaurus-
category/british/Physically-painful-and-describing-pain 
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Given a pattern p, we define three categories for 
its elements w: 
• A := wi ∈ p | POS(wi )∈ NOUN , VERB ≠ be,can..{ }{ }{ }  

• B := wi ∈ p | POS(wi )∈ PREP,ADJ ,PUNCT{ }{ }  

• C := wi ∈ p∧wi ∉ A,B{ }{ }  

Let wA,wB  and wC  be three experimentally 
tuned weights assigned to the word categories A, 
B and C. Given two patterns pi  and pj , the 
distance between the patterns is defined as: 
(3) d ( pi , p j ) =1− (count( pi , p j ,A)×w

A + (count( pi , p j ,B)×w
B

+(count( pi , p j ,C)×w
C )

 
where count( pi , p j ,A) is the amount of common 

words in the two patterns belonging to category 
A. Matches in category A have a higher 
relevance wrt those in the other categories. For 
example, if  the weights are 0.55, 0.3 and 0.15 
respectively, d(“, known in medical terms as”, 
“is another term for”)=0.725  and d(“, medical 
term for”, ”is fancy term for”)=0.25.  
Learning Clusters Of Patterns 
During step 1 of the algorithm (web mining), we 
start with So , and we extract from the Web text 
snippets including the pairs in So . Then, we take 
the word sequence between the two terms, and 
we apply pattern generalization using the rules in 
(1). To reduce noise, we also discard sequences 
whose length is more than 7 tokens, an 
experimentally selected threshold. Let P be the 
set of survived different patterns. For each 
pattern pi ∈ P  we compute a score corresponding 
to the normalized count of different seed pairs 
that supported the pattern, e.g.: 

(4) weight(pi ) =
 | distinct seed pair with pi |

max
j

(| distinct seed pair with p j | )
 

Next, we apply pattern clustering (step 2). For 
pattern clustering, we use an approach called 
complete linkage (Jain, 2010). The clustering 
literature is immense, and many other algorithms 
are available: however, complete linkage avoids 
the so-called chaining phenomenon, which 
causes one cluster to attract most of the 
population members. Furthermore, unlike the 
majority of clustering algorithms, complete 
linkage is not heavily parametric7. In complete 
                                                                    
7 For example, in many algorithms the number of clusters k 

is a parameter.  

linkage, the similarity of two clusters is defined 
as the similarity of the most dissimilar members, 
which is equivalent to choosing the cluster pairs 
whose merge has the smallest diameter. The 
algorithm starts with singleton clusters (e.g. each 
composed by one pattern p∈ P ) and then 
progressively merge two clusters Ci and Cj into 
larger ones, according to the distance function: 
D(Ci,Cj ) = max

pi∈Ci ,pj∈Cj
d(pi, pj ) , where d(pi, pj )  is  

defined in our case by the formula (3). Using 
complete linkage we obtain balanced clusters, 
with low dissimilarity among the members of 
each cluster, for example: “is a very broad term 
defining” “is a general medical term used for” 
“is a general term for” “is the common term 
for”, etc. Conversely, very specific patterns (e.g. 
“your doctor would call it”) have the tendency to 
remain isolated.  We define the following 
measure to weight the quality of the derived 
clusters: score(Ci ) = weight( p j )

p j∈Ci
∑

 
where 

weight( p j ) is computed as in formula (4). 

Term Matching And Cluster Refinement 
Term matching is the process of finding one or 
more candidate partner terms ct for a term t, 
where ct is technical if t is naïve, or vice versa.  
Once a clustering C : C1,C2..Ck{ }has been learned, 
it is used to find unknown technical or naïve 
terms in the following way: we take a term t, for 
example belly fat, and seek in the web for 
domain relevant sentences with this term. As a 
preprocessing step, we eliminate sentences not in 
the medical domain (e.g. if t=plague:  
"The capacitor plague (also known as bad 
capacitors or "bad caps") was a problem with a 
large number of premature failures of aluminum 
electrolytic capacitors ...") using a domain 
heuristics. The formula is the following: 

DomainWeight(s) =
B(s)∩D

B(s)
 where B(s) is the bag 

of words of the retrieved snippet, and D is a set 
of singleton words (only nouns)  extracted from 
a medical terminology8. Sentences with a domain 
weight lower than a threshold α  are discarded.  
We then identify to the left or to the right of t the 
candidates partner terms ct. For example, given 
the sentence (retrieved for t=belly fat): 
“abdominal obesity , colloquially known as belly 
                                                                    
