
Proceedings of Recent Advances in Natural Language Processing, pages 129–135,
Hissar, Bulgaria, 7-13 September 2013.

An Agglomerative Hierarchical Clustering Algorithm for Labelling
Morphs

Burcu Can
Department of Computer Engineering

Hacettepe University
Beytepe, Ankara 06800 Turkey

burcu.can@hacettepe.edu.tr

Suresh Manandhar
Department of Computer Science

University of York
Heslington, York, YO10 5GH, UK

suresh.manandhar@york.ac.uk

Abstract

In this paper, we present an agglomera-
tive hierarchical clustering algorithm for
labelling morphs. The algorithm aims
to capture allomorphs and homophonous
morphemes for a deeper analysis of seg-
mentation results of a morphological seg-
mentation system. Most morphological
segmentation systems focus only on seg-
mentation rather than labelling morphs ac-
cording to their roles in words, i.e. inflec-
tional (cases, tenses etc.) vs. derivational.
Nevertheless, it is helpful to have a better
understanding of the roles of morphs in a
word to be able to judge the grammatical
function of that word in a sentence; i.e. the
syntactic category. We believe that a good
morph labelling system can also help part-
of-speech tagging. The proposed cluster-
ing algorithm can capture allomorphs in
Turkish successfully. We obtain a recall
of 86.34% for Turkish and 84.79% for En-
glish.

1 Introduction

Most morphological segmentation systems
(Creutz and Lagus (2002; Creutz and Lagus
(2004; Goldsmith (2001)) perform only the
segmentation of words and do not label morphs
according to how they function in a word. As
a rule, some morphemes function as inflective,
whereas some morphemes function as derivative.
However, we do not aim to distinguish inflection
or derivation within a word, but we aim to dis-
tinguish between various types of morphs which
are either inflective or derivative, e.g. allomorphs,
homophonous morphemes. Labelling morphs not
only helps with analysing the segmentation of a
word, but can also help other natural language
problems, i.e. part-of-speech tagging.

The main purpose of this paper is to serve as
a post-processing tool to label morphs that have
been discovered by a morphological segmenta-
tion system. Our main aim is directed towards
the Morpho Challenge competition (Mikko Ku-
rimo (2011)), which provides a platform to com-
pare participant morphological segmentation sys-
tems. In Morpho Challenge, morph labels in a seg-
mented word and the respective morph labels in its
gold standard are compared.

Example 1.1 For example, the gold standard
analyses of ‘arrangements’ and ‘standardizes’ in
Morpho Challenge are given as:

arrangements arrange V ment s +PL
standardizes standard A ize s +3SG

Although in both analyses -s occurs, their la-
bels are different; +PL (plural) and +3SG (third
person singular).

There is not much work done in morpheme la-
belling. Spiegler (Spiegler, 2011) presents two
algorithms for morpheme labelling: one of them
learns morpheme labels once morphological seg-
mentation is completed and the other finds mor-
pheme labels during morphological segmenta-
tion. Both algorithms work in a supervised set-
ting in which ground truth morphemes are pro-
vided. Bernhard (Bernhard, 2008) suggests an-
other morpheme labelling algorithm which labels
morphemes as a stem, suffix, base, or prefix.
Therefore, the proposed labelling method does not
consider any allomorphs or homophonous mor-
phemes.

The paper is organised as follows: section 2
gives the intuition behind this work, section 3 de-
scribes our clustering algorithm, section 4 presents
our experiment results, and finally section 5 and
section 6 conclude the paper with a discussion on
the obtained results.

129

2 Intuition

Most morphological segmentation algorithms
consider only segmenting words into its morphs
and ignore labelling morphs. However, morph
labels are not only useful for other NLP prob-
lems (e.g. PoS tagging), but also they give a bet-
ter understanding on the morphological analysis
of words. There are different types of morphs
having different grammatical functions. The al-
gorithm presented in this paper aims to group
morphs according to their functions within a word.
This grouping is accomplished by considering
two types of distinction among morphemes: allo-
morphs and homophonous morphemes.

2.1 Allomorphs

Morphs may differ in shape but still can carry out
the same function in words, such as the plural mor-
pheme -s and -ies in English. Allomorphs are also
seen quite often in some languages where vowel
harmony1 takes place, such as in Turkish, Hungar-
ian, Finnish, etc. Some examples in Turkish are
given below:

• The plural form (i.e. -lar, -ler): e.g. elmalar
(apples), evler (houses).

