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Abstract

The field of natural language processing has
seen impressive progress in recent years, with
neural network models replacing many of the
traditional systems. A plethora of new mod-
els have been proposed, many of which are
thought to be opaque compared to their feature-
rich counterparts. This has led researchers to
analyze, interpret, and evaluate neural net-
works in novel and more fine-grained ways. In
this survey paper, we review analysis meth-
ods in neural language processing, categorize
them according to prominent research trends,
highlight existing limitations, and point to po-
tential directions for future work.

1 Introduction

The rise of deep learning has transformed the field
of natural language processing (NLP) in recent
years. Models based on neural networks have
obtained impressive improvements in various
tasks, including language modeling (Mikolov
et al., 2010; Jozefowicz et al., 2016), syntactic
parsing (Kiperwasser and Goldberg, 2016),
machine translation (MT) (Bahdanau et al., 2014;
Sutskever et al., 2014), and many other tasks; see
Goldberg (2017) for example success stories.

This progress has been accompanied by a
myriad of new neural network architectures. In
many cases, traditional feature-rich systems are
being replaced by end-to-end neural networks
that aim to map input text to some output pre-
diction. As end-to-end systems are gaining preva-
lence, one may point to two trends. First, some
push back against the abandonment of linguis-
tic knowledge and call for incorporating it inside

the networks in different ways.1 Others strive to
better understand how NLP models work. This
theme of analyzing neural networks has connec-
tions to the broader work on interpretability in
machine learning, along with specific characteris-
tics of the NLP field.

Why should we analyze our neural NLP mod-
els? To some extent, this question falls into
the larger question of interpretability in machine
learning, which has been the subject of much
debate in recent years.2 Arguments in favor
of interpretability in machine learning usually
mention goals like accountability, trust, fairness,
safety, and reliability (Doshi-Velez and Kim,
2017; Lipton, 2016). Arguments against inter-
pretability typically stress performance as the
most important desideratum. All these arguments
naturally apply to machine learning applications
in NLP.

In the context of NLP, this question needs to
be understood in light of earlier NLP work, often
referred to as feature-rich or feature-engineered
systems. In some of these systems, features are
more easily understood by humans—they can be
morphological properties, lexical classes, syn-
tactic categories, semantic relations, etc. In theory,
one could observe the importance assigned by
statistical NLP models to such features in order
to gain a better understanding of the model.3 In

1See, for instance, Noah Smith’s invited talk at ACL
2017: vimeo.com/234958746. See also a recent debate
on this matter by Chris Manning and Yann LeCun: www.
youtube.com/watch?v=fKk9KhGRBdI. (Videosaccessed
on December 11, 2018.)

2See, for example, the NIPS 2017 debate: www.youtube.
com/watch?v=2hW05ZfsUUo. (Accessed on December 11,
2018.)

3Nevertheless, one could question how feasible such
an analysis is; consider, for example, interpreting support vec-
tors in high-dimensional support vector machines (SVMs).
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contrast, it is more difficult to understand what
happens in an end-to-end neural network model
that takes input (say, word embeddings) and
generates an output (say, a sentence classification).
Much of the analysis work thus aims to understand
how linguistic concepts that were common as
features in NLP systems are captured in neural
networks.

As the analysis of neural networks for language
is becoming more and more prevalent, neural
networks in various NLP tasks are being analyzed;
different network architectures and components
are being compared, and a variety of new anal-
ysis methods are being developed. This survey
aims to review and summarize this body of work,
highlight current trends, and point to existing
lacunae. It organizes the literature into several
themes. Section 2 reviews work that targets a
fundamental question: What kind of linguistic in-
formation is captured in neural networks? We
also point to limitations in current methods for
answering this question. Section 3 discusses visu-
alization methods, and emphasizes the difficulty
in evaluating visualization work. In Section 4,
we discuss the compilation of challenge sets, or
test suites, for fine-grained evaluation, a meth-
odology that has old roots in NLP. Section 5
deals with the generation and use of adversarial
examples to probe weaknesses of neural networks.
We point to unique characteristics of dealing with
text as a discrete input and how different studies
handle them. Section 6 summarizes work on
explaining model predictions, an important goal
of interpretability research. This is a relatively
underexplored area, and we call for more work
in this direction. Section 7 mentions a few other
methods that do not fall neatly into one of the
above themes. In the conclusion, we summarize
the main gaps and potential research directions for
the field.

The paper is accompanied by online supple-
mentary materials that contain detailed references
for studies corresponding to Sections 2, 4, and
5 (Tables SM1, SM2, and SM3, respectively),
available at https://boknilev.github.io/
nlp-analysis-methods.

Before proceeding, we briefly mention some
earlier work of a similar spirit.

A Historical Note Reviewing the vast literature
on neural networks for language is beyond

our scope.4 However, we mention here a few
representative studies that focused on analyzing
such networks in order to illustrate how recent
trends have roots that go back to before the recent
deep learning revival.

