
Back to Basics for Monolingual Alignment: Exploiting Word Similarity and
Contextual Evidence

Md Arafat Sultan†, Steven Bethard‡ and Tamara Sumner†
†Institute of Cognitive Science and Department of Computer Science

University of Colorado Boulder
‡Department of Computer and Information Sciences

University of Alabama at Birmingham
arafat.sultan@colorado.edu, bethard@cis.uab.edu, sumner@colorado.edu

Abstract

We present a simple, easy-to-replicate monolin-
gual aligner that demonstrates state-of-the-art
performance while relying on almost no su-
pervision and a very small number of external
resources. Based on the hypothesis that words
with similar meanings represent potential pairs
for alignment if located in similar contexts, we
propose a system that operates by finding such
pairs. In two intrinsic evaluations on alignment
test data, our system achieves F1 scores of 88–
92%, demonstrating 1–3% absolute improve-
ment over the previous best system. Moreover,
in two extrinsic evaluations our aligner out-
performs existing aligners, and even a naive
application of the aligner approaches state-of-
the-art performance in each extrinsic task.

1 Introduction

Monolingual alignment is the task of discovering and
aligning similar semantic units in a pair of sentences
expressed in a natural language. Such alignments pro-
vide valuable information regarding how and to what
extent the two sentences are related. Consequently,
alignment is a central component of a number of
important tasks involving text comparison: textual
entailment recognition, textual similarity identifica-
tion, paraphrase detection, question answering and
text summarization, to name a few.

The high utility of monolingual alignment has
spawned significant research on the topic in the re-
cent past. Major efforts that have treated alignment
as a standalone problem (MacCartney et al., 2008;
Thadani and McKeown, 2011; Yao et al., 2013a) are

primarily supervised, thanks to the manually aligned
corpus with training and test sets from Microsoft Re-
search (Brockett, 2007). Primary concerns of such
work include both quality and speed, due to the fact
that alignment is frequently a component of larger
NLP tasks.

Driven by similar motivations, we seek to devise a
lightweight, easy-to-construct aligner that produces
high-quality output and is applicable to various end
tasks. Amid a variety of problem formulations and
ingenious approaches to alignment, we take a step
back and examine closely the effectiveness of two
frequently made assumptions: 1) Related semantic
units in two sentences must be similar or related
in their meaning, and 2) Commonalities in their se-
mantic contexts in the respective sentences provide
additional evidence of their relatedness (MacCartney
et al., 2008; Thadani and McKeown, 2011; Yao et al.,
2013a; Yao et al., 2013b). Alignment, based solely
on these two assumptions, reduces to finding the best
combination of pairs of similar semantic units in sim-
ilar contexts.

Exploiting existing resources to identify similarity
of semantic units, we search for robust techniques
to identify contextual commonalities. Dependency
trees are a commonly used structure for this purpose.
While they remain a central part of our aligner, we
expand the horizons of dependency-based alignment
beyond exact matching by systematically exploiting
the notion of “type equivalence” with a small hand-
crafted set of equivalent dependency types. In addi-
tion, we augment dependency-based alignment with
surface-level text analysis.

While phrasal alignments are important and have

219

Transactions of the Association for Computational Linguistics, 2 (2014) 219–230. Action Editor: Alexander Koller.
Submitted 11/2013; Revised 1/2014; Published 5/2014. c©2014 Association for Computational Linguistics.



been investigated in multiple studies, we focus pri-
marily on word alignments (which have been shown
to form the vast majority of alignments (≥ 95%)
in multiple human-annotated corpora (Yao et al.,
2013b)), keeping the framework flexible enough to
allow incorporation of phrasal alignments in future.

Evaluation of our aligner on the benchmark dataset
reported in (Brockett, 2007) shows an F1 score of
91.7%: a 3.1% absolute improvement over the previ-
ous best system (Yao et al., 2013a), corresponding
to a 27.2% error reduction. It shows superior perfor-
mance also on the dataset reported in (Thadani et
al., 2012). Additionally, we present results of two
extrinsic evaluations, namely textual similarity iden-
tification and paraphrase detection. Our aligner not
only outperforms existing aligners in each task, but
also approaches top systems for the extrinsic tasks.

