
2-Slave Dual Decomposition for Generalized Higher Order CRFs

Xian Qian and Yang Liu
Computer Science Department

The University of Texas at Dallas
{qx,yangl}@hlt.utdallas.edu

Abstract

We show that the decoding problem in
generalized Higher Order Conditional
Random Fields (CRFs) can be decomposed
into two parts: one is a tree labeling
problem that can be solved in linear time
using dynamic programming; the other is
a supermodular quadratic pseudo-Boolean
maximization problem, which can be solved
in cubic time using a minimum cut algorithm.
We use dual decomposition to force their
agreement. Experimental results on Twitter
named entity recognition and sentence
dependency tagging tasks show that our
method outperforms spanning tree based dual
decomposition.

1 Introduction

Conditional Random Fields (Lafferty et al., 2001)
(CRFs) are popular models for many NLP tasks.
In particular, the linear chain CRFs explore local
structure information for sequence labeling tasks,
such as part-of-speech (POS) tagging, named entity
recognition (NER), and shallow parsing. Recent
studies have shown that the predictive power
of CRFs can be strengthened by breaking the
locality assumption. They either add long distance
dependencies and patterns to linear chains for
improved sequence labeling (Galley, 2006; Finkel
et al., 2005; Kazama and Torisawa, 2007), or
directly use the 4-connected neighborhood lattice
(Ding et al., 2008). The resulting non-local models
generally suffer from exponential time complexity
of inference except some special cases (Sarawagi

and Cohen, 2004; Takhanov and Kolmogorov, 2013;
Kolmogorov and Zabih, 2004).

Approximate decoding algorithms have been
proposed in the past decade, such as reranking
(Collins, 2002b), loopy belief propagation (Sutton
and Mccallum, 2006), tree reweighted belief
propagation (Kolmogorov, 2006). In this paper,
we focus on dual decomposition (DD), which
has attracted much attention recently due to its
simplicity and effectiveness (Rush and Collins,
2012). In short, it decomposes the decoding problem
into several sub-problems. For each sub-problem, an
efficient decoding algorithm is deployed as a slave
solver. Finally a simple method forces agreement
among different slaves. A popular choice is the sub-
gradient algorithm. Martins et al. (2011b) showed
that the success of the sub-gradient algorithm is
strongly tied to the ability of finding a good
decomposition, i.e., one involving few overlapping
slaves. However, for generalized higher order
graphical models, a lightweight decomposition is
not at hand and many overlapping slaves may
be involved. Martins et al. (2011b) showed that
the sub-gradient algorithm exhibits extremely slow
convergence in such cases, and they proposed
the alternating directions method (DD-ADMM) to
tackle these.

In this paper, we propose a 2-slave dual
decomposition approach for efficient decoding in
higher order CRFs. One slave is a tree labeling
model that can be solved in linear time using
dynamic programming. The other is a supermodular
quadratic pseudo-Boolean maximization problem,
which can be solved in cubic time via minimum

339

Transactions of the Association for Computational Linguistics, 2 (2014) 339–350. Action Editor: Kristina Toutanova.
Submitted 11/2013; Revised 6/2014; Published 10/2014. c©2014 Association for Computational Linguistics.

cut. Experimental results on Twitter NER and
sentence dependency tagging tasks demonstrate the
effectiveness of our technique.

2 Background

2.1 Generalized Higher Order CRFs
Given an undirected graph G = (V,E) with
N vertices, let x = x1, x2, . . . , xN denote the
observations of the vertices, and each observation
xv is asked to assign one state (or label) in the state
set s ∈ S. The assignment of the graph can be
represented by a binary matrix YN×|S|, where |S| is
the cardinality of S , and the element Yv,s indicates
if xv is assigned state s. In the rest of the paper, we
use Yv[s] instead, and v[s] to denote the vertex v with
state s. The constraint

∑

s

Yv[s] = 1 (1)

is required so that each vertex has exactly one state.
In this paper, we use Y to denote the space of state
assignments.

The decoding problem is to search the optimal
assignment that maximizes the scoring function

Y ∗ = arg maxY ∈Y(x)ϕ(x, Y)

where ϕ(x, Y) is a given scoring function. As x is
constant in this maximization problem, we omit x
for simplicity in the remainder of the paper. The
decoding problem becomes

max
Y ∈Y

ϕ(Y). (2)

The scoring function ϕ(Y) is usually decomposed
into small parts

ϕ(Y) =
∑

c

∑

s∈c[·]
ϕc[s]

∏

v[s]∈c[s]

Yv[s]

where c is a subset of vertices, called a factor. c[·]
is the set of all possible assignments of c. For
example, factor c = {u, v} denotes the edge (u, v)
in the graph, and c[·] = S2 is the set of the
|S|2 transitions. A factor c with a specific state
assignment s is called a pattern, denoted as c[s].
For example, v[s] is a pattern of vertex v, and uv[st]
is a pattern of edge (u, v) as shown in Figure 1. Note
that our definition extends of the work of Takhanov
and Kolmogorov where patterns are restricted to the
state sequences of consecutive vertices (Takhanov
and Kolmogorov, 2013).

