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Abstract

Previous work on relation extraction has
focussed on identifying relationships be-
tween entities that occur in the same
sentence (intra-sentential relations) rather
than between entities in different sen-
tences (inter-sentential relations) despite
previous research having shown that inter-
sentential relations commonly occur in in-
formation extraction corpora. This paper
describes a SVM-based approach to re-
lation extraction that is applied to both
types. Adapted features and techniques
for counter-acting bias in SVM models are
used to deal with specific issues that arise
in the inter-sentential case. It was found
that the structured features used for intra-
sentential relation extraction can be eas-
ily adapted for the inter-sentential case and
provides comparable performance.

1 Introduction

Relation extraction is an established subfield of
information extraction concerned with extracting
related pairs of entities from text. The majority
of research has been applied to extracting rela-
tions within single sentences (intra-sentential re-
lations), examples include (Chieu and Ng, 2002;
Culotta and Sorensen, 2004; Sekine, 2006; Banko
and Etzioni, 2008). However, an analysis of the
MUC6 corpus (Swampillai and Stevenson, 2010)
showed that 28.5% of the relations occur between
entities in different sentences (inter-sentential re-
lations). This paper describes a SVM-based ap-
proach which is applied to the extraction of both
inter- and intra-sentential relations.
A number of challenges are faced when extract-

ing inter-sentential relations. The structured fea-
tures, that are based on parse trees and have been
successfully used for intra-sentential relation ex-
traction, do not naturally apply over multiple sen-
tences. The limited research published on inter-
sentential relation extraction (Roberts et al., 2008;
Hirano et al., 2010) does not employ parse tree
features. We address this problem by introducing
new structured features (see section 3.2) for the
inter-sentential case.
There is also a greater data sparsity issue when
learning extraction models for inter-sentential re-
lations due in part to the smaller number of rela-
tions expressed inter-sententially. We investigate
a learning approach called threshold adjustment
(Shanahan and Roma, 2003) to counter-act the im-
balance in the data.
The remainder of the paper is organised as fol-
lows: Section 2 discusses previous work on re-
lation extraction. Section 3 describes a relation
extraction system suitable for both inter- and intra-
sentential relation extraction that uses both flat and
structures features. The MUC6 relation extrac-
tion task is described in Section 4. Section 5 in-
vestigates whether the bias in the relation extrac-
tion SVM models can be mitigated using threshold
adaption. Section 6 reports the results of the inter-
sentential and intra-sentential relation extraction
system described. Finally, Section 7 concludes the
paper with a discussion of the effectiveness of a
composite kernel approach to inter-sentential rela-
tion extraction.

2 Related Work

The majority of the work on relation extraction
has focused on intra-sentential relations and there
has been limited research on inter-sentential re-
lation extraction. Roberts et al. (2008) applies
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an SVM approach to identify inter-sentential rela-
tions in the biomedical domain where flat features
are used to represent the relations. A low perfor-
mance is achieved on the inter-sentential relations
alone (f-measure < 0.19) but they were able to
improve overall performance by combining their
inter- and intra-sentential data sets.
In addition, Roberts et al. (2008) give a distri-
bution of inter-sentential relations in their corpus
where the number of inter-sentential relations oc-
curring in a pair of sentences is inversely propor-
tional to the number of intervening sentences with
42.9% of inter-sentential relations present in con-
secutive sentences.

More recently Hirano et al. (2010) have re-
ported that 12% of the relations in their Japanese
news corpus are inter-sentential. It learns extrac-
tion patterns using a bootstrapped classification
algorithm. A novel feature is created for inter-
sentential relations where a tree is constructed to
represent a possible relation based on a salient ref-
erent list, i.e. a map of the references in the doc-
ument. The tree contains the two entities and the
proposed relation type which is augmented with
entity class and POS. An f-measure of 51% is re-
ported for inter-sentential relations.