2 Background

Monolingual alignment has been applied to various
NLP tasks including textual entailment recognition
(Hickl et al., 2006; Hickl and Bensley, 2007), para-
phrase identification (Das and Smith, 2009; Madnani
et al., 2012), and textual similarity assessment (Bär
et al., 2012; Han et al., 2013) – in some cases ex-
plicitly, i.e., as a separate module. But many such
systems resort to simplistic and/or ad-hoc strategies
for alignment and in most such work, the alignment
modules were not separately evaluated on alignment
benchmarks, making their direct assessment difficult.

With the introduction of the MSR alignment cor-
pus (Brockett, 2007) developed from the second
Recognizing Textual Entailment challenge data (Bar-
Haim et al., 2006), direct evaluation and comparison
of aligners became possible. The first aligner trained
and evaluated on the corpus was a phrasal aligner
called MANLI (MacCartney et al., 2008). It repre-
sents alignments as sets of different edit operations
(where a sequence of edits turns one input sentence
into the other) and finds an optimal set of edits via
a simulated annealing search. Weights of different
edit features are learned from the training set of the
MSR alignment corpus using a perceptron learning
algorithm. MANLI incorporates only shallow fea-
tures characterizing contextual similarity: relative
positions of the two phrases being aligned (or not) in
the two sentences and boolean features representing

whether or not the preceding and following tokens of
the two phrases are similar.

Thadani and McKeown (2011) substituted
MANLI’s simulated annealing-based decoding with
integer linear programming, and achieved a consider-
able speed-up. More importantly for our discussion,
they found contextual evidence in the form of syn-
tactic constraints useful in better aligning stop words.
Thadani et al. (2012) further extended the model by
adding features characterizing dependency arc edits,
effectively bringing stronger influence of contextual
similarity into alignment decisions. Again the perfor-
mance improved consequently.

The most successful aligner to date both in terms
of accuracy and speed, called JacanaAlign, was de-
veloped by Yao et al. (2013a). In contrast to the
earlier systems, JacanaAlign is a word aligner that
formulates alignment as a sequence labeling prob-
lem. Each word in the source sentence is labeled
with the corresponding target word index if an align-
ment is found. It employs a conditional random field
to assign the labels and uses a feature set similar to
MANLI’s in terms of the information they encode
(with some extensions). Contextual features include
only semantic match of the left and the right neigh-
bors of the two words and their POS tags. Even
though JacanaAlign outperformed the MANLI en-
hancements despite having less contextual features,
it is difficult to compare the role of context in the
two models because of the large paradigmatic dispar-
ity. An extension of JacanaAlign was proposed for
phrasal alignments in (Yao et al., 2013b), but the
contextual features remained largely unchanged.

Noticeable in all the above systems is the use of
contextual evidence as a feature for alignment, but
in our opinion, not to an extent sufficient to harness
its full potential. Even though deeper dependency-
based modeling of contextual commonalities can be
found in some other studies (Kouylekov and Magnini,
2005; Chambers et al., 2007; Chang et al., 2010; Yao
et al., 2013c), we believe there is further scope for
systematic exploitation of contextual evidence for
alignment, which we aim to do in this work.

On the contrary, word semantic similarity has been
a central component of most aligners; various mea-
sures of word similarity have been utilized, including
string similarity, resource-based similarity (derived
from one or more lexical resources like WordNet)

220



Align
identical

word
sequences

Align
named
entities

Align
content
words

Align
stop

words

Figure 1: System overview

and distributional similarity (computed from word
co-occurrence statistics in large corpora). An impor-
tant trade-off between precision, coverage and speed
exists here and aligners commonly rely on only a
subset of these measures (Thadani and McKeown,
2011; Yao et al., 2013a). We use the Paraphrase
Database (PPDB) (Ganitkevitch et al., 2013), which
is a large resource of lexical and phrasal paraphrases
constructed using bilingual pivoting (Bannard and
Callison-Burch, 2005) over large parallel corpora.