∏
v[s]∈c[s] Yv[s] means a

pattern c[s] is selected in the assignment only if all

state

vertex

s

t

u v

Figure 1: Pattern c[s] = uv[st] is shown in bold.

its members v[s] are selected. For simplicity, in this
paper we use

Yc[s] =
∏

v[s]∈c[s]

Yv[s]

to denote whether pattern c[s] appears in the
assignment. Then the scoring function becomes

ϕ(Y) =
∑

c

∑

s∈c[·]
ϕc[s]Yc[s]. (3)

Many existing CRFs can be represented using
Eq (3). For example, the popular linear chain
CRFs consider two types of patterns: vertices and
edges connecting adjacent vertices, resulting in the
following scoring function

ϕ(Y) =
∑

v

∑

s

ϕv[s]Yv[s] +
∑

v

∑

st∈S2

ϕv(v+1)[st]Yv(v+1)[st]

The optimal Y can be found in linear time using the
Viterbi algorithm.

Another example is the skip-chain CRFs, which
consider the interactions between similar vertices

ϕ(Y) =
∑

v

∑

s

ϕv[s]Yv[s]

+
∑

v

∑

st∈S2

ϕv(v+1)[st]Yv(v+1)[st]

+
∑

u,v are similar

∑

s∈S
ϕuv[ss]Yuv[ss].

With positive ϕuv[ss], the model encourages similar
vertices u and v to have identical state s, and thus
it yields a more consistent labeling result compared
with linear chain CRFs. Empirically, the use
of complex patterns achieves better performance
but suffers from high computational complexity
of inference, which is generally NP-hard. Hence
an efficient approximate inference algorithm is
required to balance the trade-off.

340

2.2 Dual Decomposition
Dual decomposition is a popular approach due
to its simplicity and effectiveness, and has been
successfully applied to many tasks such as machine
translation, cross sentential POS tagging, joint POS
tagging and parsing.

Briefly, dual decomposition attempts to solve
problems of the following form

max
Y

M∑

i=1

ϕi(Y)

The objective function is the sum of several small
components that are tractable in isolation but
whose combination is not. These components
are called slaves. Rather than solving the
problem directly, dual decomposition considers the
equivalent problem

max
Y,Z1...ZM

M∑

i=1

ϕi(Zi)

s.t. Zi = Y ∀i
Using Lagrangian relaxation to eliminate the
constraint, we get

min
λ

max
Y,Z1...ZM

M∑

i=1

ϕi(Zi) +
∑

i

λT
i (Y − Zi) (4)

which provides the upper bound of the original
problem. λ is the Lagrange multiplier, which is
typically optimized via sub-gradient algorithms.

Martins et al. (2011b) showed that the success of
sub-gradient algorithms is strongly tied to the ability
of finding a good decomposition, i.e., one involving
few slaves. Finding a concise decomposition is
usually task dependent. For example, Koo et al.
(2010) introduced dual decomposition for parsing
with non-projective head automata. They used
only two slaves: one is the arc-factored model,
and the other is head automata which involves
adjacent siblings and can be solved using dynamic
programming in linear time.

Dual decomposition is especially efficient for
joint learning tasks because a concise decomposition
can be derived naturally where each slave solves one
subtask. For example, Rush et al. (2010) used two
slaves for integrated phrase-structure parsing and
trigram POS tagging task.

However, for generalized higher order CRFs,
a lightweight decomposition may be not at

hand. Martins et al. (2011a) showed that the
sub-gradient algorithms exhibited extremely slow
convergence when handling many slaves. For fast
convergence, they employed alternating directions
dual decomposition (AD3), which relaxes the
agreement constraint via augmented Lagrangian
Relaxation, where an additional quadratic penalty
term was added into the Lagrangian (Eq (4)).
Similarly, Jojic et al. (2010) added a strongly
concave term to the Lagrangian to make it
differentiable, resulting in fast convergence.

The work most closely related to ours is the work
by Komodakis (2011), where dual decomposition
was used for decoding general higher order CRFs.
Komodakis achieved great empirical success even
with the naive decomposition where each slave
processes a single higher order factor. His
result demonstrates the effectiveness of the dual
decomposition framework. Our work improves
Komodakis’ by using a concise decomposition with
only two slaves.

2.3 Graph Representable Pseudo-Boolean
Optimization

One slave in our approach is a graph representable
pseudo-Boolean maximization problem, which
can be reduced to a supermodular quadratic
pseudo-Boolean maximization problem and solved
efficiently using an algorithm for finding a minimal
cut.

A pseudo-Boolean function (PBF) (Boros and
Hammer, 2002) is a multilinear function of binary
variables, that is

f(x) =
∑

i

aixi +
∑

i<j

aijxixj +
∑

i<j<k

aijkxixjxk + . . .

where xi ∈ {0, 1}. Maximizing a PBF is usually
NP-hard, such as the maximum cut problem (Boros
and Hammer, 1991).

A pseudo-Boolean function is said to be
supermodular iff

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y)

where x ∧ y, x ∨ y are the element-wise AND and
OR operator of the two vectors respectively. This
is an important concept, because a supermodular
pseudo-Boolean function (SPBF) can be maximized
in O(n6) running time (Orlin, 2009). A necessary
and sufficient condition for identifying a SPBF is

341

that all of its second order derivatives are non-
negative (Nemhauser et al., 1978), i.e., for all i < j,

∂f

∂xi∂xj
≥ 0

For example a quadratic PBF is supermodular if its
coefficients of all quadratic terms are non-negative.

Though the general supermodular maximization
algorithm can be used for any SPBF, the special
features of some specific problems allow more
efficient algorithms to be used. For example, it is
well known that the supermodular quadratic pseudo-
Boolean maximization problem can be solved in
cubic time using min-cut (Billionnet and Minoux,
1985; Kolmogorov and Zabih, 2004).