Flat features commonly used for intra-sentential
relation extraction (Mintz et al., 2009) include: a
feature representing the entity that occurs first in
the sentence; the sequence of lexical tokens and
part-of-speech (POS) tags between the two enti-
ties, in the sentence; a sequence of lexical tokens
and their POS tags on the left hand side of the
first entity and on the right hand side of the sec-
ond entity; a dependency path between the two
entities and the verbs that occur between the en-
tities. Composite kernels using flat and struc-
tured features have been successfully applied for
intra-sentential relation extraction (Zelenko et al.,
2003; Bunescu and Mooney, 2004; Culotta and
Sorensen, 2004; Zhou et al., 2007). Culotta
and Sorensen (2004) and Zhou et al. (2007) have
shown that tree kernels combined with flat ker-
nels are more effective for intra-sentential relation
extraction than either kernel used alone. In ex-
periments on the ACE corpus, Zhou et al. (2007)
achieved f-measures of 0.741 using syntactic parse
tree features which outperforms dependency trees.
Zhang et al. (2006) further explored which por-
tion of parse trees are most informative for intra-
sentential relation extraction by testing seven dif-

ferent subtrees as features. The shortest path-
enclosed tree performed the best where the short-
est path-enclosed tree is the subtree that includes
only the two entities participating in the relation
and the intervening syntactic structure.

3 Relation Extraction System

We classify relations using SVMs, a standard ap-
proach that has been widely used in relation ex-
traction (Agichtein and Gravano, 2000; Zelenko et
al., 2003; Roberts et al., 2008; Ittoo and Bouma,
2010). The SVMlight implementation (Joachims,
2002) and Moschitti’s tree kernel tools (Moschitti,
2006) are used. Each pair of entities that appears
in the document and is of the correct named en-
tity types is considered a possible relation for that
relation type. Features are extracted from the text
to represent each possible relations and these are
classified using a binary SVM model. These fea-
tures are adapted from the set of commonly used
features for intra-sentential relation extraction and
are based on both flat features and the structured
features derived from parse trees. Experiments are
also conducted combining the two types of fea-
tures in composite kernels.

To our knowledge tree and composite kernels
have not been applied to inter-sentential relation
extraction.

3.1 Flat Features
The entities participating in an inter-sentential re-
lation can occur in any two sentences in a doc-
ument; therefore the sequence of tokens between
the two entities can include a large number of to-
kens. We therefore use a windowing method to
model context of the entities separately. This fea-
ture list is given below:

• A window of t tokens from the surrounding
context of each entity.

• A window of t POS tags from the surround-
ing context of each entity

• The two nearest dominating verbs for each of
the entities, identified in the parse tree struc-
ture.

• A distance feature, dist, which corresponds
to the number of intervening sentences be-
tween e1 and e2.

The use of a window to select the token and POS
tag features for each entity, instead of the sequence
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of tokens between two entities, avoids the situation
where document length token sequence is used as
a feature. In these experiments two window sizes
are used: t = 6 and t = 12 which represent
three and six tokens to the left-hand-side and right-
hand-side of e1 and e2 respectively. The likelihood
of a inter-sentential relation is inversely propor-
tional to the distance between the two participating
entities and the dist feature adds this information
to the representation.

3.2 Structured Features

Structured features used for intra-sentential rela-
tion extraction are based on parse trees. As only
entities occurring in the same sentence can be part
of a intra-sentential relation, it can be assumed
that related entities always appear in a single parse
tree. However, this assumption does not hold for
inter-sentential relations. We overcame this prob-
lem by joining parse trees for pairs of entities
by adding a new node (ROOT) that connects the
parses. Two new features were developed using
this approach based on the shortest path-enclosed
tree (Zhang et al., 2006):

• The shortest path tree (SPT) structure which
only contains the shortest path between the
two entities, that is the conjunction of the
path from e1 to the root and the path from
e2 to the root.

• The adapted shortest path-enclosed tree
(SPET) consisting of a subtree containing the
shortest path between the two participating
entities and all intervening nodes and struc-
ture to provide context.

Examples are shown in Figure 1.

4 Extraction Task

The MUC 6 management succession task iden-
tifies information about people entering or leav-
ing management positions in organizations and
has been shown to include both inter- and intra-
sentential relations (Swampillai and Stevenson,
2010). The main entities participating in these
events are the persons joining or leaving (Per),
the positions they are taking up or vacating (Post)
and the organizations in which the position ex-
ists (Org). A version of the MUC6 corpus that
has been converted to binary relations is used
(Swampillai and Stevenson, 2010), where the

Figure 1: Examples of (a) shortest path-enclosed
tree and (b) shortest path tree adapted for inter-
sentential relation extraction.

three relation types, PerOrg, PerPost and PostOrg,
have been manually identified annotated.

For example, the following sentences include
one intra-sentential relation, PerPost(Vern Raburn,
president), and two inter-sentential relations, Per-
Org(Vern Raburn, Paul Allen Group) and Pos-
tOrg(president, Paul Allen Group).