• The possessive case (i.e. -in, -un, -ün):
e.g. Ali’nin (Ali’s), Banu’nun (Banu’s),
Üstün’ün (Üstün’s).

• The present tense (i.e. -ar, -ir): e.g. yapar
(he does), gelir (he comes).

• The prepositional case (i.e. -de, -da): e.g.
evde (at home), okulda (in the school).

Vowel harmony is not the only phonological
change which causes allomorphs in Turkish. Fur-
thermore, morphs that are attached to an unvoiced
consonant ending word are also harmonised and
the first morph letters become also an unvoiced
consonant (i.e. p, ç, t, k, s, ş, and h):

• The ablative case (i.e. -den, -ten): e.g.
ülkeden (from the country), sepetten (from
the basket).

• The locative case (i.e. -de, -te): e.g. şehirde
(in the city), kentte (in the town).

1Vowel harmony involves rules on vowels that follow each
other within a word.

• The third person singular (i.e. -dir, -tir): e.g.
nefistir (it is delicious), zekidir (she is clever).

Due to vowel and consonant harmonies, Turkish
comprises of many examples of morphs that have
the same function but that are phonological vari-
ants of each other. It would be beneficial to group
the allomorphs in the same cluster by assigning the
same morpheme label as described before.

2.2 Homophonous morphemes
In contrast to allomorphs, some morphemes might
sound the same phonetically; however, they might
function differently. These morphemes are called
homophonous morphemes (i.e. homophones).
Homophonous morphemes belong to different
clusters, due to the difference in their meanings.
Some examples of homophonous morphemes in
Turkish are given below:

• kalemi: -i might correspond to either an ac-
cusative form (e.g. his/her pen) or a posses-
sive form (e.g. give me the pen) which can be
determined from the context.

• yapın and kapının: -ın corresponds to an im-
perative form in the first example, whereas it
corresponds to a possessive form in the latter.

• geliyorlar and yataklar: -lar corresponds
to 3rd person plural in the first example,
whereas it corresponds to plural in the latter.

Although homophonous morphemes do not oc-
cur as often as allomorphs, it is crucial to deter-
mine homophony in order to be able to distin-
guish morphemes which have different functions
and thereby meanings. Homophonous morphemes
should be grouped in different clusters; however,
allomorphs should be grouped in the same cluster.

3 The Algorithm for Clustering
Morphemes

For morph labelling, we propose a bottom-up ag-
glomerative hierarchical clustering algorithm in
which morphs showing functional similarities are
clustered together. The functional similarities of
the morphs are defined by a set of features as an
input to the algorithm. Therefore, a feature vector
is constructed to represent each morph by a feature
vector. Each feature vector consists of a sequence
of features which are given below:

• Current morph to be clustered.

130

• Previous morph that precedes the current
morph in the analysis of the same word.

• Following morph that follows the current
morph in the same word.

• Stem of the word.

• The last morph of the preceding word.

• The last morph of the following word.

• Morph position in the word (i.e. if the morph
comes just after the stem, then it is 0. If the
morph is the last morph of the word, then it
is 2, and if it is surrounded by other morphs,
this value is 1.)

• Morph length in letters.

Example 3.1 In Turkish, the morph -ıl that
occurs in the analysed sentence “O+n+lar
ceza+lan+dır+ıl+acak+lar.” (i.e. they will be
punished) has got the features given below:

• Current morph: -ıl

• Previous morph: -dır

• Following morph: -acak

• Stem of the word: ceza

• The last morph of the preceding word: -lar

• The last morph of the following word: -

• Morph position in the word: 1

• Morph length: 2

Constructing the feature vector of each morph
initially, morph are placed in distinct clusters. In
each iteration of the clustering algorithm, the two
clusters having the minimum distance are merged.
The distance between two clusters is measured by
Kullback-Leibler (KL) divergence through all fea-
tures in their feature vectors. Recall that KL di-
vergence is not a distance metric, since it is not
symmetric:

KL(p ‖ q) =
∑

i

p(i)log
p(i)

q(i)
(1)

KL divergence can be formed into a symmetric
measure D(p ‖ q) as follows:

D(p ‖ q) = KL(p ‖ q) +KL(q ‖ p) (2)

Figure 1: Average linkage clustering.

We use average linkage clustering, an in-
stance of agglomerative clustering, for clustering
morphs. In average linkage agglomerative cluster-
ing, the distance between two clusters is the aver-
age distance which is calculated through all pairs
of data points in the clusters (see Figure 1):

D(R,S) =
1

NR ×NS

NR∑
i=1

NS∑
j=1

d(ri, si) (3)

where the total distance between two clusters R
and S with sizes NR and NS respectively is the
summation of distances between each data pair in
the clusters. The distance is normalised with the
number of pairs. The cluster pair having the mini-
mum distance is merged in each iteration.