In fact, a subset of SPBFs can be maximized
using a min-cut algorithm. A pseudo-Boolean
function f(x) is called graph representable or
graph expressible if there exists a graph G = (V,E)
with terminals s and t and a subset of vertices V0 =
V − {s, t} = {v1, . . . , vn, u1, . . . , um} such that,
for any configuration x1, . . . , xn, the value of the
function f(x) is equal to a constant plus the cost of
the minimum s-t cut among all cuts, in which vi is
connected with s if xi = 0 and connected with t if
xi = 1.

Our definition extends the work of Kolmogorov
and Zabih (2004) that focused on quadratic and
cubic functions. Vertices u1, . . . um correspond to
the extra binary variables that are introduced to
reduce the graph representable PBFs to equivalent
quadratic forms. For example, the positive-negative
PBFs where all terms of degree 2 or more have
positive coefficients are graph representable, and
each non-linear term requires one extra binary
variable to obtain the equivalent quadratic form
(Rhys, 1970).

3 The Tree-Cut Decomposition for
Generalized Higher Order CRFs

We decompose the decoding problem, i.e.,
maximization of Eq (3), into two parts, a tree
labeling problem and a PBF maximization problem.
We show that the PBF can be graph representable
by reparameterizing the scoring function in Eq (3).
Then we reduce these pseudo-Boolean functions to
quadratic forms based on the recent work of Živný

and Jeavons (2010), and finally solve the slave
problem via graph cuts.

3.1 Fully Connected Pairwise CRFs

We first describe our idea for a simple case, the
fully connected pairwise CRFs (Krähenbühl and
Koltun, 2011), which are generalizations of linear-
chain CRFs and skip-chain CRFs. Formally, the
decoding problem in fully connected pairwise CRFs
can be formulated as follows:

max
Y

∑

v

∑

s

ϕv[s]Yv[s] +
∑

u,v

∑

st∈S2

ϕuv[st]Yuv[st]

s.t. Y ∈ Y (5)

Note that for any edge (u, v), adding a constant
ψuv to all of its related patterns will not change the
optimal solution of the problem. In other words, the
optimal Y for the following problem is irrelevant to
ψuv

max
Y

∑

v

∑

s

ϕv[s]Yv[s]

+
∑

u,v

∑

st∈S2

(ψuv + ϕuv[st])Yuv[st]

s.t. Y ∈ Y

The reparameterization keeps the optimality of the
problem and plays an important role for graph
representation, as we will show later.

By introducing a new variable Z = Y for the
quadratic terms and relaxing the constraint Z =
Y using Lagrangian relaxation, we get the relaxed
problem

min
λ

max
Y,Z

∑

v

∑

s

ϕv[s]Yv[s]

+
∑

u,v

∑

st∈S2

(ψuv + ϕuv[st])Zuv[st]

+
∑

v

∑

s

λv[s]

(
Zv[s] − Yv[s]

)

s.t. Y ∈ Y
Zv[s] ∈ {0, 1}, ∀v, s

We split the inner maxY,Z into two subproblems,
and a minimal λ is found using sub-gradient descent
algorithms which repeatedly find a maximizing
assignment for the subproblems individually.

342

Let

fλ(Y) =
∑

v,s

ϕv[s]Yv[s] −
∑

v,s

λv[s]Yv[s]

gλ(Z) =
∑

u,v

∑

st∈S2

(ψuv + ϕuv[st])Zuv[st]

+
∑

v,s

λv[s]Zv[s]

The two subproblems are

max
Y

fλ(Y)

s.t. Y ∈ Y

and

max
Z

gλ(Z)

Zv[s] ∈ {0, 1}, ∀v, s

The first subproblem can be solved in linear
time since all vertices are independent. The
second problem is a binary quadratic programming
problem. As discussed in Section 2.3, gλ(Z) can
be solved using min-cut if the coefficients of the
quadratic terms are non-negative, i.e.

ψuv + ϕuv[st] ≥ 0, ∀u, v, s, t

Hence, we can set

ψuv = − min
st∈uv[·]

{ϕuv[st]}

to guarantee the non-negativity. This supermodular
binary quadratic programming problem can be
solved via the push-relabel algorithm (Goldberg,
2008) in O(|S|N)3 running time.

Though Z may not satisfy the constraint Z ∈ Y
after sub-gradient descent based optimization, Y
must satisfy Y ∈ Y , hence we could use Y as the
final solution if Z and Y disagree.

3.2 Generalized Higher Order CRFs
Now we consider the general case, maximizing
Eq (3). Similar with the pairwise case, we use two
slaves. One is a set of independent vertices, and
the other is a pseudo-Boolean optimization problem.
That is, we can redefine gλ(Z) as

gλ(Z) =
∑

c

∑

s∈c[·]

(
ψc + ϕc[s]

)
Zc[s]

+
∑

v,s

λv[s]Zv[s]

A sufficient condition for gλ(Z) to be graph
representable is that coefficients of all non-linear
terms are non-negative (Freedman and Drineas,
2005). Hence, we can set

ψc = − min
s∈c[·]

{ϕc[s]}

to guarantee the non-negativity.
In real applications, higher order patterns are

sparse, i.e.,
∣∣{s ∈ c[·] | ϕc[s]̸=0}

∣∣ ≪ |S||c| (Qian et
al., 2009; Ye et al., 2009). Hence we could skip
the patterns with zero weights (ϕc[s] = 0) when
calculating

∑
s∈c[·] ϕc[s]Zc[s] for fast inference.