3 System

Our system operates as a pipeline of alignment mod-
ules that differ in the types of word pairs they align.
Figure 1 is a simplistic representation of the pipeline.
Each module makes use of contextual evidence to
make alignment decisions. In addition, the last two
modules are informed by a word semantic similarity
algorithm. Because of their phrasal nature, we treat
named entities separately from other content words.
The rationale behind the order in which the modules
are arranged is discussed later in this section (3.3.5).

Before discussing each alignment module in de-
tail, we describe the system components that identify
word and contextual similarity.

3.1 Word Similarity
The ability to correctly identify semantic similarity
between words is crucial to our aligner, since con-
textual evidence is important only for similar words.
Instead of treating word similarity as a continuous
variable, we define three levels of similarity.

The first level is an exact word or lemma match
which is represented by a similarity score of 1. The
second level represents semantic similarity between
two terms which are not identical. To identify such
word pairs, we employ the Paraphrase Database
(PPDB)1. We use the largest (XXXL) of the PPDB’s
lexical paraphrase packages and treat all pairs iden-
tically by ignoring the accompanying statistics. We

1http://paraphrase.org

customize the resource by removing pairs of identi-
cal words or lemmas and adding lemmatized forms
of the remaining pairs. For now, we use the term
ppdbSim to refer to the similarity of each word pair
in this modified version of PPDB (which is a value in
(0, 1)) and later explain how we determine it (Section
3.3.5). Finally, any pair of different words which is
absent in PPDB is assigned a zero similarity score.

3.2 Extracting Contextual Evidence

Our alignment modules collect contextual evidence
from two complementary sources: syntactic depen-
dencies and words occurring within a small textual
vicinity of the two words to be aligned. The applica-
tion of each kind assumes a common principle of min-
imal evidence. Formally, given two input sentences
S and T , we consider two words s ∈ S and t ∈ T to
form a candidate pair for alignment if ∃rs ∈ S and
∃rt ∈ T such that:

1. (s, t) ∈ <Sim and (rs, rt) ∈ <Sim, where
<Sim is a binary relation indicating sufficient
semantic relatedness between the members of
each pair (≥ ppdbSim in our case).

2. (s, rs) ∈ <C1 and (t, rt) ∈ <C2 , such that
<C1 ≈ <C2 ; where <C1 and <C2 are binary re-
lations representing specific types of contextual
relationships between two words in a sentence
(e.g., an nsubj dependency between a verb and
a noun). The symbol ≈ represents equivalence
between two relationships, including identical-
ity.

Note that the minimal-evidence assumption holds
a single piece of contextual evidence as sufficient
support for a potential alignment; but as we discuss
later in this section, an evidence for word pair (s, t)
(where s ∈ S and t ∈ S) may not lead to an align-
ment if there exists a competing pair (s′, t) or (s, t′)
with more evidence (where s′ ∈ S and t′ ∈ T ).

In the rest of this section, we elaborate the different
forms of contextual relationships we exploit along
with the notion of equivalence between relationships.

3.2.1 Syntactic Dependencies
Dependencies can be important sources of con-

textual evidence. Two nsubj children rs and rt of
two verbs s ∈ S and t ∈ T , for example, pro-
vide evidence for not only an (s, t) alignment, but

221



S: He wrote a book .

nsubj

dobj

det

T : I read the book he wrote .

nsubj

dobj

det

rcmod

nsubj

Figure 2: Equivalent dependency types: dobj and rcmod

also an (rs, rt) alignment if (s, t) ∈ <Sim and
(rs, rt) ∈ <Sim. (We adopt the Stanford typed de-
pendencies (de Marneffe and Manning, 2008).)

Moreover, dependency types can exhibit equiva-
lence; consider the two sentences in Figure 2. The
dobj dependency in S is equivalent to the rcmod
dependency in T (dobj ≈ rcmod, following our ear-
lier notation) since they represent the same semantic
relation between identical word pairs in the two sen-
tences. To be able to use such evidence for alignment,
we need to go beyond exact matching of dependen-
cies and develop a mapping among dependency types
that encodes such equivalence. Note also that the
parent-child roles are opposite for the two depen-
dency types in the above example, a scenario that
such a mapping must accommodate.