Rumelhart and McClelland (1986) built a
feedforward neural network for learning the
English past tense and analyzed its performance
on a variety of examples and conditions. They
were especially concerned with the performance
over the course of training, as their goal was to
model the past form acquisition in children. They
also analyzed a scaled-down version having eight
input units and eight output units, which allowed
them to describe it exhaustively and examine how
certain rules manifest in network weights.

In his seminal work on recurrent neural
networks (RNNs), Elman trained networks on
synthetic sentences in a language prediction
task (Elman, 1989, 1990, 1991). Through exten-
sive analyses, he showed how networks discover
the notion of a word when predicting characters;
capture syntactic structures like number agree-
ment; and acquire word representations that
reflect lexical and syntactic categories. Similar
analyses were later applied to other networks and
tasks (Harris, 1990; Niklasson and Linåker, 2000;
Pollack, 1990; Frank et al., 2013).

While Elman’s work was limited in some ways,
such as evaluating generalization or various lin-
guistic phenomena—as Elman himself recog-
nized (Elman, 1989)—it introduced methods that
are still relevant today: from visualizing network
activations in time, through clustering words by
hidden state activations, to projecting represen-
tations to dimensions that emerge as capturing
properties like sentence number or verb valency.
The sections on visualization (Section 3) and iden-
tifying linguistic information (Section 2) contain
many examples for these kinds of analysis.

2 What Linguistic Information Is
Captured in Neural Networks?

Neural network models in NLP are typically
trained in an end-to-end manner on input–output
pairs, without explicitly encoding linguistic

4For instance, a neural network that learns distributed
representations of words was developed already in
Miikkulainen and Dyer (1991). See Goodfellow et al. (2016,
chapter 12.4) for references to other important milestones.
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features. Thus, a primary question is the fol-
lowing: What linguistic information is captured
in neural networks? When examining answers
to this question, it is convenient to consider
three dimensions: which methods are used for
conducting the analysis, what kind of linguistic
information is sought, and which objects in the
neural network are being investigated. Table SM1
(in the supplementary materials) categorizes rel-
evant analysis work according to these criteria. In
the next subsections, we discuss trends in analysis
work along these lines, followed by a discussion
of limitations of current approaches.

2.1 Methods

The most common approach for associating neural
network components with linguistic properties
is to predict such properties from activations of
the neural network. Typically, in this approach a
neural network model is trained on some task
(say, MT) and its weights are frozen. Then,
the trained model is used for generating feature
representations for another task by running it on
a corpus with linguistic annotations and recording
the representations (say, hidden state activations).
Another classifier is then used for predicting the
property of interest (say, part-of-speech [POS]
tags). The performance of this classifier is
used for evaluating the quality of the generated
representations, and by proxy that of the original
model. This kind of approach has been used
in numerous papers in recent years; see Table SM1
for references.5 It is referred to by various names,
including ‘‘auxiliary prediction tasks’’ (Adi et al.,
2017b), ‘‘diagnostic classifiers’’ (Veldhoen et al.,
2016), and ‘‘probing tasks’’ (Conneau et al., 2018).

As an example of this approach, let us walk
through an application to analyzing syntax in
neural machine translation (NMT) by Shi et al.
(2016b). In this work, two NMT models were
trained on standard parallel data—English→
French and English→German. The trained models
(specifically, the encoders) were run on an
annotated corpus and their hidden states were
used for training a logistic regression classifier
that predicts different syntactic properties. The
authors concluded that the NMT encoders learn

5A similar method has been used to analyze hierarchical
structure in neural networks trained on arithmetic expressions
(Veldhoen et al., 2016; Hupkes et al., 2018).

significant syntactic information at both word
level and sentence level. They also compared
representations at different encoding layers and
found that ‘‘local features are somehow preserved
in the lower layer whereas more global, abstract
information tends to be stored in the upper
layer.’’ These results demonstrate the kind of
insights that the classification analysis may lead
to, especially when comparing different models
or model components.

Other methods for finding correspondences
between parts of the neural network and certain
properties include counting how often attention
weights agree with a linguistic property like
anaphora resolution (Voita et al., 2018) or directly
computing correlations between neural network
activations and some property; for example,
correlating RNN state activations with depth
in a syntactic tree (Qian et al., 2016a) or
with Melfrequency cepstral coefficient (MFCC)
acoustic features (Wu and King, 2016). Such
correspondence may also be computed indirectly.
For instance, Alishahi et al. (2017) defined an
ABX discrimination task to evaluate how a neural
model of speech (grounded in vision) encoded
phonology. Given phoneme representations from
different layers in their model, and three pho-
nemes, A, B, and X, they compared whether
the model representation for X is closer to A
or B. This discrimination task enabled them to
draw conclusions about which layers encoder
phonology better, observing that lower layers
generally encode more phonological information.

2.2 Linguistic Phenomena

Different kinds of linguistic information have
been analyzed, ranging from basic properties like
sentence length, word position, word presence, or
simple word order, to morphological, syntactic,
and semantic information. Phonetic/phonemic
information, speaker information, and style and
accent information have been studied in neural
network models for speech, or in joint audio-visual
models. See Table SM1 for references.