However, the reparameterization described above
may introduce many non-zero terms which destroy
the sparsity. For example, in the NER task, a binary
feature is defined as true if a word subsequence
matches a location name in a gazetteer. Suppose
c =Little York village is such a word subsequence,
then among |S|3 possible assignments of c, only
the one that labels c =Little York village as a
location name has non-zero weight. However, the
reparameterization may add ψc to the other |S|3 − 1
assignments, yielding many new patterns.

Therefore, we use another reparameterization
strategy that exploits the sparsity for efficient
decomposition. We only reparameterize the weights
of edges, i.e., quadratic terms. Let

gλ(Z) =
∑

c
|c|=2

∑

s∈c[·]

(
ψc + ϕc[s]

)
Zc[s]

+
∑

c
|c|≥3

∑

s∈c[·]
ϕc[s]Zc[s] +

∑

v,s

λv[s]Zv[s]

The optimal solution is unchanged for any ψ.
In Appendix A, we show that by setting a

sufficiently large ψ, gλ(Z) is graph representable.
Such reparameterization method requires at most
N2|S|2 new patterns ψc,|c|=2 to make gλ(Z) graph
representable. It preserves the sparsity of higher
order patterns, hence is more efficient than the naive
approach.

3.3 Tree-Cut Decomposition

In some cases, the graph is built by adding sparse
global patterns to local models like trees, resulting
in nearly tree-structured CRFs. For example, Sutton
and Mccallum (2006) used skip-chain CRFs for
NER, where skip-edges connecting identical words

343

were added to linear chain CRFs. Since the skip-
edges are sparse, the resulting graphical models
are nearly linear chains. To handle the edges
in local models efficiently, we reformulate the
decomposition. Let T be a spanning tree of the
graph, if edge (u, v) ∈ T , we put its related patterns
into the first slave, otherwise we put its related
patterns into the second slave.

For clarity, we formulate the tree-cut
decomposition for generalized higher order
CRFs. The first slave involves the patterns covered
by the spanning tree T , and its scoring function is

fλ(Y) =
∑

v

∑

s

ϕv[s]Yv[s] −
∑

v,s

λv[s]Yv[s]

+
∑

c∈T
|c|=2

∑

s∈c[·]

ψc + ϕc[s] +

∑

c′[s′]⊇c[s]

|c′|≥3,ϕ
c′[s′]<0

ϕc′[s′]

Yc[s].

The second slave involves the rest patterns. To get
its quadratic form, for each pattern c[s], |c| = 3,
we introduce one extra binary variable uc[s], and for
each pattern c[s], |c| ≥ 4, we introduce |c| − 3 extra
binary variables uk

c[s], k = 0, . . . , |c| − 4. Let u

denote the vector of all the introduced extra binary
variables. For each pattern c[s], denote

Zc[s] =
∑

v[s]∈c[s]

Zv[s].

The scoring function of the second slave is

h(Z,u) = h1(Z) + h2(Z,u) + h3(Z,u) + h4(Z,u)

where

h1(Z) =
∑

v,s

λv[s]Zv[s]

+
∑

c ̸∈T
|c|=2

∑

s∈c[·]

ψc + ϕc[s] +

∑

c′[s′]⊇c[s]

|c′|≥3,ϕ
c′[s′]<0

ϕc′[s′]

Zc[s]

h2(Z,u) =
∑

c
|c|≥3

∑

s∈c[·]
ϕc[s]≥0

ϕc[s]

(
Zc[s] − |c| + 1

)
uc[s]

h3(Z,u) =
∑

c
|c|=3

∑

s∈c[·]
ϕc[s]<0

∣∣ϕc[s]

∣∣uc[s]

(
Zc[s] − 1

)

h4(Z,u) =
∑

c
|c|≥4

∑

s∈c[·]
ϕc[s]<0

|ϕc[s]|
(
u0
c[s](2Zc[s] − 3)

+

|c|−4∑

j=1

uj
c[s](Zc[s] − j − 2)

 .

Term Number of Variables
h1(Z) N2|S|2
h2(Z,u)

∑
c

|c|≥3

∑
s∈c[·]

ϕc[s]≥0
(1 + |c|)

h3(Z,u)
∑

c
|c|=3

∑
s∈c[·]

ϕc[s]<0
(1 + |c|)

h4(Z,u)
∑

c
|c|≥4

∑
s∈c[·]

ϕc[s]<0
(2|c| − 3)

Table 1: Number of variables in each part of h(Z,u)

h1 involves the edges that are not in T , h2 involves
positive terms of degree 3 or more. h3 involves
negative cubic terms, h4 involves negative terms of
degree 4 or more.

The relaxed problem for generalized higher order
CRFs, i.e., Problem (2) is

min
λ

max
Y,Z,u

fλ(Y) + h(Z,u)

s.t. Y ∈ Y (6)
Z,u are binary

3.4 Complexity Analysis

In this section, we theoretically analyze the time
complexity for each iteration in dual decomposition.
Running time for maxY ∈Y fλ(Y) is linear in the
size of the graph, i.e., N × |S|2. Running time for
maxZ,u h(Z,u) is cubic in the number of variables,
which is the sum of variables in function h1 to h4.
h1(Z) has at most N2|S|2 variables; each pattern in
h2(Z,u) requires one extra variable, hence h2(Z,u)
has

∑
c

|c|≥3

∑
s∈c[·]

ϕc[s]≥0

(1 + |c|) variables. Similarly,

we could count the number of variables in h3 and
h4, as shown in Table 1.

In summary, each pattern in h(Z,u) requires at
most 2|c|−2 variables, so h(Z,u) has no more than∑

c

∑
s∈c[·] (2|c| − 2) variables.