8 We use Freebase 

http://www.freebase.com/view/medicine/disease, but any 
other medical terminology can be used.  
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fat or central obesity” two candidates are 
selected, abdominal obesity and central obesity.  
To select candidates the algorithm uses a 
chunker9 to identify noun phrases, and then 
select the best matching NP in terms of 
likeliness, using the set T of generalized learned 
sequences for medical conditions (see Table 1). 
This allows e.g. to prefer central obesity rather 
than obesity alone. For each candidate partner ct 
of t (e.g. abdominal obesity), we take the pattern 
p between t and ct (“, colloquially known as”), 
and compute its distance wrt the previously 
acquired cluster members, according to: 

d '( p,C j ) =

d ( p, p j )
pi∈C j
∑

|C j |
the most similar cluster is 

therefore: Cp
* =

argminC j∀j d '( p,C j ) otherwise
Ck if p∈Ck
#
$
%

&%
 

Notice that the second rule says that p can be 
assigned to a cluster even though not only the 
pattern itself, but also its generalized structure p’ 
has never been encountered during the learning 
phase. Furthermore, since the same candidate ct 
can be extracted from different sentences and 
patterns pi , the global confidence in a candidate 
is computed as: 

weight(ct) =
max

pi∈Cpi
* (score(Cpi

* )× (1− d '( pi ,Cpi
* ))× (1+ ln( freq(ct))

maxctnin EXP
weight(ctn )  

The max function in the numerator selects the 
highest score obtained by any of the extracted 
patterns pi that support ct, while the smoothing 

factor (1− d '( p,Cp* ))  adjusts the weight of ct 
according to its membership in the selected 
cluster. Finally the factor (1+ ln( freq(ct)) increases 
the weight of ct according to the number of 
patterns that supported ct. The denominator is a 
normalizing factor over all the weights calculated 
for all the terms t in a given run of the algorithm.   
A threshold β is experimentally tuned such that a 
ct is returned only if weight(ct) ≥ β . 

Term matching is used during the reinforcement 
phase (step 3 of the algorithm), which is aimed at 
refining cluster weights, according to their 
precision and recall. During the cluster 
refinement phase, we take the set S1   in MC and, 
separately for each element of a pair (tti ,nt j )∈ S1 , 
we test the recall and precision of the patterns 
                                                                    
9 As for POS tagging, we use the Treetagger  

belonging to the various clusters, in order to 
adjust cluster weights.  In fact certain patterns, 
e.g. “or”, as in “hypoglycemia or low blood 
sugar”  and  “(“,  as in “vomiting ( emesis)” are 
very frequent but have a low precision.   
Given the terms in S1  we test each pattern pi  in 
the following way: ntp ( pi ) = number of true terms 
returned by pi ; n fp ( pi ) = number of false terms 
returned by pi ; n fn ( pi ) = number of true terms 
extracted by pi but below the threshold β . We 
can then compute an additional weight for pi  
that takes into account its performances: 
weightr ( pi ) = (ntp ( pi )+ n fn ( pi ))  

and weight*( pi ) = weight( pi )+weightr ( pi )  

After this step, clusters weights are updated with 
the new pattern weights.  
2.2 Evaluation 
To test the algorithm we take S2  and we perform 
term matching, using the adjusted clusters 
weights. We perform a six-fold cross evaluation, 
in which S0,S1  and S2  are used interchangeably. 
Notice that in each run, the obtained clusters and 
weights can be different, since a different dataset 
is used to extract sentences from the Web. The 
global performances are averaged over all the 
runs. 
For training, refining and testing purposes we 
use a set MC of 193 (tt,nt) pairs from Freebase.  
To extract sentences we used the following web 
resources: Google snippets (up to the allowed 
query limits), Wikipedia, BMC BioMed Central 
Corpus10, UKWaC British English web corpus11. 
During each run of a testing phase, we take a ti
from the dataset “playing the role” of S2 and we 
try to extract from the previously listed web 
resources a set of correspondent partner terms, 
using the clusters and cluster weights learned in 
previous phases. We then compare them with the 
ground truth in S2 . Let TT the set of technical 

terms in the test set and NTi := nt1
i ,nt2

i ,ntk
i{ }  the 

“true” set of naïve terms for each tti ∈ TT . To 
compute performances, we use standard 
measures such as precision, recall and F-
measure, as well as the mean reciprocal rank  
(MRR), a measure that prizes true positives if 
                                                                    
10 http://www.biomedcentral.com/about/datamining 
11 http://trac.sketchengine.co.uk/wiki/Corpora/UKWaC 
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they are top-ranked wrt the set of returned 
answers. MRR is defined as:

MRR = 1
TT

1
rank(nt*)nt*∈NTi∀tti∈TT

∑ where nt*  is a true 

positive for tti retrieved by the algorithm (e.g. 

nt* ∈ NTi ), and rank(nt*) is the position of  nt*  in 
the list returned by the algorithm. Since the test 
is repeated for any possible permutation of the 
three datasets S0,S1  and S2 , the performance is 
averaged over all the six experiments. The 
performance results are reported in Table 2 with
α = 0.38 and (wA,wB,wC ) = (0.55, 0.30, 0.15) . As 
expected, a higher threshold improves precision 
but reduces the recall. Furthermore, the high 
MRR shows that true positives are likely to 
receive a higher score wrt false positives, which 
is a desired property.  
Since often for a technical term there might be 
many naïve terms, and Freebase is far from being 
complete, we asked two physicians (one is a co-
author) to manually evaluate the extracted terms 
according to their expertise. In Table 3 the recall 
is computed considering the number of terms 
considered correct, both above and below the 
threshold.  In the Table, k-Fleiss is the inter-
annotator agreement12. The Table shows a higher 
precision, as expected, however there is quite a 
number of good terms below the threshold (recall 
is 0.49). In applications, the better strategy is to 
use no threshold and ask a physician to mark the 
correct terms. Given a disease under 
surveillance, this manual step is simple and 
requires few minutes, while there would be no 
easy way for a clinician to imagine, without the 
help of a text mining tool, the variety of 
expressions used by patients. 
β  Precision MMR Recall 

0 0.60 0.64 0.73 
0.1 0.64 0.71 0.66 
0.2 0.69 0.82 0.60 

Table 2. Average system performance against 
golden-standard  
β  Precision Recall F1 MMR k-

fleiss 

0.2 0.76 0.49 0.59 0.74 0.53 

Table 3. Manual Evaluation by domain experts 

                                                                    
12 http://en.wikipedia.org/wiki/Fleiss'_kappa#Interpretation 

After the training phase, we selected the best 
performing clustering in the six experiments 
(namely, one with MRR=0,87) as the final model 
for extracting naïve medical language. We notice 
however that performances are not significantly 
variable and seem more related to the searched 
terms (i.e. whether they are more or less popular 
on the web) than to any of the clustering results. 

3. Case Study On Five Syndromes 
In this Section we apply the results of our 
algorithm to a case study of five common 
syndromes: influenza-like illness (with two sub-
cases, ILIECDC and ILIFEVER), common cold, 
allergic rhinitis, and gastroenteritis. Our clinical 
partnership used the results in (Rumoro et al., 
2011) to create 5 queries, each testing for one of 
the following cases13: ILIECDC, ILIfever, 
Gastroenteritis (GASTRO), allergic rhinitis  
(ALLERGY), common cold (COLD).  
For example, the query for  ILIECDC is: 
((fever)OR(chills))OR(malaise)OR(headache)OR(mya
lgia))AND((cough)OR(pharyngitis)OR(dyspnea)) 

We used our algorithm to expand 17 symptom-
related medical conditions (e.g. rynhorrea, 
pharyngitis, myalgia, dyspnea, chills..) 
mentioned in (Rumoro et al., 2011), and we 
retrieved an additional set of 62 naïve terms. 
Each symptom in a query was then expanded by 
adding its alternative retrieved terms. Using the 
available APIs14, we collected a dataset of 
Twitter messages including at least one of the 
retrieved symptoms, from February 1st to May 6th  
2013.  To further extend the set of naïve terms, 
we used the patterns in Table 1 to extract 
additional candidates from our Twitter dataset. 
Overall, 29 additional terms are retrieved in this 
way.  
Systematic keyword analysis has shown that 
being able to trace both technical and naïve 
terminology produces a much larger body of 
evidence. For example, as shown in Figure 1, on 
February 5th there have been 957 tweets 
including watery eyes, bloodshot eyes, etc, and 
393 with conjunctivitis or conjuntivitis. 
Similarly, pharyngitis or laryngitis cumulated 47 
tweets on the same day, while their 
correspondent set of naïve terms occurred 12,440 
times.  