“Paul G. Allen, the billionaire co-
founder of Microsft Corp., has started
a company and named longtime friend
Vern Raburn its president.

The company, to be called Paul Allen
Group will be based in Bellevue, Wash.,
and will coordinate the overall strat-
egy. . . ”

Intuitively, inter-sentential relation extraction
is related to co-reference resolution. However,
whilst the resolution of anaphoric expressions can
address a significant proportion of these relations,
an analysis of the MUC6 corpus by Stevenson
(2006) shows that many of these relations require
inference across information contained in multiple
sentences, possibly using discourse analysis and
world knowledge. For example, the following sen-
tences describe a PerPost relation where Kenneth
Newell leaves the position of senior vice president,
Europe, Africa and Mediterranean.
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“David J. Bronczek, vice president and
general manager of Federal Express
Canada Ltd., was named senior vice
president, Europe, Africa and Mediter-
ranean, at this air-express concern.

Mr. Bronczek succeeds Kenneth Newell,
55, who was named to the new post of
senior vice president, retail service op-
erations.”

This relation can only be inferred using the knowl-
edge that when one executive replaces another
they must leave the position they are currently
holding. This paper proposes an approach that
does not require the kind of complex linguistic
understanding required for co-reference resolution
and addresses all inter-sentential relations.

5 Data Sparsity

In the case of intra-sentential relations, possi-
ble relations are constrained to pairs of entities
that occur within a sentence. Whereas for inter-
sentential relations all pairs of entities that occur
in a document are possible relations. This causes
an explosion in the number of negative instances
in the inter-sentential case compared to the intra-
sentential case. This coupled with a smaller num-
ber of positive relations (only 28.5%) causes a
highly unbalanced data set. The percentage of pos-
itive examples of relations in all cases is shown in
Table 2. It should be noted that there are an ex-
tremely limited number of PerPost inter-sentential
relations, only 64, present in the corpus. This level
of imbalance in the data set can render classifiers
ineffective (Wu and Chang, 2003).

Relation Type Intra Inter
PerOrg 14.99% (1568) 0.53% (29320)
PerPost 23.44% (1971) 0.25% (25697)
PostOrg 20.07% (1495) 0.79% (22475)

Table 1: The bias of the data is expressed here as
the percentage of positive relation instances with
the total number of instances for each relation type
given in brackets.

Various approaches to learning with unbalanced
data have been proposed. Undersampling the neg-
ative class prior to learning (Japkowicz, 2000) dis-
cards a large proportion of the data and the data
used for learning no longer approximates the prob-
ability distribution of the target population. The

other approach is to introduce a bias in the learn-
ing algorithm which compensates for the unbal-
anced training data without discarding informa-
tion. Two established methods are cost-sensitive
learning (Morik et al., 1999) and hyperplane ad-
justment (Shanahan and Roma, 2003) both of
which have been applied to the relation extrac-
tion system. Experiments comparing the two tech-
niques showed that cost-sensitive learning does
not perform as well as hyperplane adjustment and
these results are not reported here.

5.1 Threshold Adjustment
Threshold adjustment is a method for counter-
acting the bias in SVM models resulting from un-
balanced data (Shanahan and Roma, 2003). In the
case of unbalanced data the SVM hyperplane is
biased towards the negative class, however the hy-
perplane can be offset so that it preserves the ori-
entation of the original hyperplane but pushes it
towards the negative class. The threshold, β, is
used to adjust the hyperplane immediately train-
ing. Given a set of labelled training instances
{xi, yi}i=1...n where input points xi map to targets
yi ∈ ±1, the class prediction of a new test instance
x is derived using

sign

(
n∑
i=1

αiyiK(x, xi) + b− β

)
(1)

where the bias b and coefficients αi are found by
SVM training and K is the kernel function. The
constant β is added to bias in the model in favour
of the positive instances. Inter-sentential relation
extraction is carried out for various values of β, us-
ing a prototypical feature selection, including both
the flat and structured features. Table2 gives re-
sults for the baseline, β = 0, and the results for
the best performing model for each relation type
where β maximizes the f-measure. These results
show that adjusting the threshold for SVMs can
achieve a statistically significant1 improvement in
f-measure over standard SVM models for both re-
lation types.

6 Relation Extraction

The relation extraction system described in Sec-
tion 3 was evaluated on both inter-sentential and
intra-sentential relations in the MUC6 corpus.
Training and testing was performed using 10-fold
nested cross validation.