Finally, the time complexity for each iteration in
dual decomposition is

O

N |S|2 +

∑

c

∑

s∈c[·]
(2|c| − 2)

3

which is cubic in the total length of patterns.

344

4 Experimental Results

4.1 Named Entity Recognition in Tweets

4.1.1 Data Sets
Our first experiment is named entity recognition

in tweets. Recently, information extraction on
Twitter or Facebook data is attracting much attention
(Ritter et al., 2011). Different from traditional
information extraction for news articles, messages
posted on these social media websites are short
and noisy, making the task more challenging. In
this paper, we use generalized higher order CRFs
for Twitter NER with discriminative training, and
compare our 2-slave dual decomposition approach
with spanning tree based dual decomposition
approach and other decoding algorithms.

So far as we know, there are two publicly
available data sets for Twitter NER. One is the
Ritter’s (Ritter et al., 2011), the other is from
MSM2013 Concept Extraction Challenge (Basave
et al., 2013)1. Note that in Ritter’s work (Ritter et
al., 2011), all of the data are used for evaluating
named entity type classification, and not used
during training. However, our approach requires
discriminative training, which makes our method
not comparable with their results. Therefore we
choose the MSM2013 dataset in our experiment
and compare our system with the MSM2013 official
runs.

The MSM2013 corpus has 4 types of named
entities, person (PER), location (LOC), organization
(ORG), and miscellaneous (MISC). The name
entities are about film/movie, entertainment award
event, political event, programming language,
sporting event and TV show. The data is separated
into a training set containing 2815 tweets, and a test
set containing 1526 tweets.

4.1.2 Local Features
We cast the NER task as a structured classification

problem, and adopt BIESO labeling, where for each
multi-word entity of class C, the first word is labeled
as B-C, the words in the entity are labeled as I-C,
and the last word is labeled as E-C, a single word
entity of class C is labeled as S-C, and other words
are labeled as O.

1http://oak.dcs.shef.ac.uk/msm2013/challenge.html

Our baseline NER is a linear chain CRF. As
the MSM2013 competition allows to use extra
resources, we use several additional datasets to
generate rich features. Specifically, we trained
two POS taggers and two NER taggers using extra
datasets. All the 4 taggers are trained using linear
chain CRFs with perceptron training. One POS
tagger is trained on Brown and Wall Street Journal
corpora in Penn Tree Bank 3, and the other is trained
on ARK Twitter NLP corpus (Gimpel et al., 2011)
with slight modification. One of the NER taggers
is trained on CoNLL 2003 English dataset2, and the
other is trained on Ritter’s dataset.

We used dictionaries in Ark Twitter NLP toolkit3,
Ritter’s Twitter NLP toolkit4 and Moby Words
project5 to generate dictionary features. We also
collected film names and TV shows from IMDB
website and musician groups from wikipedia. These
dictionaries are used to detect candidate named
entities in the training and testing datasets using
string matching. Those matched words are assigned
with BIESO style labels which are used as features.

We also used the unsupervised word cluster
features provided by Ark Twitter NLP toolkit, which
has significantly improved the Twitter POS tagging
accuracy (Owoputi et al., 2013). Similar with
previous work, we used prefixes of the cluster bit
strings with lengths ∈ {2, 4, . . . , 16} as features.

4.1.3 Global Features
Previous studies showed that the document level

consistency features (same phrases in a document
tend to have the same entity class) are effective for
NER (Kazama and Torisawa, 2007; Finkel et al.,
2005). However, unlike news articles, tweets are
not organized in documents. To use these document
level consistency features, we grouped the tweets
in MSM2013 dataset using single linkage clustering
algorithm where similarity between two tweets is the
number of their overlapped words. If the similarity
is greater than 4, then we put the two tweets into
one group. Unlike standard document clustering,
we did not normalize the length of tweets since all
the tweets are limited to 140 characters. Then we

2www.cnts.ua.ac.be/conll2003/
3https://code.google.com/p/ark-tweet-nlp/
4http://github.com/aritter/Twitter nlp
5http://icon.shef.ac.uk/Moby/mwords.html

345

extracted the group level features as follows. For
any two identical phrases xi . . . xi+k, xj . . . xj+k in
a group, a binary feature is true if they have the
same label subsequences. The pattern set of this
feature is c = {i, . . . , i + k, j, . . . , j + k} and
c[·] = {s|si = sj , . . . , si+k = sj+k}.

4.1.4 Results

We use two evaluation metrics. One is the micro
averaged F score, which is used in CoNLL2003
shared task. The other is macro averaged F score,
which is used in MSM2013 official evaluation
(Basave et al., 2013).

We compare our approach with two baselines,
integer linear programming (ILP)6 and a naive
dual decomposition method. In naive dual
decomposition, we use three types of slaves: a
linear chain captures unigrams and bigrams, and the
spanning trees cover the skip edges linking identical
words. Identical multi-word phrases yield larger
factors with more than 4 vertices. They could
not be handled efficiently by belief propagation for
spanning trees. Therefore, we create multiple slaves,
each of which covers a pair of identical multi-word
phrases.

To reduce the number of slaves, we use a greedy
algorithm to choose the spanning trees. Each time
we select the spanning tree that covers the most
uncovered edges. This can be done by performing
the maximum spanning tree algorithm on the graph
where each uncovered edge has unit weight. Let x∗

denote the most frequent word in a tweet cluster, and
F ∗ is its frequency, then at least (F ∗−1)/2 spanning
trees are required to cover the complete subgraph
spanned by x∗.