While it is difficult to synthesize a holistic
picture from this diverse body of work, it ap-
pears that neural networks are able to learn a
substantial amount of information on various
linguistic phenomena. These models are especially
successful at capturing frequent properties, while
some rare properties are more difficult to learn.
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Linzen et al. (2016), for instance, found that long
short-term memory (LSTM) language models
are able to capture subject–verb agreement in
many common cases, while direct supervision is
required for solving harder cases.

Another theme that emerges in several
studies is the hierarchical nature of the learned
representations. We have already mentioned such
findings regarding NMT (Shi et al., 2016b) and a
visually grounded speech model (Alishahi et al.,
2017). Hierarchical representations of syntax were
also reported to emerge in other RNN models
(Blevins et al., 2018).

Finally, a couple of papers discovered that
models trained with latent trees perform better
on natural language inference (NLI) (Williams
et al., 2018; Maillard and Clark, 2018) than
ones trained with linguistically annotated trees.
Moreover, the trees in these models do not
resemble syntactic trees corresponding to known
linguistic theories, which casts doubts on the
importance of syntax-learning in the underlying
neural network.6

2.3 Neural Network Components
In terms of the object of study, various neural
network components were investigated, including
word embeddings, RNN hidden states or gate
activations, sentence embeddings, and attention
weights in sequence-to-sequence (seq2seq) mod-
els. Generally less work has analyzed convo-
lutional neural networks in NLP, but see Jacovi
et al. (2018) for a recent exception. In speech
processing, researchers have analyzed layers in
deep neural networks for speech recognition
and different speaker embeddings. Some analysis
has also been devoted to joint language–vision
or audio–vision models, or to similarities bet-
ween word embeddings and con volutional image
representations. Table SM1 provides detailed
references.

2.4 Limitations
The classification approach may find that a certain
amount of linguistic information is captured in the
neural network. However, this does not necessar-
ily mean that the information is used by the net-
work. For example, Vanmassenhove et al. (2017)

6Others found that even simple binary trees may work well
in MT (Wang et al., 2018b) and sentence classification (Chen
et al., 2015).

investigated aspect in NMT (and in phrase-based
statistical MT). They trained a classifier on NMT
sentence encoding vectors and found that they can
accurately predict tense about 90% of the time.
However, when evaluating the output translations,
they found them to have the correct tense only
79% of the time. They interpreted this result
to mean that ‘‘part of the aspectual information
is lost during decoding.’’ Relatedly, Cı́fka and
Bojar (2018) compared the performance of various
NMT models in terms of translation quality
(BLEU) and representation quality (classification
tasks). They found a negative correlation between
the two, suggesting that high-quality systems
may not be learning certain sentence meanings.
In contrast, Artetxe et al. (2018) showed that
word embeddings contain divergent linguistic
information, which can be uncovered by applying
a linear transformation on the learned embeddings.
Their results suggest an alternative explanation,
showing that ‘‘embedding models are able to
encode divergent linguistic information but have
limits on how this information is surfaced.’’

From a methodological point of view, most
of the relevant analysis work is concerned with
correlation: How correlated are neural network
components with linguistic properties? What may
be lacking is a measure of causation: How does
the encoding of linguistic properties affect the
system output? Giulianelli et al. (2018) make some
headway on this question. They predicted number
agreement from RNN hidden states and gates
at different time steps. They then intervened in
how the model processes the sentence by changing
a hidden activation based on the difference
between the prediction and the correct label. This
improved agreement prediction accuracy, and the
effect persisted over the course of the sentence,
indicating that this information has an effect on the
model. However, they did not report the effect on
overall model quality, for example by measuring
perplexity. Methods from causal inference may
shed new light on some of these questions.

Finally, the predictor for the auxiliary task
is usually a simple classifier, such as logistic
regression. A few studies compared different clas-
sifiers and found that deeper classifiers lead to
overall better results, but do not alter the respective
trends when comparing different models or com-
ponents (Qian et al., 2016b; Belinkov, 2018).
Interestingly, Conneau et al. (2018) found that
tasks requiring more nuanced linguistic knowledge
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Figure 1: A heatmap visualizing neuron activations.
In this case, the activations capture position in the
sentence.

(e.g., tree depth, coordination inversion) gain the
most from using a deeper classifier. However, the
approach is usually taken for granted; given its
prevalence, it appears that better theoretical or
empirical foundations are in place.

3 Visualization

Visualization is a valuable tool for analyzing
neural networks in the language domain and
beyond. Early work visualized hidden unit ac-
tivations in RNNs trained on an artificial lan-
guage modeling task, and observed how they
correspond to certain grammatical relations such
as agreement (Elman, 1991). Much recent work
has focused on visualizing activations on spe-
cific examples in modern neural networks for
language (Karpathy et al., 2015; Kádár et al.,
2017; Qian et al., 2016a; Liu et al., 2018) and
speech (Wu and King, 2016; Nagamine et al.,
2015; Wang et al., 2017b). Figure 1 shows an
example visualization of a neuron that captures
position of words in a sentence. The heatmap
uses blue and red colors for negative and positive
activation values, respectively, enabling the user
to quickly grasp the function of this neuron.

