
Proceedings of Recent Advances in Natural Language Processing, pages 539–544,
Hissar, Bulgaria, 12-14 September 2011.

Can Alternations Be Learned? A Machine Learning Approach To
Romanian Verb Conjugation

Liviu P. Dinu
Faculty of Mathematics
and Computer Science

University of
Bucharest
ldinu@

funinf.cs.unibuc.ro

Emil Ionescu
Faculty of Letters

University of
Bucharest

emilionescu@
unibuc.ro

Vlad Niculae
Faculty of Mathematics
and Computer Science

University of
Bucharest

vlad@vene.ro

Octavia-Maria Şulea
Faculty of Foreign

Languages and
Literatures

University of Bucharest
mary.octavia@

gmail.com

Abstract

In this paper we look at the conjugation of
the Romanian verb, in particular, at its ir-
regularities, from a machine learning point
of view. Our attempt is to predict the pres-
ence or absence of any alternation in the
stem (apophony), using n-gram represen-
tations of the infinitive. We combine for-
mal labelling mechanisms with learning
methods in order to build a general con-
jugational model.

1 Introduction

The problem that we approached in this paper
deals with phonological alternations in the stem of
the Romanian irregular verbs during their conju-
gation. What we attempted to investigate, using
machine learning techniques, was whether there
is reason to believe that a pattern can be identi-
fied in the conjugation of the Romanian verb and
whether that pattern could be learnt through auto-
matic means such that, given the infinitive form of
a verb, its correct conjugation could be produced.

Like other Romance languages, Romanian has tra-
ditionally received a Latin-inspired classification
of verbs into 4 conjugational classes (or some-
times 5, where the 4th conjugation is divided be-
tween verbs with the infinitive ending in i and ı̂,
respectively) based on the ending of their infini-
tival form alone (Costanzo, 2011). However, this
infinitive-based classification has often been found
inadequate due to the many conjugational patterns
that have been found in each class and to its inabil-
ity to account for the behavior of partially irregular
verbs (those whose stem has a smaller number of
allomorphs than the completely irregular such as
“a fi”) during their conjugation. There have been,
thus, numerous attempts throughout the history of

Romanian Linguistics to give other conjugational
classifications.

Lombard (1955) combined the traditional 4
infinitive-based conjugational classes with the in-
formation related to the variation in the suffix re-
ceived by 1st and 4th conjugational class verbs in
the indicative first person singular form and came
up with 6 classes. Other classifications based
on the way Romanian verbs conjugate include
(Ciompec et. al., 1985 in Costanzo, 2011), who
proposed 10 conjugations, and Felix (1964) who
came up with 12 conjugations by looking at the in-
flection of the verbs and the number of allomorphs
of the stem. Moisil (1960) proposed 5 regrouped
classes of verbs and introduced the method of let-
ters with variable values, in his computer scien-
tific effort toward a “mechanical grammar”. Pa-
pastergiou et al. (2007) have developed a classifi-
cation from a (second) language acquisition point
of view, dividing the 1st and 4th traditional classes
into 3 and respectively 5 subclasses, each with a
different conjugational pattern, and offering rules
for alternations in the stem.

Finally, Barbu (2007) offered a highly compre-
hensive classification of the verb conjugation in
Romanian.This classification was based on a cor-
pus of more than 7000 verbs, representing verbs
of contemporary Romanian, and distinguished 41
conjugational classes which cover the whole cor-
pus. The corpus has also been used in the present
research.

As stated before, our focus has been on captur-
ing rules of variation in the stem for partially ir-
regular verbs like a aştepta (to wait), which be-
comes eu aştept (I wait) and el aşteaptă (he waits)
in the “indicativ prezent” tense. It can be seen
that the letter e in the stem changes to ea during
conjugation, this rich morphology making the lan-
guage seem difficult to acquire. Attempts to for-

539

malize rules from a computer scientific point of
view date back to Moisil in 1960. Such (incom-
plete) rules can be formulated as context-sensitive
grammars, since the alternations are determined
by the (phonologic) context in which certain char-
acters (phonemes) appear. This lead us to the idea
of analyzing the Romanian verbs from a machine
learning point of view: what can one find out by
looking at n-gram representation of the infinitives?

In the following, we give a brief description of
the context-sensitive grammar rules that we’ve de-
veloped based on a slight modification to Moisil’s
concept of letters with variable values, a discus-
sion of the implementation of these rules as a
parser, and the machine learning techniques ap-
plied to the infinitives of a particular class of verbs
from a selected corpus.

2 Capturing Verb Alternations in
Context-Sensitive Rules

For the moment we limited the discussion to verbs
ending in -ta, for which Dinu and Ionescu (2011)
gave two rules that, according to our findings,
cover 80% of the alternations that appear.