1Statistical significance is tested using the Mann-Whitney
U test, P < 0.05.
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Method PerOrg PerPost PostOrg
R P F-Meas. R P F-Meas. R P F-Meas.

No Bias 0.284 1.000 0.443 0.000 0.000 0.000 0.422 1.000 0.594

Threshold Adaption β = −0.75 β = −1 β = −0.75
0.561 0.920 0.697 0.541 0.076 0.133 0.668 0.992 0.799

Table 2: Maximum performance boost of cost-sensitive learning and threshold adjustment methods on
the performance of inter-sentential relation extraction SVM models.

6.1 Nested Cross-Validation

Nested cross-validation (Scheffer, 1999) was used
to automatically set the threshold parameter, β,
by optimizing it empirically during training. This
method also ensures that β is set independently
from our testing data. This sub-divides the training
data in each cross-validation fold into sub-folds
which are used to identify the optimal value of
the threshold for that particular training data. This
threshold value is then used when evaluating the
test data of the original cross-validation fold. The
optimal threshold value of each cross-validation
fold is identified in the sub-folds by training using
a variety of threshold values and evaluating them
on the sub-fold reserved for testing. The thresh-
old with the highest average value across all sub-
folds is then used. This nested cross-validation al-
gorithm is described in Algorithm 1.

6.2 Results

The performance of various feature sets (kernels)
is evaluated on both the inter-sentential (Table 3)
and intra-sentential (Table 4) relation extraction
task. The relation extraction system classifies pos-
sible relations from the corpus as one of the three
relation types, PerOrg, PerPost or PostOrg. The
recall, precision and f-measure metrics is reported
after each classifier and kernel. The first three
kernels in the tables contain flat features, where
Winn indicates the inclusion of n POS tags and
tokens surrounding each entity. The SPT and
SPET kernels are the shortest path-enclosed tree
and the shortest path tree kernels. The final two
are composite kernels combining each tree kernel,
SPT and SPET , with the overall best perform-
ing flat kernel, Win12 +Dist+ V erbs.

The best performance is achieved using the
composite SPT kernel for all relation types and for
both the inter-sentential and intra-sentential tasks.
However, in the case of inter-sentential relations
there is no statistically significant difference2 be-

2Statistical significance is tested using the Mann-Whitney
U test, P < 0.05.

Algorithm 1 Procedure for carrying out nested
cross-validation to determine the optimal thresh-
old value, β∗, for the training data in each fold.
This algorithm extends standard cross-validation
by adding an inner loop to estimate the optimal
threshold value by finding the maximum f-score
for each threshold value , β.

1: thresholds = {0.25, . . . , -1}
2: Split data, T , into 10 folds (t1, t2, ... t10)
3: for i = 1 to 10 do
4: test set← ti
5: training set← T − ti
6: Split training set into 9 folds (v1, v2, ...

v9)
7: for j = 1 to 9 do
8: testing validation set← vj
9: training validation set ←

training set− vj
10: Train SVM using the

training validation set, evaluate
on test validation set and record the
predictions, pred(k).

11: for all β ∈ thresholds do
12: Calculate the f-measure of pred(j)

with a threshold setting of β and
record, F (pred(j))β .

13: end for all
14: end for
15: for all β ∈ thresholds do
16: Favg(β)←

∑
j=1to9 F (pred(j))β

9 .
17: end for all
18: Determine the best threshold setting, β∗,

where β∗ = argmax Favg(β).
19: Train the SVM using training set, evalu-

ate on test set with β∗ as threshold setting
and record performance, P (i)

20: end for
21: performance←

∑
i=1to10 P (i)

10
22: return performance

tween the performance of the SPT kernel and the
composite SPT kernel on both PerOrg and Pos-

29



Kernel PerOrg PerPost PostOrg
R P F-Meas. R P F-Meas. R P F-Meas.

Flat
Win 6+Dist 0.117 0.730 0.201 0.015 0.200 0.029 0.336 0.809 0.475
Win 12+Dist 0.191 0.644 0.295 0.075 0.440 0.128 0.400 0.681 0.504
Win 12+Dist+Verbs 0.517 0.740 0.608 0.059 0.500 0.106 0.677 0.743 0.708
Tree
SPT 0.467 0.798 0.589 0.000 0.000 0.000 0.524 0.814 0.638
SPET 0.314 0.608 0.414 0.035 0.167 0.058 0.475 0.656 0.551
Composite
SPT and Win 12+Dist+Verbs 0.518 0.877 0.651 0.144 0.327 0.200 0.693 0.853 0.765
SPET and Win 12+Dist+Verbs 0.442 0.762 0.560 0.072 0.300 0.116 0.588 0.777 0.669

Table 3: Performance of inter-sentential relation extraction for flat, tree and composite kernels using
threshold optimization.