The attention mechanism that originated in
work on NMT (Bahdanau et al., 2014) also lends
itself to a natural visualization. The alignments
obtained via different attention mechanisms have
produced visualizations ranging from tasks like
NLI (Rocktäschel et al., 2016; Yin et al.,
2016), summarization (Rush et al., 2015), MT
post-editing (Jauregi Unanue et al., 2018), and
morphological inflection (Aharoni and Goldberg,
2017) to matching users on social media (Tay
et al., 2018). Figure 2 reproduces a visualization
of attention alignments from the original work by
Bahdanau et al. Here grayscale values correspond
to the weight of the attention between words in an
English source sentence (columns) and its French
translation (rows). As Bahdanau et al. explain, this
visualization demonstrates that the NMT model
learned a soft alignment between source and target
words. Some aspects of word order may also be

Figure 2: A visualization of attention weights, showing
soft alignment between source and target sentences
in an NMT model. Reproduced from Bahdanau et al.
(2014), with permission.

noticed, as in the reordering of noun and adjective
when translating the phrase ‘‘European Economic
Area.’’

Another line of work computes various saliency
measures to attribute predictions to input features.
The important or salient features can then be
visualized in selected examples (Li et al., 2016a;
Aubakirova and Bansal, 2016; Sundararajan et al.,
2017; Arras et al., 2017a,b; Ding et al., 2017;
Murdoch et al., 2018; Mudrakarta et al., 2018;
Montavon et al., 2018; Godin et al., 2018).
Saliency can also be computed with respect to
intermediate values, rather than input features
(Ghaeini et al., 2018).7

An instructive visualization technique is to
cluster neural network activations and compare
them to some linguistic property. Early work
clustered RNN activations, showing that they or-
ganize in lexical categories (Elman, 1989, 1990).
Similar techniques have been followed by others.
Recent examples include clustering of sentence
embeddings in an RNN encoder trained in a
multitask learning scenario (Brunner et al., 2017),
and phoneme clusters in a joint audio-visual RNN
model (Alishahi et al., 2017).

A few online tools for visualizing neural net-
works have recently become available. LSTMVis

7Generally, many of the visualization methods are
adapted from the vision domain, where they have been
extremely popular; see Zhang and Zhu (2018) for a survey.
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(Strobelt et al., 2018b) visualizes RNN activa-
tions, focusing on tracing hidden state dynamics.8

Seq2Seq-Vis (Strobelt et al., 2018a) visual-
izes different modules in attention-based seq2seq
models, with the goal of examining model deci-
sions and testing alternative decisions. Another
tool focused on comparing attention alignments
was proposed by Rikters (2018). It also provides
translation confidence scores based on the distri-
bution of attention weights. NeuroX (Dalvi et al.,
2019b) is a tool for finding and analyzing indi-
vidual neurons, focusing on machine translation.

Evaluation As in much work on interpretabil-
ity, evaluating visualization quality is difficult
and often limited to qualitative examples. A few
notable exceptions report human evaluations of
visualization quality. Singh et al. (2018) showed
human raters hierarchical clusterings of input
words generated by two interpretation methods,
and asked them to evaluate which method is more
accurate, or in which method they trust more.
Others reported human evaluations for attention
visualization in conversation modeling (Freeman
et al., 2018) and medical code prediction tasks
(Mullenbach et al., 2018).

The availability of open-source tools of the sort
described above will hopefully encourage users
to utilize visualization in their regular research
and development cycle. However, it remains to be
seen how useful visualizations turn out to be.

4 Challenge Sets

The majority of benchmark datasets in NLP are
drawn from text corpora, reflecting a natural
frequency distribution of language phenomena.
While useful in practice for evaluating system
performance in the average case, such datasets
may fail to capture a wide range of phenomena.
An alternative evaluation framework consists of
challenge sets, also known as test suites, which
have been used in NLP for a long time (Lehmann
et al., 1996), especially for evaluating MT sys-
tems (King and Falkedal, 1990; Isahara, 1995;
Koh et al., 2001). Lehmann et al. (1996) noted
several key properties of test suites: systematicity,
control over data, inclusion of negative data,

8RNNVis (Ming et al., 2017) is a similar tool, but its
online demo does not seem to be available at the time of
writing.

and exhaustivity. They contrasted such datasets
with test corpora, ‘‘whose main advantage is
that they reflect naturally occurring data.’’ This
idea underlines much of the work on challenge
sets and is echoed in more recent work (Wang
et al., 2018a). For instance, Cooper et al. (1996)
constructed a semantic test suite that targets phe-
nomena as diverse as quantifiers, plurals, ana-
phora, ellipsis, adjectival properties, and so on.

After a hiatus of a couple of decades,9 challenge
sets have recently gained renewed popularity in
the NLP community. In this section, we include
datasets used for evaluating neural network
models that diverge from the common average-
case evaluation. Many of them share some of
the properties noted by Lehmann et al. (1996),
although negative examples (ill-formed data) are
typically less utilized. The challenge datasets can
be categorized along the following criteria: the
task they seek to evaluate, the linguistic phe-
nomena they aim to study, the language(s) they
target, their size, their method of construction,
and how performance is evaluated.10 Table SM2
(in the supplementary materials) categorizes many
recent challenge sets along these criteria. Below
we discuss common trends along these lines.