The four possible such scenarios regarding parent-
child orientations are shown in Figure 3. If (s, t) ∈
<Sim and (rs, rt) ∈ <Sim (represented by bidirec-
tional arrows), then each orientation represents a set
of possible ways in which the S and T dependen-
cies (unidirectional arrows) can provide evidence of
similarity between the contexts of s in S and t in T .
Each such set comprises equivalent dependency type
pairs for that orientation. In the example of Figure 2,
(dobj, rcmod) is such a pair for orientation (c), given
s = t = “wrote” and rs = rt = “book”.

We apply the notion of dependency type equiva-
lence to intra-category alignment of content words
in four major lexical categories: verbs, nouns,
adjectives and adverbs (the Stanford POS tag-
ger (Toutanova et al., 2003) is used to identify the
categories). Table 1 shows dependency type equiva-
lences for each lexical category of s and t.

The ‘←’ sign on column 5 of some rows repre-
sents a duplication of the column 4 content of the

s

rs

t

rt

rs

s

rt

t

s

rs

t

rt

s

rs

t

rt

(a) (b) (c) (d)

Figure 3: Parent-child orientations in dependencies

same row. For each row, columns 4 and 5 show two
sets of dependency types; each member of the first
is equivalent to each member of the second for the
current orientation (column 1) and lexical categories
of the associated words (columns 2 and 3). For exam-
ple, row 2 represents the fact that an agent relation
(between s and rs; s is the parent) is equivalent to an
nsubj relation (between t and rt; t is the parent).

Note that the equivalences are fundamentally re-
dundant across different orientations. For example,
row 2 (which is presented as an instance of ori-
entation (a)) can also be presented as an instance
of orientation (b) with POS(s)=POS(t)=noun and
POS(rs)=POS(rt)=verb. We avoid such redundancy
for compactness. For the same reason, the equiva-
lence of dobj and rcmod in Figure 2 is shown in the
table only as an instance of orientation (c) and not as
an instance of orientation (d) (in general, this is why
orientations (b) and (d) are absent in the table).

We present dependency-based contextual evidence
extraction in Algorithm 1. (The Stanford dependency
parser (de Marneffe et al., 2006) is used to extract the
dependencies.) Given a word pair (si, tj) from the in-
put sentences S and T , it collects contextual evidence
(as indexes of rsi and rtj with a positive similarity)
for each matching row in Table 1. An exact match
of the two dependencies is also considered a piece
of evidence. Note that Table 1 only considers con-
tent word pairs (si, tj) such that POS(si)=POS(tj),
but as 90% of all content word alignments in the
MSR alignment dev set are within the same lexical
category, this is a reasonable set to start with.

3.2.2 Textual Neighborhood
While equivalent dependencies can provide strong

contextual evidence, they can not ensure high recall
because, a) the ability to accurately extract depen-

222



Orientation POS(s, t) POS(rs, rt) S Dependency Types T Dependency Types

s

rs

t

rt

verb

verb {purpcl, xcomp} ←−

noun

{agent, nsubj, xsubj} ←−
{dobj, nsubjpass, rel} ←−

{tmod, prep in, prep at, prep on} ←−
{iobj, prep to} ←−

noun
verb {infmod, partmod, rcmod} ←−

(a)
noun {pos, nn, prep of, prep in, prep at, prep for} ←−

adjective {amod, rcmod} ←−

s

rs

t

rt verb
verb

{conj and} ←−
{conj or} ←−
{conj nor} ←−

noun {dobj, nsubjpass, rel} {infmod, partmod, rcmod}
adjective {acomp} {cop, csubj}

noun
noun

{conj and} ←−
{conj or} ←−
{conj nor} ←−

adjective {amod, rcmod} {nsubj}

adjective adjective
{conj and} ←−
{conj or} ←−

(c)
{conj nor} ←−

adverb adverb
{conj and} ←−
{conj or} ←−
{conj nor} ←−

Table 1: Equivalent dependency structures

Algorithm 1: depContext(S, T, i, j, EQ)

Input:
1. S, T : Sentences to be aligned
2. i: Index of a word in S
3. j: Index of a word in T
4. EQ: Dependency type equivalences (Table 1)

Output: context = {(k, l)}: pairs of word indexes

context← {(k, l) : wordSim(sk, tl) > 01
∧ (i, k, τs) ∈ dependencies(S)2
∧ (j, l, τt) ∈ dependencies(T )3
∧ POS(si) = POS(tj) ∧ POS(sk) = POS(tl)4
∧ (τs = τt5
∨ (POS(si), POS(sk), τs, τt) ∈ EQ))}6

dencies is limited by the accuracy of the parser, and
b) we investigate equivalence types for only inter-
lexical-category alignment in this study. Therefore
we apply an additional model of word context: the
textual neighborhood of s in S and t in T .