The first rule is for the variable letter t0 and can be
described as:

t0 =

{
[ţ]in the context# [i]#
[t]in the context# [e] ∨ [a] ∨ [ă] ∨ [ı̂] ∨ [Φ]#

The second rule is for the variable letter u0 and
amounts to:

u0 =

[oa]in the context# [ă] ∨ [e]#

[o]in the context# [i] ∨ [Φ]#

[u]in the context# stressed vowel]#

For example, the verb ”a purta” (to wear) has
the lemma pu0rt0. The third person singular ”el
poartă” (he wears) is matched by the first context
for u0 and the second context for t0. The second
person singular ”tu porţi” (you wear) is matched
by the second context for u0 and by the first con-
text for t0.

These rules can be formulated as a context sensi-
tive grammar G = (VN , VT ,Σ, P) in the follow-
ing way:

P =

Σ→ $αT0#|$αU0βT0#

Σ→ $αT0i#|$αU0βT0i#
Σ→ $αT0ă#|$αU0βT0ă#

Σ→ $αT0ăm#|$αU0βT0ăm#

Σ→ $αT0aţi#|$αU0βT0aţi#
T0#→ #t
T0i#→ #ţi
T0ă#→ #tă|&tă
T0ăm#→ #tăm|!tăm
T0aţi#→ #taţi|!taţi
x#→ #x, for all x ∈ VT

x&→ &x, for all x ∈ VT

x!→!x, for all x ∈ VT

U0!→ #u
U0#→ #o
U0&→ #oa
$#→ λ

VN is the set of non-terminals, VT is the set of
terminals (the alphabet), Σ is the starting non-
terminal and P is the set of production rules. For
the Romanian language, VT = {a, ă, â, b, ...}. α
and β are arbitrary strings from V ∗

T . Note that
this is the reunion of the two grammars G1 and
G2 given in (Dinu and Ionescu, 2011).

The power of this grammar does not lie in its lan-
guage: some of its derivations are general enough
to accept any string over the alphabet ending in the
letter t, for example. However, derivations in this
grammar represent a generative process that can
build present indicative forms of verbs.

The way verbal forms are parsed by this grammar
with regard to the arbitrary α and β is very impor-
tant. Take the verb ”a certa” (to scold or to quar-
rel). At the second person singular form, in the
present indicative tense, it becomes ”tu cerţi” (you
scold) which is accurately modeled by the T0 al-
ternation. However its third person singular form
”el ceartă” (he scolds) exhibits an alternation in
the stem vowel ”e” that is not captured by these
rules. The form ”ceartă” is however generated by
the grammar, as:

Σ→ $cearT0ă#→ $cear#tă→
→ $#ceartă→ ceartă.

540

Therefore, we cannot say that the grammar mod-
els this alternation. How can we tell? Note that
if we would assume that these derivations com-
pletely explain the alternations, it would mean that
the verb has two allomorphs for the stem, ”cert”
and ”ceart”, yet we have no alternating ”e” vowel
rule to account for that variation. This leads to
the natural restriction that for a verb to be consid-
ered fully modeled by the grammar we previously
described, α and β need to remain the same dur-
ing the derivation of all its forms. This is equiva-
lent to saying that the variable letters should be the
only alternations in the stem of a partially irregular
verb.

Such grammars are hard to control methods that
cannot directly solve the problem of conjugating
a verb starting from its infinitive form. We used
a simplification of this system to assign labels to
verbs depending on how they are conjugated and
what alternations they present.

3 Labeling Method

The correct derivations in the grammar presented
in the previous section can be formulated as reg-
ular expressions. Furthermore, we can associate
a particular regular expression for each one of the
six possible forms of a verb in this tense. For ex-
ample, the regular expressions for the conjugation
pattern of the word ”a cânta” (to sing) at the first
person singular is ˆ(.+)t$, while for the second per-
son singular it is ˆ(.+)ţi$, therefore catching the t-ţ
alternation. Note that the dot accepts any letter in
the Romanian alphabet. The restriction is that, for
each of the six forms, the value of the capturing
groups (the characters captured by the bracketed
part of the expressions) remains constant. These
groups correspond to all parts of the stem that re-
main unchanged and ensure that, given the infini-
tive and the regular expressions, one can produce
a correct conjugation. When the stem has no alter-
nation, the expression will contain only one such
capturing group that represents the whole stem.

We will use the term ”rule” to refer to a set of
six regular expressions describing the conjugation
of a verb. We started incrementally adding rules
to cover more of the verbs in the dataset, and ar-
rived at a total of 14 rules. We dropped the rules
that only covered one or two verbs, and eliminated
these verbs from the dataset. We ended up with

seven rules covering 616 of the 628 verbs ending
in -ta (98.1%).