4.1 Task

By far, the most targeted tasks in challenge sets
are NLI and MT. This can partly be explained by
the popularity of these tasks and the prevalence of
neural models proposed for solving them. Perhaps
more importantly, tasks like NLI and MT arguably
require inferences at various linguistic levels,
making the challenge set evaluation especially
attractive. Still, other high-level tasks like reading
comprehension or question answering have not
received as much attention, and may also benefit
from the careful construction of challenge sets.

A significant body of work aims to evaluate
the quality of embedding models by correlating
the similarity they induce on word or sentence
pairs with human similarity judgments. Datasets
containing such similarity scores are often used

9One could speculate that their decrease in popularity
can be attributed to the rise of large-scale quantitative eval-
uation of statistical NLP systems.

10Another typology of evaluation protocols was put forth
by Burlot and Yvon (2017). Their criteria are partially
overlapping with ours, although they did not provide a
comprehensive categorization like the one compiled here.
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to evaluate word embeddings (Finkelstein et al.,
2002; Bruni et al., 2012; Hill et al., 2015, inter
alia) or sentence embeddings; see the many
shared tasks on semantic textual similarity in
SemEval (Cer et al., 2017, and previous editions).
Many of these datasets evaluate similarity at a
coarse-grained level, but some provide a more
fine-grained evaluation of similarity or related-
ness. For example, some datasets are dedicated
for specific word classes such as verbs (Gerz
et al., 2016) or rare words (Luong et al., 2013),
or for evaluating compositional knowledge in sen-
tence embeddings (Marelli et al., 2014). Mul-
tilingual and cross-lingual versions have also
been collected (Leviant and Reichart, 2015; Cer
et al., 2017). Although these datasets are widely
used, this kind of evaluation has been criticized
for its subjectivity and questionable correlation
with downstream performance (Faruqui et al.,
2016).

4.2 Linguistic Phenomena

One of the primary goals of challenge sets is
to evaluate models on their ability to handle
specific linguistic phenomena. While earlier
studies emphasized exhaustivity (Cooper et al.,
1996; Lehmann et al., 1996), recent ones tend
to focus on a few properties of interest. For
example, Sennrich (2017) introduced a challenge
set for MT evaluation focusing on five proper-
ties: subject–verb agreement, noun phrase agree-
ment, verb–particle constructions, polarity, and
transliteration. Slightly more elaborated is an
MT challenge set for morphology, including
14 morphological properties (Burlot and Yvon,
2017). See Table SM2 for references to datasets
targeting other phenomena.

Other challenge sets cover a more diverse
range of linguistic properties, in the spirit of
some of the earlier work. For instance, extend-
ing the categories in Cooper et al. (1996), the
GLUE analysis set for NLI covers more than
30 phenomena in four coarse categories (lexical
semantics, predicate–argument structure, logic,
and knowledge). In MT evaluation, Burchardt
et al. (2017) reported results using a large test
suite covering 120 phenomena, partly based on
Lehmann et al. (1996).11 Isabelle et al. (2017)

11Their dataset does not seem to be available yet, but more
details are promised to appear in a future publication.

and Isabelle and Kuhn (2018) prepared challenge
sets for MT evaluation covering fine-grained
phenomena at morpho-syntactic, syntactic, and
lexical levels.

Generally, datasets that are constructed pro-
grammatically tend to cover less fine-grained
linguistic properties, while manually constructed
datasets represent more diverse phenomena.

4.3 Languages

As unfortunately usual in much NLP work, es-
pecially neural NLP, the vast majority of challenge
sets are in English. This situation is slightly better
in MT evaluation, where naturally all datasets
feature other languages (see Table SM2). A
notable exception is the work by Gulordava et al.
(2018), who constructed examples for evaluating
number agreement in language modeling in
English, Russian, Hebrew, and Italian. Clearly,
there is room for more challenge sets in non-
English languages. However, perhaps more press-
ing is the need for large-scale non-English
datasets (besides MT) to develop neural models
for popular NLP tasks.

4.4 Scale

The size of proposed challenge sets varies greatly
(Table SM2). As expected, datasets constructed
by hand are smaller, with typical sizes in the
hundreds. Automatically built datasets are much
larger, ranging from several thousands to close to a
hundred thousand (Sennrich, 2017), or even more
than one million examples (Linzen et al., 2016).
In the latter case, the authors argue that such a
large test set is needed for obtaining a sufficient
representation of rare cases. A few manually
constructed datasets contain a fairly large number
of examples, up to 10 thousand (Burchardt et al.,
2017).