                                                                    
13 http://www.influenzanet.eu/en/results/?page=help 
14 https://dev.twitter.com/docs/streaming-apis 
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To evaluate the quality of retrieved tweets, for 
each of the five syndromes, we extract a set of 
100 positive tweets (those matching the related 
query) and a random sample of 500 tweets not 
matching any query but including at least one 
symptom. Tweets are then examined by the 
physicians, to test whether they can be truly 
considered as reporting symptoms that match the 
considered case definition.  Of course, it is 
impossible to verify if these users are truly 
affected by any of the 5 syndromes. The purpose 
is rather to assess the confidence we can have in 
our methodology as a mean to retrieve from 
Twitter messages that actually refer symptoms 
related to one of the analyzed syndromes. 
Examples of true positives, false positives and 
false negatives are:  
tp: If this is the flu! I am going to be so pissed:/ fever, 
nausea, neck pain, sore throat, all this coughing..its 
back to bed! 

fp: hate when people self diagnose no you haven't got 
'depression' or 'tonsillitis' you've had a bad day and a 
sore throat 

fn: #puking #stomachache #imsorry 

The results of the evaluation (reported in Table 
4) show a remarkable precision, furthermore we 
found no false negatives in the random set of 500 
tweets (the Recall estimate is then 1). We 
provide hereafter an analysis of error causes, 
including those that possibly could produce false 
negatives:  
1. Tweets that report news or someone else’s 

condition: most of these errors are eliminated 
by simply canceling re-tweets or tweets 
including an url, but some still survive, e.g. 
“Symptoms of H1N1 are like regular flu 
symptoms and include fever, cough, sore 
throat, runny nose, body aches, headache, 
chills, and fatigue.” 

2. Negation: the presence of a negation in a 
tweet is not enough to determine if it is a 
negative case. For example: “Not bad. Throat 

infection, fever and flu all at once!” is a true 
positive for ILIECDC, while: “No fever, diarrhea, 

abdominal pain. On Tamiflu now!” is a false 
positive. More complex treatment of 
negation is needed to handle these cases, 
however they are a minority. 

3. There are naïve expressions for a 
medical condition that were not extracted by our 
algorithm. These may cause both false positive 
and false negative. For example, looking at the 
data we found that puking is an additional 
synonym of emesis (vomiting). The previously 
cited example of false negative is precisely due 
to this type of error, since one of the positive 

conditions for gastroenteritis is: (emesis)  AND 

(abdominal pain) where puking is a naïve term for 
emesis and   stomachache for abdominal pain.  

 total tweets fp Precisio
n 

ILIECDC 270,503 3/100 0.97 

ILIfever 24,575 1/100 0.99 

ALLERGY 42,062 0/100 1.00 

COLD 145,657 1/100 0.99 

GASTRO 102,980 15/100 0.85 

Total 585,777 20/500 0.96 

Table 4. Evaluation of the ILI-related case study  
Figure 2 shows the trends of the analyzed 
syndromes. Note that, given the time span under 
analysis there is a high predominance of  COLD 
and ILIECDC, while ALLERGY is growing since 
April, as expected.  
Finally, we aim to correlate our data with those 
reported by the U.S. Outpatient Influenza-like 
Illness Surveillance Network (ILINet), collected 
through the CDC Fluview website15. Figure 3 
shows the time series for our Twitter messages, 
for Google Flu Trends, and the official ILINet 
data. All time series where smoothed by the loss 
function presented in (Cleveland and Devlin, 
1988), to reduce the effect of daily fluctuations. 
The Pearson correlation Google/ILINet is 0.9927 
and our geolocalized16 time series ILIECDC-US 
/ILINet is 0.9965. 
4. Related Work 
To the best of our knowledge (Elhadad and 
Sutaria, 2007) is the only paper in which the 
correspondence between technical and naïve 
terms is analyzed. The paper is however focused 
on pairing (tti ,nt j ) terms when the set of 

technical and naïve terms is pre-determined, and 
defined in UMLS17. Another related area is 
synonym extraction, since naïve terms can be 
seen as synonyms or near synonyms of technical 
terms. In this area, most approaches are based on 
the so-called distributional hypothesis: words 
with similar contexts have a similar meaning. A 
very recent study on synonym extraction is 
described in (Henriksson et al., 2012), where 
random indexing and random permutation are 
applied to automatically extract variants of 
medical terms. We notice that performance is not 
                                                                    
15 http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html 
16 http://www.jmir.org/2012/6/e156/ 
17 www.nlm.nih.gov/research/umls/  
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very high: the best model for synonyms has a 
0.42 recall while the precision is very low: 0.08 
in the best experiment.   