An example of one such rule, covering the verb ”a
tresălta”, is:

Person Regexp Example
1st singular ˆ(.+)a(.+)t$ tresalt
2nd singular ˆ(.+)a(.+)ţi$ tresalţi
3rd singular ˆ(.+)a(.+)tă$ tresaltă
1st plural ˆ(.+)ă(.+)tăm$ tresăltăm
2nd plural ˆ(.+)ă(.+)taţi$ tresăltaţi
3rd plural ˆ(.+)a(.+)tă$ tresaltă

It can be observed that the forms of the verb are
consistently accepted by the regular expressions of
the rule, with the two groups in brackets always
having the values ”tres” and ”l”. This rule is the
5th in our line of 7 rules. Below are listed all 7 of
them:

• the 1st rule accepts verbs like ”a ajuta” (to
help), which has an alternation in the stem of
the sort t→ţ due to palatalization (determined
by the 2nd person singular suffix ”i”)

• the 2nd rule accepts verbs like ”a exista” (to
exist), which has an alternation in the stem of
the type s→ş, due to palatalization as well

• the 3rd rule accepts verbs like ”a deştepta” (to
awake/arouse), whose stem has an alternation
of the type a→ea

• the 4th rule accepts verbs like ”a deşerta” (to
empty), with a stem alternation of the type
e→a

• the 5th rule accepts verbs like ”a tresălta” (to
start, to take fright), with a stem alternation
of the kind ă→a

• the 6th rule accepts verbs like ”a desfăta” (to
delight), with a stem alternation of the type
ă→a in the 3rd person, and ă→e in the 2nd
person singular

• the 7th rule accepts verbs like ”a decapita”
(to decapitate), which conjugates with ”ez”
suffixes (-ez, -ezi, -ează, -ăm, -aţi, -ează)

These rules were run against the dataset of conju-
gated Romanian verbs (only those ending in -ta),
and a label was assigned to each of the distinct in-
finitives found, such that the end result consists of
a dataset of 616 infinitives, each labeled from 0 to

541

6 depending on how the verb is inflected during
conjugation.

4 Posing the Learning Problem

4.1 Objectives

The problem that we are aiming to solve is to de-
termine how to conjugate a verb, given its infini-
tive form. The traditional infinitive-based classi-
fication taught in school does not take one all the
way. Many variations exist within these 4 classes.

The rules from the previous section allow us to
separate the verbs ending in -ta into more specific
classes, knowing their inflected forms. By assign-
ing the correct label to an infinitive of a verb not
inlcuded in our dataset, one obtains all required
information in order to produce a correct conjuga-
tion. We will now tackle the problem of fitting a
model that is able to predict this labelling.

The context sensitive nature of the alternations
leads to the idea of n-gram representations. A text
feature extractor can be tuned to convert a list of
verbs into a data matrix. The features of this data
matrix are the substrings of length up to n that oc-
cur in the data, and the values can be taken either
as occurence counts or simply as binary indica-
tors of occurence. While occurence counts are
useful in, for example, information retrieval, we
have found that for such character-level applica-
tions, frequencies are less relevant than occurence,
and it is not useful to give larger weight to n-grams
that appear more often.

4.2 Approach

In order to get from a list of strings to a data format
suitable for machine learning algorithms, we put
together a feature extractor that returns a sparse
matrix.

The feature extractor takes two parameters: the
maximum n-gram size and whether to binarize the
features. It is based on a character n-gram ana-
lyzer that takes a Unicode string as input and out-
puts a list of n-grams that constitute it. For the
input ”cânta”, and for n = 3 it would produce
the list ”c”, ”â”, ”n”, ”t”, ”a”, ”câ”, ”ân”, ”nt”,
”ta”, ”cân”, ”ânt”, ”nta”. The second component
of the feature extractor is the vectorizer. This takes
a list of unicode strings as input, runs the analyzer

on all of them, then establishes the ”vocabulary”
of features as the set of distinct n-grams outputted
by the analyzer. Afterwards, the vectorizer trans-
forms every string in the dataset into a vector of the
same size as the vocabulary. If we want to count
features, the i-th element of the vector vector will
contain the number of times the i-th n-gram ap-
pears in the word. If we want binary features,
the vector will contain ones and zeros, indicating
whether the n-gram appears or not in the word.

The average word length in the set of infinitives
ending in -ta is 7.48. The larger we choose n, the
more features the model will have, and therefore
the more complex it will be. Considering both of
these aspects, we decided on using the value
n = 3.