Kernel PerOrg PerPost PostOrg
R P F-Meas. R P F-Meas. R P F-Meas.

Flat
Win 6 0.535 0.484 0.508 0.645 0.588 0.615 0.614 0.550 0.581
Win 12 0.628 0.441 0.519 0.654 0.561 0.604 0.521 0.503 0.512
Win 12+Verbs 0.589 0.459 0.516 0.660 0.571 0.612 0.415 0.596 0.489
Tree
SPT 0.566 0.636 0.599 0.630 0.631 0.631 0.623 0.754 0.683
SPET 0.616 0.414 0.495 0.576 0.575 0.575 0.564 0.538 0.551
Composite
SPT and Win 12+Verbs 0.757 0.649 0.699 0.682 0.624 0.652 0.759 0.741 0.750
SPET and Win 12+Verbs 0.568 0.560 0.564 0.595 0.628 0.611 0.685 0.668 0.677

Table 4: Performance of intra-sentential relation extraction for flat, tree and composite kernels using
using threshold optimization.

tOrg relations. This shows the minimal contribu-
tion of flat features to the inter-sentential classifi-
cation task, unlike the intra-sentential task where
the addition of flat features makes a marked im-
provement.

For both tasks the relation type with the best
f-measure is PostOrg at 0.809 and 0.750 for the
inter- and intra-sentential relations respectively.
The data set associated with this relation is the
least skewed of the data sets. In contrast Per-
Post, the most unbalanced data set, has the worst
f-measure for the intra-sentential relation extrac-
tion task at 0.652 and fails to make any impact on
the inter-sentential relation extraction task with an
f-measure of only 0.200. This suggests that bias
still has an effect on performance despite the steps
taken to mitigate against it.

Different behaviour is observed for inter- and
intra-sentential relations when comparing the re-
sults of the experiments using the flat kernel. The
use of a wider context feature window and sur-
rounding verbs improves the overall f-measure
scores for inter-sentential relations, substantially
improving recall while slightly degrading preci-
sion. However, for the intra-sentential case adding

context and verb features either maintains or de-
grades performance. Flat features alone achieve
better performance for the inter-sentential task
(0.608, 0.128 and 0.708) than for intra-sentential
task (0.519, 0.615 and 0.581).

Results using tree and composite kernels show
that the SPT tree representation is more effective
than the SPET tree for both tasks. This may be
because SPET subtrees are larger and potentially
contain more noise. Tree kernels perform better
than those created from flat features demonstrating
that structured features are hugely informative for
relation extraction.

Overall, the results show that the best perform-
ing kernel is the composite SPT kernel. This is
inline with previous research into intra-sentential
relation extraction (Zhou et al., 2007; Zhang et
al., 2006) where the best results are achieved
with a shortest path composite kernel. For inter-
sentential relations f-measures of 0.651, 0.200 and
0.809 are achieved. The use of the composite
kernel SVM approach to relation extraction gives
comparable performance on the inter-sentential
task except in the case of relations with extremely
skewed training data.
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7 Conclusions

This paper investigates whether state-of-the-art
approaches to intra-sentential relation extraction
can be effectively adapted for inter-sentential re-
lation extraction. The results demonstrate that a
composite kernel approach to inter-sentential re-
lation extraction can achieve comparable results
with intra-sentential relation extraction. We have
also shown that the structured features used for
intra-sentential relation extraction can be easily
adapted for the inter-sentential case. The perfor-
mance of structured features has been found to
be superior to flat features which have previously
been used for the inter-sentential relation extrac-
tion task (McDonald et al., 2005; Roberts et al.,
2008).

Overall, composite kernels, that combine a
larger context window with a SPT tree, were found
to give better performance than either flat or struc-
tured features alone. Inter-sentential PerPost rela-
tions could not effectively be extracted using this
approach, most likely due to the bias in the PerPost
data set.

Threshold adaption, which was optimised using
nested cross-validation, significantly improved the
performance of SVM models for inter-sentential
relation extraction. Average f-measure improved
from 0.295 to 0.605, a significant improvement in
performance over all kernel types.
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