In contrast to single-linkage and complete-
linkage clustering, average-linkage clustering
takes each data member into account; thereby
leads to a more realistic measurement.

Using average linkage clustering, each cluster is
defined by a feature vector which keeps all the in-
formation that comes from each morph in the clus-
ter. For example, the previous morph in a cluster
is a combination of all previous morphs that are
owned by each morph in the cluster. While quali-
tative features are combined, quantitative features,
such as morph position and morph length, are av-
eraged for the feature vector of the cluster. Hav-
ing a feature vector for each cluster, the similarity
between two clusters, c1 and c2, is measured as
follows:

Sim(c1, c2) = αD(CurMorc1 ‖ CurMorc2)

+ βD(PreMorc1 ‖ PreMorc2)

+ δD(FolMorc1 ‖ FolMorc2)

+ γD(Stemc1 ‖ Stemc2)

+ πD(PreWMorc1 ‖ PreWMorc2)

+ κD(FolWMorc1 ‖ FolWMorc2)

+ x|posc1 − posc2 |
+ y|lenc1 − lenc2 | (4)

131

where CurMorc1 denotes the set of current
morphs PreMorc1 denotes the set of previous
morphs, FolMorc1 denotes the set of follow-
ing morphs, Stemc1 denotes the set of stems,
PreWMorc1 is the set of last morphs of previous
words and FolWMorc1 is the set of last morphs
of following words in c1. In addition to the qualita-
tive features, quantitative features posc1 and lenc1

refer to the average position and the average length
of the morphs belonging to the cluster c1. Here,
the quantitative features (i.e. posci ,lenci) are sim-
ply subtracted to find the distance between them.
The weights of each feature are denoted by alpha,
β, δ, γ, π, κ, x, and y.

Imagine that we have two clusters and let the
current morphs be: c1: {-i,-u} and c2: {-i,-ü}. In
order to compute D(CurMorc1 ‖ CurMorc2),
we use Equation 2 over each morph in the com-
bination of two sets; c1+c2: {-i,-u,-ü}. We ap-
ply add-n smoothing to eliminate counts having a
zero value in the vectors (e.g. the probability of -u
would be zero for c2 otherwise).

The algorithm starts with N morphs, each be-
longing to a distinct cluster. In each iteration, the
two clusters with the minimum KL divergence are
merged until all the morphs are merged in one
cluster. The final cluster will be the root node in
the hierarchical tree.

4 Experiments & Results

We used the gold standard analyses of words in
Turkish and English for all of our experiments,
which are provided by the Morpho Challenge
(Mikko Kurimo, 2011). The word lists contain
552 English words and 783 Turkish words. Words
are segmented and the morphemes are labelled in
the gold standard, such that:

abacuses abacus N PL
abstained abstain V PAST

We modified the analyses manually, by replac-
ing morpheme labels with actual morphs, such as:

abacuses abacus es
abstained abstain ed

As an input to the clustering algorithm, we ex-
tracted all morphs in the lists. The final lists con-
tain 567 morphs in English and 1749 morphs in
Turkish. We constructed the feature vectors of all

Morphemes Words
-ism, -ion, heroism, deduction etc.

-ed, -ing
inserted, roofed, leaked,
arising, pulsing, rating etc.

-ness, -ity extensiveness, community,
earthiness etc.

-s townsman, yachts, yachtsman
etc.

-er baby-sitters, planners, match-
makers etc.

-s’ humanities’, protestants’,
swimmers’, reductions’ etc.

Table 1: Some morph clusters in English.

morphs and applied the hierarchical clustering al-
gorithm as described before. Once the trees were
constructed, we cut the trees at different levels to
retrieve the final clusters. Some resulting clusters
in English are given in Table 1.

Since English is not a morphologically rich
language, no homophonous morphemes or allo-
morphs could be captured. The reason for this is
that morphs do not have sufficient contextual in-
formation. Nevertheless, morphs that show sim-
ilar functional properties (i.e. tenses, derivative
morphemes) are captured by the clustering algo-
rithm. For example, both -ism and -ion are deriva-
tive morphemes that make the word a noun; -ed
and -ing are inflectional morphemes that define the
tense of a verb and -ness and -ity are derivative
morphemes. There are many redundant clusters
that have only one type of morpheme, such as plu-
ral morpheme -s, possessive morpheme -s’ etc.