Semantic relation learning is also similar to our 
task at hand, since the objective is to identify 
sequences of words that imply a given relation 
between two terms, e.g. for causal relations: 
“dengue fever is caused by which mosquito”.  
Patterns are either hand crafted, or they are 
automatically learned using some manually 
annotated set of sentences. Another difference 
among the various approaches is between fixed 
(or “hard”) lexico-syntactic patterns, and 
generalized patterns, usually in the form of 
graphs. In her seminal work, Mart Hearst (1992) 
proposed a number of fixed lexical patterns to 
extract hypernyms from sentences, e.g. “X such 
as Y” . Snow et al (2004) first search sentences 
that contain two terms which are known to be in 
a taxonomic relation (term pairs are taken from 
WordNet), as we do for tt-nt pairs; then they 
parse the sentences, and automatically extract 
fixed patterns (features) from the parse trees. 
Finally, they train a hypernym classifer based on 
these features. The approach requires the 
annotation of a possibly very large set of 
sentence fragments to train the classifier, and 
final performance is not so high. Cui et al. (2007) 
propose the use of probabilistic lexico-semantic 
patterns, called soft patterns, to identify 
definitional sentences. Finally, Navigli and 
Velardi (2010) use word-class lattices (WCL) to 
identify definitional sentences, starting from a 
large dataset of annotated definitions, where the 
definiendum and definiens tems have been 
manually annotated. Like for soft matching, 
WCL provide a generalization of patterns, where 
nodes of a lattice are either words or part of 
speech tags.  Our work builds on WCL’s idea of 
replacing words in a sentence fragment with 
POS, while keeping nouns and functional words.  
The subsequent generalization steps are different, 
since we use semantic categories and pattern 
clustering rather than lattices, and furthermore, 
no manual annotation is needed. 

Considering the literature on the use of web data 
for disease prediction, the most relevant work 
related to our study is reported in (Ginsberg et 
al., 2009). In this work the authors fit a linear 
model for predicting ILI epidemics using query 
volumes data and historical data from the CDC’s 
US Influenza Sentinel Provider Surveillance 
Network. To automatically obtain relevant 
keywords they use a set of 5 years, 50 millions 

Google web search queries. To select the 
appropriate keywords from these queries, they 
perform a correlation study for each query, to 
test if it models accurately the CDC ILI data in 
nine regions.  This study is certainly more 
accurate wrt previous similar works that use few 
manually defined keywords (Althouse et al., 
2011), such as flu and influenza. However, first, 
the algorithm depends on the availability of 
critical resources: web query logs are a kind of 
data which is not freely available. Our algorithm 
instead, once the model is learned, allows it to 
extract the relevant keywords automatically 
(possibly with a quick manual post-editing), for 
any disease or symptom. Second, given the large 
amount of initial queries (50 millions), keyword 
selection and correlation estimation for each 
possible keyword becomes a very demanding 
task, and in principle, it should be repeated for 
any disease under surveillance, on continuously 
updated query log data, since new keywords may 
appear (e.g. this year the predominant flu strain 
is H3N2 and still lacks a nickname, previous 
names have been swine flu, bird flu, etc.).  Third, 
measuring query search volumes has the 
problems that we outlined in the introduction 
(ambiguity, sensitivity to external events): blogs 
and forums provide keywords in contexts, 
fostering more interesting types of analyses, as 
shown in our ILI case study. Another recent 
work (Lamb et al. 2013) separates tweets 
reporting infection (flu) from those expressing 
concerns and fear (“a little worried about flu 
epidemic!”). To automatically separate these 
tweets, the authors use a log-linear model and a 
set of fine-grained manually identified features  
(e.g.  expressions of concern, such as afraid, 
worried, scared). This method, which is 
complementary to our symptom-driven 
technique, is reported to obtain 0.9897 Pearson 
correlation with ILINET on a 2009 sample, but 
only 0.7897 in a 2011 sample (when also Google 
Flu obtained 0.8829). 
5. Conclusions 
Overall, the results of this study show that 
knowledge of patient’s language fosters the 
exploitation of social media not only to predict 
disease outbreaks, but also to classify patient 
symptoms in more fine-grained cases. Our 
methodology is more powerful vrs. e.g. Google 
Flu Trends, since it may help estimating the 
seriousness of any disease outbreak, the 
incidence of individual symptoms (e.g. cephalgia 
was a predominant flu symptom this year),  to 
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classify an illness in sub-cases (ILI vrs common 
cold), to detect frequently – and possibly 
unexpected- co-occurring symptoms, etc. For the 

sake of space, we reported here only a fragment 
of our findings. 

 
Figure 1. Total traffic for laryngitis,pharyngitis and correspondent naive terms, and for conjuntivitis 

and correspondent naive terms. 
 

 
Figure 2. Total traffic for the five analyzed syndromes 

 

 
Figure 3. Correlation among Google Flu Trends, ILINet official data, and ILIECDC

  (US data) 
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