For both dual decomposition systems, averaged
perceptron (Collins, 2002a) with 10 iterations is
used for parameter estimation. We follow the work
of Rush et al. (2010) to choose the step size in the
sub-gradient algorithm.

Table 2 shows the comparison results, including
two F scores and total running time (seconds)
for training and testing. Performances of the top
4 official runs are also listed. Different from
our approach, the top performing systems mainly
benefit from rich open resources, such as DBpedia

6we use Gurobi as the ILP solver, http://www.gurobi.com/

System Fmacro Fmicro Sec.
Linear chain CRFs 0.657 0.815 98
General CRFs (2-slave DD) 0.680 0.827 214
General CRFs (naive DD) 0.672 0.824 490
General CRFs (ILP) 0.680 0.828 8640
Official 1st 0.670 N/A N/A
Official 2nd 0.662 N/A N/A
Official 3rd 0.658 N/A N/A
Official 4th 0.610 N/A N/A

Table 2: Comparison results on MSM2013 Twitter
NER task.

Gazetteer, ANNIE Gazetteer, Yago, Microsoft N-
grams, and external NER system combination,
such as ANNIE, OpenNLP, LingPipe, OpenCalais
(Basave et al., 2013). We can see that general CRFs
with global features are competitive with these top
systems. Our 2-slave DD outperforms naive DD
and achieves competitive performance with exact
inference based on ILP, while is much faster than
ILP.

To compare the convergence speed and optimality
of 2-slave DD and naive DD algorithms, we use
the model trained by ILP, and record the Fmicro

scores, averaged dual objectives per instance (the
lower the tighter), decoding time, and fraction of
optimality certificates across iterations of the two
DD algorithms on test data. Figure 2 shows
the performances of the two algorithms relative to
decoding time. Our method requires 0.0064 seconds
for each iteration on average, about four times
slower than the naive DD. However, our approach
achieves a tighter upper bound and larger fraction of
optimality certificates.

4.2 Sentence Dependency Tagging

Our second experiment is sentence dependency
tagging in Question Answering forums task studied
in Qu and Liu’s work (Qu and Liu, 2012). The goal
is to extract the dependency relationships between
sentences for automatic question answering. For
example, from the posts below, we would need to
know that sentence S4 is a comment about sentence
S1 and S2, not an answer to S3.

346

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

Decoding Time (sec.)

%certificates of naive DD
%certificates of 2−slave DD
F score of naive DD
F score of 2−slave DD

0 50 100 150 200
6800

6900

7000

7100

7200

7300

D
ua

l O
bj

ec
tiv

e

Decoding Time (sec.)

naive DD
2−slave DD

Figure 2: Twitter NER: The Fmicro scores, dual objectives, and fraction of optimality certificates relative to
decoding time.

source

ta
rg

e
t

Figure 3: 3-wise CRF for QA sentence dependency
tagging. Order-3 factors (e.g., red and blue)
connects the 3 vertices in adjacent edge pairs.

A: [S1]I’m having trouble installing my DVB Card.
[S2]dmesg prints: . . .
[S3]What could I do to resolve this problem?

B: [S4] I’m having similar problems with Ubuntu

For a pair of sentences, the depending sentence
is called the source sentence, and the depended
sentence the target sentence. One source sentence
can potentially depend on many different target
sentences, and one target sentence can also
correspond to multiple sources. Qu and Liu (2012)
casted the task as a binary classification problem,
i.e., whether or not there exists a dependency
relation between a pair of sentences. Formally,
in this task, Y is a N2 × 2 matrix, where N is
the number of sentences, Yi∗N+j[1] = 1 if the ith

sentence depends on the jth sentence, otherwise,
Yi∗N+j[0] = 1. We use the corpus in Qu and
Liu’s work (Qu and Liu, 2012), where dependencies
between 3, 483 sentences in 200 threads were

System F Sec.
2D CRFs (naive) 0.564 9.2
2D CRFs (2-slave) 0.565 16.4
3-wise CRFs (naive) 0.572 18.7
3-wise CRFs (2-slave) 0.584 17.33
(Qu and Liu, 2012) 0.561 N/A

Table 3: Comparison results on QA sentence
dependency tagging task.

annotated. Following their settings we randomly
split annotated threads into three disjoint sets, and
run a three-fold cross validation. F score is used as
the evaluation metric.

Qu and Liu (2012) used the pairwise CRF with
a 4-connected neighborhood system (2D CRF)
as their graphical model, where each vertex in
the graph represents a sentence pair, and each
edge connects adjacent source sentences or target
sentences. The key observation is that given a
source/target sentence, there is strong dependency
between adjacent target/source sentences. In this
paper, we extend their work by connecting the 3
vertices in adjacent edge pairs, resulting in 3-wise
CRFs, as shown in Figure 3. We use the same
vertex features and edge features as in Qu and
Liu’s work. For a 3-tuple of vertices, we use the
following features: combination of the sentence
types within the tuple, whether the related sentences
are in one post or belong to the same author.
Again, we use perceptron to train the model, and
the max iteration number for dual decomposition is
200. The spanning tree in our decomposition is the
concatenation of all the rows in the graph.

347

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Decoding Time (sec.)

%certificates of naive DD
%certificates of 2−slave DD
F score of naive DD
F score of 2−slave DD

0 1 2 3 4 5
8.95

9

9.05

9.1

9.15

9.2

9.25
x 10

5

D
ua

l O
bj

ec
tiv

e

Decoding Time (sec.)

naive DD
2−slave DD

Figure 4: QA sentence dependency tagging using 3-wise CRFs: The F scores, dual objectives, and fraction
of optimality certificates relative to decoding time.