4.5 Construction Method

Challenge sets are usually created either prog-
rammatically or manually, by handcrafting spe-
cific examples. Often, semi-automatic methods
are used to compile an initial list of examples that
is manually verified by annotators. The specific
method also affects the kind of language use and
how natural or artificial/synthetic the examples
are. We describe here some trends in dataset
construction methods in the hope that they may be
useful for researchers contemplating new datasets.
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Several datasets were constructed by modifying
or extracting examples from existing datasets.
For instance, Sanchez et al. (2018) and Glockner
et al. (2018) extracted examples from SNLI
(Bowman et al., 2015) and replaced specific words
such as hypernyms, synonyms, and antonyms,
followed by manual verification. Linzen et al.
(2016), on the other hand, extracted examples
of subject–verb agreement from raw texts using
heuristics, resulting in a large-scale dataset.
Gulordava et al. (2018) extended this to other
agreement phenomena, but they relied on syntactic
information available in treebanks, resulting in a
smaller dataset.

Several challenge sets utilize existing test suites,
either as a direct source of examples (Burchardt
et al., 2017) or for searching similar naturally
occurring examples (Wang et al., 2018a).12

Sennrich (2017) introduced a method for eval-
uating NMT systems via contrastive translation
pairs, where the system is asked to estimate
the probability of two candidate translations that
are designed to reflect specific linguistic prop-
erties. Sennrich generated such pairs program-
matically by applying simple heuristics, such as
changing gender and number to induce agreement
errors, resulting in a large-scale challenge set
of close to 100 thousand examples. This frame-
work was extended to evaluate other properties,
but often requiring more sophisticated genera-
tion methods like using morphological analyzers/
generators (Burlot and Yvon, 2017) or more man-
ual involvement in generation (Bawden et al.,
2018) or verification (Rios Gonzales et al., 2017).

Finally, a few studies define templates that
capture certain linguistic properties and instanti-
ate them with word lists (Dasgupta et al., 2018;
Rudinger et al., 2018; Zhao et al., 2018a).
Template-based generation has the advantage of
providing more control, for example for obtaining
a specific vocabulary distribution, but this comes
at the expense of how natural the examples are.

4.6 Evaluation

Systems are typically evaluated by their per-
formance on the challenge set examples, either
with the same metric used for evaluating the
system in the first place, or via a proxy, as in the

12Wang et al. (2018a) also verified that their examples do
not contain annotation artifacts, a potential problem noted in
recent studies (Gururangan et al., 2018; Poliak et al., 2018b).

contrastive pairs evaluation of Sennrich (2017).
Automatic evaluation metrics are cheap to obtain
and can be calculated on a large scale. However,
they may miss certain aspects. Thus a few studies
report human evaluation on their challenge sets,
such as in MT (Isabelle et al., 2017; Burchardt
et al., 2017).

We note here also that judging the quality of a
model by its performance on a challenge set can
be tricky. Some authors emphasize their wish
to test systems on extreme or difficult cases,
‘‘beyond normal operational capacity’’ (Naik
et al., 2018). However, whether one should expect
systems to perform well on specially chosen cases
(as opposed to the average case) may depend
on one’s goals. To put results in perspective,
one may compare model performance to human
performance on the same task (Gulordava et al.,
2018).

5 Adversarial Examples

Understanding a model also requires an under-
standing of its failures. Despite their success
in many tasks, machine learning systems can
also be very sensitive to malicious attacks or
adversarial examples (Szegedy et al., 2014;
Goodfellow et al., 2015). In the vision domain,
small changes to the input image can lead to
misclassification, even if such changes are in-
distinguishable by humans.

The basic setup in work on adversarial examples
can be described as follows.13 Given a neural
network model f and an input example x, we
seek to generate an adversarial example x′ that
will have a minimal distance from x, while being
assigned a different label by f :

min
x′
||x− x′||

s.t. f(x) = l, f(x′) = l′, l 6= l′

In the vision domain, x can be the input image
pixels, resulting in a fairly intuitive interpretation
of this optimization problem: measuring the
distance ||x − x′|| is straightforward, and finding
x′ can be done by computing gradients with respect
to the input, since all quantities are continuous.

In the text domain, the input is discrete (for
example, a sequence of words), which poses two
problems. First, it is not clear how to measure

13The notation here follows Yuan et al. (2017).
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the distance between the original and adversarial
examples, x and x′, which are two discrete objects
(say, two words or sentences). Second, minimizing
this distance cannot be easily formulated as an
optimization problem, as this requires computing
gradients with respect to a discrete input.

In the following, we review methods for
handling these difficulties according to several
criteria: the adversary’s knowledge, the specificity
of the attack, the linguistic unit being modified,
and the task on which the attacked model was
trained.14 Table SM3 (in the supplementary ma-
terials) categorizes work on adversarial examples
in NLP according to these criteria.

5.1 Adversary’s Knowledge
Adversarial examples can be generated using
access to model parameters, also known as
white-box attacks, or without such access, with
black-box attacks (Papernot et al., 2016a, 2017;
Narodytska and Kasiviswanathan, 2017; Liu
et al., 2017).

White-box attacks are difficult to adapt to the
text world as they typically require computing
gradients with respect to the input, which would
be discrete in the text case. One option is to
compute gradients with respect to the input word
embeddings, and perturb the embeddings. Since
this may result in a vector that does not correspond
to any word, one could search for the closest word
embedding in a given dictionary (Papernot et al.,
2016b); Cheng et al. (2018) extended this idea to
seq2seq models. Others computed gradients with
respect to input word embeddings to identify and
rank words to be modified (Samanta and Mehta,
2017; Liang et al., 2018). Ebrahimi et al. (2018b)
developed an alternative method by representing
text edit operations in vector space (e.g., a binary
vector specifying which characters in a word
would be changed) and approximating the change
in loss with the derivative along this vector.