The model is built as a pipeline. The list of verbs
first passes through the feature extractor and is
then fed into the classifier. For classification we
evaluated Naive Bayes and linear support vector
machines. When using counted features, we used
multinomial Naive Bayes, while in the case of bi-
narized features we used Bernoulli Naive Bayes.
The support vector classifier uses the one-versus-
all approach. Due to the limited size of the dataset,
all scores are estimated using leave-one-out cross-
validation.

The value of the regularization parameter C for the
SVM is decided by a grid search. This consists
in defining grid points for fixed parameter values,
then fitting and evaluating a model for each grid
point using cross-validation.

The system was put together using the scikits.learn
machine learning library for the Python program-
ming language (scikits.learn). It provides text fea-
ture extraction tools as described above, a linear
support vector machine implementation based on
the efficient liblinear library, and an automatic grid
search framework for tuning the parameters.

4.3 Results

We first looked at how the Naive Bayes score
varies as a function of n, the maximum n-gram
length. The results can be seen in figure 1. Con-
sidering the fact that the number of features grows
exponentially with n, the value of n = 3 seems
to offer an acceptable model compexity trade-off
versus classification score.

542

Figure 1: Evolution of Naive Bayes scores as we
vary n.

The grid search for optimizing the support vector
machine’s C, detailed in figure 2 parameter shows
that binary features perform better, and the value
of C that maximizes the success rate within the
grid is found at 10−1, with an accurate classifi-
cation rate of 82.47%. Precision, recall and F1

scores for this optimal classifier are presented in
table 1. It can be seen that even the poorly rep-
resented classes are accounted for. The last class
(with label 6), which contains verbs that conjugate
without alternations, is the most clearly separated.

class precision recall F1 support
0 0.65 0.38 0.48 106
1 0.38 0.23 0.29 13
2 1.00 0.60 0.75 5
3 1.00 0.25 0.40 4
4 1.00 0.80 0.89 5
5 1.00 0.25 0.40 4
6 0.85 0.95 0.90 479

avg/total 0.81 0.82 0.80 616

Table 1: Scores estimated by cross validation for
the support vector classifier.

The results show that indeed, n-gram based fea-
tures for classification can give good results for
such morphological tasks that are difficult to solve
using simple decision rules.

5 Conclusions and Future Works

Our results show that the labelling system based
on the verb conjugation model we developed for
verbs ending in -ta can be learned with reasonable

Figure 2: Determining the optimal value for the
model parameters

accuracy. We are currently working on a more ex-
tensive system for labelling the infinitives, based
on a near exhaustive conjugational model for the
Romanian verb.

Our future work will revolve around a more ex-
haustive classification of the verbs such that, for
each class, there is a simple and deterministic
way to produce the correct present tense forms,
given the infinitive. Following recent works in
Romanian linguistics and the study of Romanian
as a foreign language such as (Papastergiou et al.,
2007), wherein a newer, more comprehensive and
in-depth infinitive-based classification of the Ro-
manian verb is given, we aim to extend these re-
sults to all verbs, not just the ones ending in -ta,
and obtain a usable present tense indicative conju-
gator for the Romanian language.

6 Acknowledgements

We would like to thank the anonymous reviewers
for their insight and constructive criticism which
have helped us greatly in polishing this article.
We would also like to thank Ana-Maria Barbu for
the very useful corpus without which this article
wouldn’t have existed.

References

Ana-Maria Barbu. Conjugarea verbelor româ-
neşti. Dicţionar: 7500 de verbe româneşti gru-
pate pe clase de conjugare. Bucharest: Coresi,
2007. 4th edition, revised. (In Romanian.) (263
pp.).

543

Angelo Roth Costanzo. Romance Conjugational
Classes: Learning from the Peripheries. PhD
thesis, Ohio State University, 2011.

Liviu Dinu and Emil Ionescu. A context sensi-
tive approach to the problem of phonetic alter-
nations. submitted, 2011.

Jiři Felix. Classification des verbes roumains, vol-
ume VII. Philosophica Pragensia, 1964.

Alf Lombard. Le verbe roumain. Etude mor-
phologique, volume 1. Lund, C. W. K. Gleerup,
1955.

Grigore C. Moisil. Probleme puse de traducerea
automată. conjugarea verbelor ı̂n limba română.
Studii si cercetări lingvistice, XI(1):7–29, 1960.

I. Papastergiou, N. Papastergiou, and L. Man-
deki. Verbul românesc - reguli pentru ı̂nlesnirea
ı̂nsuşirii indicativului prezent. In Romanian
National Symposium ”Directions in Romanian
Philological Research”, 7th Edition, May 2007.

scikits.learn. scikits.learn, Apr 2011. URL http:
//scikit-learn.sourceforge.net.

544