Table 3 shows the experimental results. For 2D
CRFs, the edges can be covered by 2 spanning
trees (one covers all vertical edges and the other
covers all horizontal edges), hence the naive dual
decomposition has only two slaves. Compared with
naive DD, our 2-slave DD achieved competitive
performance while two times slower. This is
because naive DD adopts dynamic programming
that runs in linear time. However, for 3-wise CRFs,
the naive dual decomposition requires many small
slaves to cover the order-3 factors. Therefore our
2-slave method is more effective. The fraction of
optimality certificates and dual objectives of 3-wise
CRFs relative to decoding time during testing are
shown in Figure 4. For each iteration, our method
requires 0.0049 seconds and the naive DD requires
0.00054 seconds, about 10 times faster than ours,
but our method converges to a lower lower bound.

5 Conclusion

We proposed a new decomposition approach for
generalized higher order CRFs using only two
slaves. Both permit polynomial decoding time. We
evaluated our method on two different tasks: Twitter
named entity recognition and forum sentence
dependency detection. Experimental results show
that though the compact decomposition requires
more running time for each iteration, it achieves
consistently tighter bounds and outperforms the
naive dual decomposition. The two experiments
demonstrate that our method works for general
graphs, even if the graph can not be decomposed into
a few spanning trees (for example, if the graph has

large complete subgraphs or large factors).
Our code is available at

https://github.com/qxred/higher-order-crf

Appendix A

We show that by setting a sufficiently large ψ, gλ(Z)
in Section 3.2 is graph representable.

Let

gλ(Z) = g1(Z) + g2(Z) + g3(Z) + g4(Z)

where

g1(Z) =
∑

c
|c|=2

∑

s∈c[·]

(
ψc + ϕc[s]

)
Zc[s] +

∑

v,s

λv[s]Zv[s]

g2(Z) =
∑

c
|c|≥3

∑

s∈c[·]
ϕc[s]≥0

ϕc[s]Zc[s]

g3(Z) =
∑

c
|c|=3

∑

s∈c[·]
ϕc[s]<0

ϕc[s]Zc[s]

g4(Z) =
∑

c
|c|≥4

∑

s∈c[·]
ϕc[s]<0

ϕc[s]Zc[s]

For g2(Z), since coefficients of all terms are non-
negative, we can use the fact

∏

i
ai∈{0,1}

ai = max
b∈{0,1}

(∑

i

ai − |a| + 1

)
b (7)

to reduce g2(Z) into an equivalent quadratic
form (Freedman and Drineas, 2005). That is,
maxZ g2(Z) is equivalent to

max
Z,u

∑

c,|c|≥3
ϕc[s]≥0

∑

s∈c[·]
ϕc[s]

 ∑

v[s]∈c[s]

Zv[s] − |c| + 1

uc[s]

348

which is graph representable because coefficients of
all the quadratic terms are non-negative.

Coefficients of terms in g3(Z) and g4(Z) are
negative, therefore g3(Z) and g4(Z) are not
supermodular. To make them graph representable,
we use the following fact
Proposition 1 (Živný and Jeavons, 2010)
The pseudo-Boolean function p(x) =∑

1≤i<j≤K xixj − ∏K
i=1 xi is graph representable

and can be reduced to the quadratic forms: if
K = 3, then

p(x) = max
y∈{0,1}

(x1 + x2 + x3 − 1)y (8)

otherwise K > 3,

p(x) = max
y0∈{0,1}

y0(2
K∑

i=1

xi − 3)

+ max
binary y

K−4∑

j=1

yj(
K∑

i=1

xi − j − 2) (9)

According to Eq (8), for each cubic term in g3(Z),
we have

ϕc[s]

∏

v[s]∈c[s]

Zv[s]

=
∣∣ϕc[s]

∣∣

 ∑

u[s],v[t]∈c[s]

Zu[s]Zv[t] −
∏

v[s]∈c[s]

Zv[s]

−
∣∣ϕc[s]

∣∣ ∑

u[s],v[t]∈c[s]

Zu[s]Zv[t]

=
∣∣ϕc[s]

∣∣ max
uc[s]∈{0,1}

uc[s]

 ∑

v[s]∈c[s]

Zv[s] − 1

−
∣∣ϕc[s]

∣∣ ∑

u[s],v[t]∈c[s]

Zu[s]Zv[t]

The first part on the right hand side is graph
representable since all quadratic terms are non-
negative. The second part is a quadratic function
of Z, and it can be merged into g1(Z). With
sufficiently large ψc in g1(Z), we could guarantee
the non-negativity of all quadratic terms.

Similarly, we could apply Eq (9) to reduce g4(Z)
to graph representable quadratic forms.

Acknowledgments
We thank three anonymous reviewers for their
valuable comments. This work is partly supported

by DARPA under Contract No. FA8750-13-2-0041.
Any opinions expressed in this material are those of
the authors and do not necessarily reflect the views
of DARPA.

References
Amparo Elizabeth Cano Basave, Andrea Varga, Matthew

Rowe, Milan Stankovic, and Aba-Sah Dadzie.
2013. Making sense of microposts (msm2013)
concept extraction challenge (challenge report). In
Proceedings of the Concept Extraction Challenge at
the Workshop on ’Making Sense of Microposts’, pages
1–15.

A. Billionnet and M. Minoux. 1985. Maximizing a
supermodular pseudoboolean function: A polynomial
algorithm for supermodular cubic functions. Discrete
Applied Mathematics, 12(1):1 – 11.