Given the difficulty in generating white-box
adversarial examples for text, much research has
been devoted to black-box examples. Often, the
adversarial examples are inspired by text edits that
are thought to be natural or commonly generated
by humans, such as typos, misspellings, and so

14These criteria are partly taken from Yuan et al. (2017),
where a more elaborate taxonomy is laid out. At present,
though, the work on adversarial examples in NLP is more
limited than in computer vision, so our criteria will suffice.

on (Sakaguchi et al., 2017; Heigold et al., 2018;
Belinkov and Bisk, 2018). Gao et al. (2018)
defined scoring functions to identify tokens to
modify. Their functions do not require access to
model internals, but they do require the model
prediction score. After identifying the important
tokens, they modify characters with common edit
operations.

Zhao et al. (2018c) used generative adversar-
ial networks (GANs) (Goodfellow et al., 2014) to
minimize the distance between latent repre-
sentations of input and adversarial examples, and
performed perturbations in latent space. Since the
latent representations do not need to come from
the attacked model, this is a black-box attack.

Finally, Alzantot et al. (2018) developed an
interesting population-based genetic algorithm
for crafting adversarial examples for text clas-
sification by maintaining a population of mod-
ifications of the original sentence and evaluating
fitness of modifications at each generation. They
do not require access to model parameters, but do
use prediction scores. A similar idea was proposed
by Kuleshov et al. (2018).

5.2 Attack Specificity
Adversarial attacks can be classified to targeted
vs. non-targeted attacks (Yuan et al., 2017). A
targeted attack specifies a specific false class, l′,
while a nontargeted attack cares only that the
predicted class is wrong, l′ 6= l. Targeted attacks
are more difficult to generate, as they typically
require knowledge of model parameters; that is,
they are white-box attacks. This might explain
why the majority of adversarial examples in NLP
are nontargeted (see Table SM3). A few targeted
attacks include Liang et al. (2018), which specified
a desired class to fool a text classifier, and Chen
et al. (2018a), which specified words or captions
to generate in an image captioning model. Others
targeted specific words to omit, replace, or include
when attacking seq2seq models (Cheng et al.,
2018; Ebrahimi et al., 2018a).

Methods for generating targeted attacks in
NLP could possibly take more inspiration from
adversarial attacks in other fields. For instance,
in attacking malware detection systems, several
studies developed targeted attacks in a black-
box scenario (Yuan et al., 2017). A black-box
targeted attack for MT was proposed by Zhao
et al. (2018c), who used GANs to search for
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attacks on Google’s MT system after mapping
sentences into continuous space with adversarially
regularized autoencoders (Zhao et al., 2018b).

5.3 Linguistic Unit
Most of the work on adversarial text examples
involves modifications at the character- and/or
word-level; see Table SM3 for specific references.
Other transformations include adding sentences
or text chunks (Jia and Liang, 2017) or gener-
ating paraphrases with desired syntactic structures
(Iyyer et al., 2018). In image captioning, Chen
et al. (2018a) modified pixels in the input image
to generate targeted attacks on the caption text.

5.4 Task
Generally, most work on adversarial examples
in NLP concentrates on relatively high-level
language understanding tasks, such as text
classification (including sentiment analysis) and
reading comprehension, while work on text gen-
eration focuses mainly on MT. See Table SM3
for references. There is relatively little work on
adversarial examples for more low-level language
processing tasks, although one can mention
morphological tagging (Heigold et al., 2018) and
spelling correction (Sakaguchi et al., 2017).

5.5 Coherence and Perturbation
Measurement

In adversarial image examples, it is fairly
straightforward to measure the perturbation,
either by measuring distance in pixel space, say
||x − x′|| under some norm, or with alternative
measures that are better correlated with human
perception (Rozsa et al., 2016). It is also visually
compelling to present an adversarial image with
imperceptible difference from its source image.
In the text domain, measuring distance is not as
straightforward, and even small changes to the text
may be perceptible by humans. Thus, evaluation
of attacks is fairly tricky. Some studies imposed
constraints on adversarial examples to have a
small number of edit operations (Gao et al., 2018).
Others ensured syntactic or semantic coherence in
different ways, such as filtering replacements by
word similarity or sentence similarity (Alzantot
et al., 2018; Kuleshov et al., 2018), or by using
synonyms and other word lists (Samanta and
Mehta, 2017; Yang et al., 2018).

Some reported whether a human can classify
the adversarial example correctly (Yang et al.,

2018), but this does not indicate how perceptible
the changes are. More informative human stud-
ies evaluate grammaticality or similarity of the
adversarial examples to the original ones (Zhao
et al., 2018c; Alzantot et al., 2018). Given the
inherent difficulty in generating imperceptible
changes in text, more such evaluations are needed.