Extraction of contextual evidence for content
words from textual neighborhood is described in Al-
gorithm 2. Like the dependency-based module, it
accumulates evidence for each (si, tj) pair by in-
specting multiple pairs of neighboring words. But in-
stead of aligning only words within a lexical category,

Algorithm 2: textContext(S, T, i, j, STOP)

Input:
1. S, T : Sentences to be aligned
2. i: Index of a word in S
3. j: Index of a word in T
4. STOP: A set of stop words

Output: context = {(k, l)}: pairs of word indexes

Ci ← {k : k ∈ [i− 3, i+ 3] ∧ k 6= i ∧ sk 6∈ STOP}1
Cj ← {l : l ∈ [j − 3, j + 3] ∧ l 6= j ∧ tl 6∈ STOP}2
context← Ci × Cj3

this module also performs inter-category alignment,
considering content words within a (3, 3) window
of si and tj as neighbors. We implement relational
equivalence (≈) here by holding any two positions
within the window equally contributive and mutually
comparable as sources of contextual evidence.

3.3 The Alignment Algorithm
We now describe each alignment module in the
pipeline and their sequence of operation.

3.3.1 Identical Word Sequences
The presence of a common word sequence in S

and T is indicative of an (a) identical, and (b) con-

223



textually similar word in the other sentence for each
word in the sequence. We observe the results of
aligning identical words in such sequences of length
n containing at least one content word. This simple
heuristic demonstrates a high precision (≈ 97%) on
the MSR alignment dev set for n ≥ 2, and therefore
we consider membership in such sequences as the
simplest form of contextual evidence in our system
and align all identical word sequence pairs in S and
T containing at least one content word. From this
point on, we will refer to this module as wsAlign.

3.3.2 Named Entities
We align named entities separately to enable the

alignment of full and partial mentions (and acronyms)
of the same entity. We use the Stanford Named Entity
Recognizer (Finkel et al., 2005) to identify named
entities in S and T . After aligning the exact term
matches, any unmatched term of a partial mention
is aligned to all terms in the full mention. The mod-
ule recognizes only first-letter acronyms and aligns
an acronym to all terms in the full mention of the
corresponding name.

Since named entities are instances of nouns, named
entity alignment is also informed by contextual ev-
idence (which we discuss in the next section), but
happens before alignment of other generic content
words. Parents (or children) of a named entity are
simply the parents (or children) of its head word. We
will refer to this module as a method named neAlign
from this point on.

3.3.3 Content Words
Extraction of contextual evidence for promising

content word pairs has already been discussed in
Section 3.2, covering both dependency-based context
and textual context.

Algorithm 3 (cwDepAlign) describes the
dependency-based alignment process. For each
potentially alignable pair (si, tj), the dependency-
based context is extracted as described in Algorithm
1, and context similarity is calculated as the sum
of the word similarities of the (sk, tl) context word
pairs (lines 2-7). (The wordSim method returns a
similarity score in {0, ppdbSim, 1}.) The alignment
score of the (si, tj) pair is then a weighted sum
of word and contextual similarity (lines 8-12).
(We discuss how the weights are set in Section

Algorithm 3: cwDepAlign(S, T,EQ,AE , w, STOP)

Input:
1. S, T : Sentences to be aligned
2. EQ: Dependency type equivalences (Table 1)
3. AE : Already aligned word pair indexes
4. w: Weight of word similarity relative to contex-

tual similarity
5. STOP: A set of stop words

Output: A = {(i, j)}: word index pairs of aligned
words {(si, tj)} where si ∈ S and tj ∈ T