Endre Boros and PeterL. Hammer. 1991. The max-cut
problem and quadratic 0-1 optimization; polyhedral
aspects, relaxations and bounds. Annals of Operations
Research, 33(3):151–180.

Endre Boros and Peter L. Hammer. 2002. Pseudo-
boolean optimization. Discrete Applied Mathematics,
123(1C3):155 – 225.

Michael Collins. 2002a. Discriminative training
methods for hidden markov models: Theory
and experiments with perceptron algorithms. In
Proceedings of EMNLP, pages 1–8.

Michael Collins. 2002b. Ranking algorithms for named
entity extraction: Boosting and the votedperceptron.
In Proceedings of ACL, pages 489–496, July.

Shilin Ding, Gao Cong, Chin-Yew Lin, and Xiaoyan
Zhu. 2008. Using conditional random fields to extract
contexts and answers of questions from online forums.
In Proceedings of ACL-08: HLT, pages 710–718, June.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In Proceedings of ACL, pages 363–370, June.

Daniel Freedman and Petros Drineas. 2005. Energy
minimization via graph cuts: Settling what is possible.
In Proceedings of CVPR, pages 939–946. IEEE
Computer Society.

Michel Galley. 2006. A skip-chain conditional random
field for ranking meeting utterances by importance. In
Proceedings of EMNLP, pages 364–372.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-speech tagging for
twitter: annotation, features, and experiments. In
Proceedings of ACL-HLT, HLT ’11, pages 42–47.

349

AndrewV. Goldberg. 2008. The partial augmentcrelabel
algorithm for the maximum flow problem. In Dan
Halperin and Kurt Mehlhorn, editors, Algorithms -
ESA 2008, volume 5193 of Lecture Notes in Computer
Science, pages 466–477. Springer Berlin Heidelberg.

Vladimir Jojic, Stephen Gould, and Daphne Koller.
2010. Accelerated dual decomposition for map
inference. In Proceedings of ICML, pages 503–510.
Omnipress.

Jun’ichi Kazama and Kentaro Torisawa. 2007. A new
perceptron algorithm for sequence labeling with non-
local features. In Proceedings of EMNLP-CoNLL,
pages 315–324, June.

Vladimir Kolmogorov and Ramin Zabih. 2004. What
energy functions can be minimized via graph cuts?
IEEE Trans. Pattern Anal. Mach. Intell., 26(2):147–
159.

Vladimir Kolmogorov. 2006. Convergent tree-
reweighted message passing for energy minimization.
IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568–
1583, October.

Nikos Komodakis. 2011. Efficient training for
pairwise or higher order CRFs via dual decomposition.
In Proceedings of CVPR, pages 1841–1848. IEEE
Computer Society.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of EMNLP, pages 1288–
1298, Cambridge, MA, October.

Philipp Krähenbühl and Vladlen Koltun. 2011. Efficient
inference in fully connected crfs with gaussian edge
potentials. In Proceedings of NIPS, pages 109–117.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In
Proceedings of ICML, pages 282–289.

Andre Martins, Mario Figueiredo, Pedro Aguiar, Noah
Smith, and Eric Xing. 2011a. An augmented
lagrangian approach to constrained map inference. In
Proceedings of ICML, pages 169–176. ACM, June.

Andre Martins, Noah Smith, Mario Figueiredo, and
Pedro Aguiar. 2011b. Dual decomposition with
many overlapping components. In Proceedings of the
EMNLP, pages 238–249, July.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. 1978.
An analysis of approximations for maximizing
submodular set functions-I. Mathematical
Programming, 14(1):265–294.

James B. Orlin. 2009. A faster strongly polynomial
time algorithm for submodular function minimization.
Math. Program., 118(2):237–251.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith.
2013. Improved part-of-speech tagging for online
conversational text with word clusters. In Proceedings
of NAACL-HLT, pages 380–390, June.

Xian Qian, Xiaoqian Jiang, Qi Zhang, Xuanjing Huang,
and Lide Wu. 2009. Sparse higher order conditional
random fields for improved sequence labeling. In
Proceedings of ICML, volume 382, page 107. ACM.

Zhonghua Qu and Yang Liu. 2012. Sentence dependency
tagging in online question answering forums. In
Proceedings of ACL, pages 554–562, July.

J. M. W. Rhys. 1970. A selection problem of shared
fixed costs and network flows. Management Science,
17(3):200–207.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An
experimental study. In Proceedings of EMNLP, pages
1524–1534, July.

Alexander M. Rush and Michael Collins. 2012. A
tutorial on dual decomposition and lagrangian
relaxation for inference in natural language
processing. J. Artif. Int. Res., 45(1):305–362,
September.

Alexander M Rush, David Sontag, Michael Collins, and
Tommi Jaakkola. 2010. On dual decomposition and
linear programming relaxations for natural language
processing. In Proceedings of EMNLP 2010, pages
1–11, Cambridge, MA, October.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In Proceedings of NIPS.

Charles Sutton and Andrew Mccallum, 2006.
Introduction to Conditional Random Fields for
Relational Learning. MIT Press.

Rustem Takhanov and Vladimir Kolmogorov. 2013.
Inference algorithms for pattern-based CRFs on
sequence data. In Proceedings of ICML, pages 145–
153.

Stanislav Živný and Peter G. Jeavons. 2010. Classes
of submodular constraints expressible by graph cuts.
Constraints, 15(3):430–452, July.

Nan Ye, Wee Sun Lee, Hai Leong Chieu, and Dan
Wu. 2009. Conditional random fields with high-
order features for sequence labeling. In Proceedings
of NIPS, pages 2196–2204.

350