6 Explaining Predictions

Explaining specific predictions is recognized as
a desideratum in intereptability work (Lipton,
2016), argued to increase the accountability of
machine learning systems (Doshi-Velez et al.,
2017). However, explaining why a deep, highly
non-linear neural network makes a certain pre-
diction is not trivial. One solution is to ask the
model to generate explanations along with its
primary prediction (Zaidan et al., 2007; Zhang
et al., 2016),15 but this approach requires manual
annotations of explanations, which may be hard
to collect.

An alternative approach is to use parts of the
input as explanations. For example, Lei et al.
(2016) defined a generator that learns a distri-
bution over text fragments as candidate ratio-
nales for justifying predictions, evaluated on
sentiment analysis. Alvarez-Melis and Jaakkola
(2017) discovered input–output associations in
a sequence-to-sequence learning scenario, by
perturbing the input and finding the most relevant
associations. Gupta and Schütze (2018) inspected
how information is accumulated in RNNs towards
a prediction, and associated peaks in prediction
scores with important input segments. As these
methods use input segments to explain predictions,
they do not shed much light on the internal
computations that take place in the network.

At present, despite the recognized importance
for interpretability, our ability to explain pre-
dictions of neural networks in NLP is still limited.

7 Other Methods

We briefly mention here several analysis methods
that do not fall neatly into the previous sections.

A number of studies evaluated the effect
of erasing or masking certain neural network
components, such as word embedding dimensions,
hidden units, or even full words (Li et al., 2016b;

15Other work considered learning textual-visual expla-
nations from multimodal annotations (Park et al., 2018).
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Feng et al., 2018; Khandelwal et al., 2018;
Bau et al., 2018). For example, Li et al.
(2016b) erased specific dimensions in word
embeddings or hidden states and computed the
change in probability assigned to different labels.
Their experiments revealed interesting differences
between word embedding models, where in some
models information is more focused in individual
dimensions. They also found that information is
more distributed in hidden layers than in the input
layer, and erased entire words to find important
words in a sentiment analysis task.

Several studies conducted behavioral experi-
ments to interpret word embeddings by defining
intrusion tasks, where humans need to identify
an intruder word, chosen based on difference
in word embedding dimensions (Murphy et al.,
2012; Fyshe et al., 2015; Faruqui et al., 2015).16

In this kind of work, a word embedding model
may be deemed more interpretable if humans are
better able to identify the intruding words. Since
the evaluation is costly for high-dimensional rep-
resentations, alternative automatic metrics were
considered (Park et al., 2017; Senel et al., 2018).

A long tradition in work on neural networks
is to evaluate and analyze their ability to learn
different formal languages (Das et al., 1992;
Casey, 1996; Gers and Schmidhuber, 2001; Bodén
and Wiles, 2002; Chalup and Blair, 2003). This
trend continues today, with research into modern
architectures and what formal languages they
can learn (Weiss et al., 2018; Bernardy, 2018;
Suzgun et al., 2019), or the formal properties they
possess (Chen et al., 2018b).

8 Conclusion

Analyzing neural networks has become a hot topic
in NLP research. This survey attempted to review
and summarize as much of the current research
as possible, while organizing it along several
prominent themes. We have emphasized aspects
in analysis that are specific to language—namely,
what linguistic information is captured in neural
networks, which phenomena they are successful
at capturing, and where they fail. Many of the
analysis methods are general techniques from the
larger machine learning community, such as

16The methodology follows earlier work on evaluating the
interpretability of probabilistic topic models with intrusion
tasks (Chang et al., 2009).

visualization via saliency measures or evaluation
by adversarial examples. But even those some-
times require non-trivial adaptations to work with
text input. Some methods are more specific to
the field, but may prove useful in other domains.
Challenge sets or test suites are such a case.

Throughout this survey, we have identified
several limitations or gaps in current analysis
work:

• The use of auxiliary classification tasks
for identifying which linguistic properties
neural networks capture has become standard
practice (Section 2), while lacking both a
theoretical foundation and a better empirical
consideration of the link between the
auxiliary tasks and the original task.

• Evaluation of analysis work is often limited
or qualitative, especially in visualization
techniques (Section 3). Newer forms of eval-
uation are needed for determining the suc-
cess of different methods.

• Relatively little work has been done on
explaining predictions of neural network
models, apart from providing visualizations
(Section 6). With the increasing public
demand for explaining algorithmic choices
in machine learning systems (Doshi-Velez
and Kim, 2017; Doshi-Velez et al., 2017),
there is pressing need for progress in this
direction.

• Much of the analysis work is focused on the
English language, especially in constructing
challenge sets for various tasks (Section 4),
with the exception of MT due to its inherent
multilingual character. Developing resources
and evaluating methods on other languages
is important as the field grows and matures.

• More challenge sets for evaluating other tasks
besides NLI and MT are needed.

Finally, as with any survey in a rapidly evolv-
ing field, this paper is likely to omit relevant
recent work by the time of publication. While we
intend to continue updating the online appendix
with newer publications, we hope that our sum-
marization of prominent analysis work and its
categorization into several themes will be a useful
guide for scholars interested in analyzing and
understanding neural networks for NLP.
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