Ψ← ∅; ΛΨ ← ∅; Φ← ∅1
for si ∈ S, tj ∈ T do2

if si 6∈ STOP ∧ ¬∃tl : (i, l) ∈ AE3
∧ tj 6∈ STOP ∧ ¬∃sk : (k, j) ∈ AE4
∧ wordSim(si, tj) > 0 then5

context← depContext(S, T, i, j, EQ)6

contextSim←
∑

(k,l)∈context

wordSim(sk, tl)
7

if contextSim > 0 then8
Ψ← Ψ ∪ {(i, j)}9
ΛΨ(i, j)← context10
Φ(i, j)← w ∗ wordSim(si, tj)11

+(1− w) ∗ contextSim12

Linearize and sort Ψ in decreasing order of Φ(i, j)13
A← ∅14
for (i, j) ∈ Ψ do15

if ¬∃l : (i, l) ∈ A16
∧¬∃k : (k, j) ∈ A then17

A← A ∪ {(i, j)}18

for (k, l) ∈ ΛΨ(i, j) do19
if ¬∃q : (k, q) ∈ A ∪AE20
∧¬∃p : (p, l) ∈ A ∪AE then21

A← A ∪ {(k, l)}22

3.3.5.) The module then aligns (si, tj) pairs with
non-zero evidence in decreasing order of this score
(lines 13-18). In addition, it aligns all the pairs
that contributed contextual evidence for the (si, tj)
alignment (lines 19-22). Note that we implement a
one-to-one alignment whereby a word gets aligned
at most once within the module.

Algorithm 4 (cwTextAlign) presents alignment
based on similarities in the textual neighborhood. For
each potentially alignable pair (si, tj), Algorithm 2
is used to extract the context, which is a set of neigh-
boring content word pairs (lines 2-7). The contextual
similarity is the sum of the similarities of these pairs

224



Algorithm 4: cwTextAlign(S, T,AE , w, STOP)

Input:
1. S, T : Sentences to be aligned
2. AE : Existing alignments by word indexes
3. w: Weight of word similarity relative to contex-

tual similarity
4. STOP: A set of stop words

Output: A = {(i, j)}: word index pairs of aligned
words {(si, tj)} where si ∈ S and tj ∈ T

Ψ← ∅; Φ← ∅1
for si ∈ S, tj ∈ T do2

if si 6∈ STOP ∧ ¬∃tl : (i, l) ∈ AE3
∧ tj 6∈ STOP ∧ ¬∃sk : (k, j) ∈ AE4
∧ wordSim(si, tj) > 0 then5

Ψ← Ψ ∪ {(i, j)}6
context← textContext(S, T, i, j, STOP)7

contextSim←
∑

(k,l)∈context

wordSim(sk, tl)
8

Φ(i, j)← w ∗ wordSim(si, tj)9
+ (1− w) ∗ contextSim10

Linearize and sort Ψ in decreasing order of Φ(i, j)11
A← ∅12
for (i, j) ∈ Ψ do13

if ¬∃l : (i, l) ∈ A14
∧¬∃k : (k, j) ∈ A then15

A← A ∪ {(i, j)}16

(line 8), and the alignment score is a weighted sum of
word similarity and contextual similarity (lines 9, 10).
The alignment score is then used to make one-to-one
word alignment decisions (lines 11-16). Considering
textual neighbors as weaker sources of evidence, we
do not align the neighbors.

Note that in cwTextAlign we also align semanti-
cally similar content word pairs (si, tj) with no con-
textual similarities if no pairs (sk, tj) or (si, tl) exist
with a higher alignment score. This is a consequence
of our observation of the MSR alignment dev data,
where we find that more often than not content words
are inherently sufficiently meaningful to be aligned
even in the absence of contextual evidence when
there are no competing pairs.

The content word alignment module is thus itself
a pipeline of cwDepAlign and cwTextAlign.