Experiments in Turkish provide a better under-
standing of what type of clusters are obtained from
the clustering algorithm. Some resulting clusters
in Turkish are given in Table 2. It is easier to
see from the results that a good number of allo-
morphs are captured in Turkish due to the widely
used vowel harmony. For example, allomorphs -i
and ı; -dır and -dir, and -nı and -ni are captured. In
addition to allomorphs, functionally similar mor-
phemes -a, -e, -i and -ı, -in that refer to dative,
accusative and genitive case respectively are also
captured.

In order to evaluate our results, we again
replaced the morphs in the gold standard with the
obtained cluster labels, such that:

132

Morphemes Words

-a, -e, -i, ı, -in
faturalarını, kongreleri,
bilinmelerine, bağışıklığın,
mağazalarına etc.

-dır, -dir almaktadır, ödeyeceklerdir,
değinilmelidir etc.

-let, -t işletecek, kuruturken,
uzatabilir etc.

-lığ, -liğ, -yış başarısızlığı, başlayışını, is-
teksizliğinin etc.

-nı, -ni, -ne, -na bırakabileceğini, yaka-
landığını, düzeylerine,
mağazalarına etc.

Table 2: Some morph clusters in Turkish.

commutation Cluster50 mutate +Cluster34
contradiction contradict +Cluster34
decoded Cluster50 code +Cluster43
knifed knife +Cluster43

Suffixes were inserted with a plus sign, whereas
the other morphs were inserted with their labels.
This provides a more comprehensive analysis on
affixes and non-affixes separately.

We applied the evaluation method that Morpho
Challenge (see Mikko Kurimo (2011)) follows.
In the Morpho Challenge evaluation method, seg-
mentations are evaluated through word pairs that
have common morphemes. For example, in order
to decide whether book-s is segmented correctly,
another word in the results having the morph -s is
found. Let’s imagine we find pen-s in the results to
make a word pair with book-s. In order to decide
whether book-s is segmented correctly, we find the
two words in the gold standard segmentations and
check whether they really share a common morph.
In that case, it does not matter whether the morphs
or morph labels are used.

We tested our algorithm with different combina-
tions of features. The results for Turkish by using
the features, previous morph, following morph,
current morph, stem and morph position are given
in Table 3. The results consist of 162 clusters. The
number of clusters is chosen in accordance with
the highest evaluation score obtained.

Here, two types of analyses are presented: non-
affixes and affixes. As mentioned above, the evalu-
ation with non-affixes considers only non-affixes;
whereas the evaluation with affixes considers the
rest of the morphemes (i.e. stems and prefixes).
Scores show that the algorithm is better at la-
belling suffixes than prefixes.

Non-affixes Affixes Total
Precision 84.53 62.14 68.02
Recall 77.62 28.40 42.86
F-measure 80.93 38.98 52.58

Table 3: Evaluation results according to 162 clus-
ters in Turkish by employing previous morph, fol-
lowing morph, current morph, stem and morph po-
sition as features.

Non-affixes Affixes Total
Precision 87.15 57.45 65.04
Recall 79.51 31.76 45.79
F-measure 83.15 40.91 53.74

Table 4: Evaluation results according to 162 clus-
ters in Turkish by employing previous morph, fol-
lowing morph, current morph, stem, morph posi-
tion and morph length as features.

Results from another experiment that employs
previous morph, following morph, current morph,
stem, morph position and morph length are given
in Table 4 for Turkish. The results are analysed ac-
cording to the same number of clusters in order to
investigate the impact of using different features.
Here we can observe that using morph length as a
feature improves the results.

The third experiment explores the impact of us-
ing the last morph of the previous word and the
following word. The results of the experiment
that uses previous morph, following morph, cur-
rent morph, stem, the last morph of the previous
word and the last morph of the following word are
given in Table 5 for Turkish. The results show that
using the last morph of the previous and follow-
ing word does not improve the scores, but reduces
contrarily.

All experiments that are presented above use
equal weights for the features. We carried out an-
other experiment by assigning weights to the fea-
tures according to their importance. We set the
weights manually, such that:

Sim(c1, c2) = 0.3D(CurMorc1 ‖ CurMorc2)

+ 0.2D(PreMorc1 ‖ PreMorc2)

+ 0.2D(FolMorc1 ‖ FolMorc2)

+ 0.2D(Stemc1 ‖ Stemc2)

+ 0.1|posc1 − posc2 | (5)

The results of the weighted clustering algo-

133

Non-affixes Affixes Total
Precision 87.93 46.95 61.06
Recall 73.05 12.03 29.96
F-measure 79.80 19.15 40.20

Table 5: Evaluation results according to 162 clus-
ters in Turkish by employing previous morph, fol-
lowing morph, current morph, stem, morph posi-
tion, the last morph of the previous word and fol-
lowing word as features.

Non-affixes Affixes Total
Precision 93.82 69.64 80.23
Recall 86.34 44.08 74.41
F-measure 89.92 53.98 77.21

Table 6: Evaluation results by employing
weighted features, which are previous morph, fol-
lowing morph, current morph, stem and morph po-
sition in Turkish.

rithm that employs the previous morph, following
morph, current morph, stem and morph position
are given in Table 6 for Turkish.

We also evaluated the algorithm for English
by employing previous morph, following morph,
current morph, stem, morph position and morph
length as features. We obtained the results accord-
ing to 100 clusters. The results are given in Ta-
ble 7. In the experiment, the features were also
weighted the same as the previous experiment.

5 Discussion

We tested the proposed clustering algorithm with
various combinations of features. It should be
noted that using previous and following morphs
in English is not very beneficial due to the simple
morphology of the language. However, we used
these two features because of a number of words
having more than one morph. Since Turkish is
richer in morphology compared to English, pre-
vious and following morphs are more beneficial in
clustering of Turkish morphs.

Another issue in Turkish morphology that needs
to be noted that is the ambiguity of morphs. Words
can be segmented in different ways depending on
the meaning of the word, which can be discov-
ered by looking at the context of the word. Hence,
it also makes sense to employ the context of a
morph in clustering. We employ the last morphs of
the previous and following words to make use of

Non-affixes Affixes Total
Precision 95.60 90.72 92.93
Recall 84.79 34.46 70.59
F-measure 89.87 49.95 80.24

Table 7: Evaluation results according to 100 clus-
ters in English by weighting features, which are
previous morph, following morph, current morph,
stem, morph position, the last morph of the pre-
vious word and the last morph of the following
word.

the context in clustering. This makes a consider-
able amount of improvement in the results because
Turkish grammar has noun phrases, subject-verb
agreement etc.

In all experiments we manually assign weights
to the features. Weighting features improves re-
sults since the features are not equally important
in clustering. We leave the issue of estimating
weights to be explored in the future.

6 Conclusion & Future Work

In this paper, an agglomerative hierarchical clus-
tering algorithm is presented for labelling morphs.
The algorithm aims to capture allomorphs and ho-
mophonous morphemes for a deeper analysis of
morphological segmentation results. Most mor-
phological segmentation systems focus only on
segmentation, rather than labelling morphs. Nev-
ertheless, it is helpful to label morphs in order to
have an idea about the grammatical function of the
word in a sentence; i.e. the syntactic category. We
believe that a good morph labelling system will
help PoS tagging, as well.

The presented algorithm can find allomorphs in
Turkish by clustering them together. However, as
far as we could observe from the results, it cannot
show the same accuracy for homophonous mor-
phemes.

We aim to improve the proposed approach by
adopting mixture components for each morph la-
bel in a nonparametric Bayesian framework. We
aim to handle the sparsity in the data with a non-
parametric approach. Even with an infinite mix-
ture model, it is possible to make the number of
morph labels infinitely defined.

134

References
Delphine Bernhard, 2008. Simple Morpheme La-

belling in Unsupervised Morpheme Analysis, pages
873–880. Springer-Verlag, Berlin, Heidelberg.

Mathias Creutz and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proceedings of
the ACL-02 workshop on Morphological and phono-
logical learning - Volume 6, MPL ’02, pages 21–
30, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Mathias Creutz and Krista Lagus. 2004. Induction of a
simple morphology for highly-inflecting languages.
In Proceedings of the 7th Meeting of the ACL Special
Interest Group in Computational Phonology: Cur-
rent Themes in Computational Phonology and Mor-
phology, SIGMorPhon ’04, pages 43–51, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153–198.

Sami Virpioja Ville Turunen Mikko Kurimo,
Krista Lagus. 2011. Morpho challenge 2010.
http://research.ics.tkk.fi/events/
morphochallenge2010/, June.

Sebastian Spiegler. 2011. Machine Learning For The
Analysis Of Morphologically Complex Languages.
Ph.D. thesis, Merchant Venturers School of Engi-
neering, University of Bristol, April.

135