3.3.4 Stop Words
We follow the contextual evidence-based approach

to align stop words as well, some of which get aligned

Algorithm 5: align(S, T,EQ,w, STOP)

Input:
1. S, T : Sentences to be aligned
2. EQ: Dependency type equivalences (Table 1)
3. w: Weight of word similarity relative to contex-

tual similarity
4. STOP: A set of stop words

Output: A = {(i, j)}: word index pairs of aligned
words {(si, tj)} where si ∈ S and tj ∈ T

A← wsAlign(S, T )1
A← A ∪ neAlign(S, T,EQ,A,w)2
A← A ∪ cwDepAlign(S, T,EQ,A,w, STOP)3
A← A ∪ cwTextAlign(S, T,A,w, STOP)4
A← A ∪ swDepAlign(S, T,A,w, STOP)5
A← A ∪ swTextAlign(S, T,A,w, STOP)6

as part of word sequence alignment as discussed in
Section 3.3.1, and neighbor alignment as discussed
in Section 3.3.3. For the rest we utilize dependen-
cies and textual neighborhoods as before, with three
adjustments.

Firstly, since stop word alignment is the last mod-
ule in our pipeline, rather than considering all se-
mantically similar word pairs for contextual similar-
ity, we consider only aligned pairs. Secondly, since
many stop words (e.g. determiners, modals) typi-
cally demonstrate little variation in the dependencies
they engage in, we ignore type equivalences for stop
words and implement only exact matching of depen-
dencies. (Stop words in general can participate in
equivalent dependencies, but we leave constructing
a corresponding mapping for future work.) Finally,
for textual neighborhood, we separately check align-
ments of the left and the right neighbors and aggre-
gate the evidences to determine alignment – again
due to the primarily syntactic nature of interaction of
stop words with their neighbors.

Thus stop words are also aligned in a sequence of
dependency and textual neighborhood-based align-
ments. We assume two corresponding modules
named swDepAlign and swTextAlign, respectively.

3.3.5 The Algorithm
Our full alignment pipeline is shown as the method

align in Algorithm 5. Note that the strict order of the
alignment modules limits the scope of downstream
modules since each such module discards any word
that has already been aligned by an earlier module

225



(this is accomplished via the variable A; the corre-
sponding parameter in Algorithms 3 and 4 is AE).

The rationales behind the specific order of the mod-
ules can now be explained: (1) wsAlign is a module
with relatively higher precision, (2) it is convenient to
align named entities before other content words to en-
able alignment of entity mentions of different lengths,
(3) dependency-based evidence was observed to be
more reliable (i.e. of higher precision) than textual
evidence in the MSR alignment dev set, and (4) stop
word alignments are dependent on existing content
word alignments.

The aligner assumes two free parameters:
ppdbSim and w (in Algorithms 3 and 4). To
determine their values, we exhaustively search
through the two-dimensional space (ppdbSim,w)
for ppdbSim,w ∈ {0.1, ..., 0.9, 1} and the combina-
tion (0.9, 0.9) yields the best F1 score for the MSR
alignment dev set. We use these values for the aligner
in all of its subsequent applications.

4 Evaluation

We evaluate the performance of our aligner both in-
trinsically and extrinsically on multiple corpora.

4.1 Intrinsic Evaluation

The MSR alignment dataset2 (Brockett, 2007) was
designed to train and directly evaluate automated
aligners. Three annotators individually aligned words
and phrases in 1600 pairs of premise and hypothe-
sis sentences from the RTE2 challenge data (divided
into dev and test sets, each consisting of 800 sen-
tences). The dataset has subsequently been used to
assess several top performing aligners (MacCartney
et al., 2008; Thadani and McKeown, 2011; Yao et
al., 2013a; Yao et al., 2013b). We use the test set for
evaluation in the same manner as these studies: (a)
we apply majority rule to select from the three sets
of annotations for each sentence and discard three-
way disagreements, (b) we evaluate only on the sure
links (word pairs that annotators mentioned should
certainly be aligned, as opposed to possible links).

We test the generalizability of the aligner by eval-
uating it, unchanged (i.e. with identical parameter
values), on a second alignment corpus: the Edin-

2http://www.cs.biu.ac.il/ nlp/files/RTE 2006 Aligned.zip

System P% R% F1% E%

M
SR

MacCartney et al. (2008) 85.4 85.3 85.3 21.3
Thadani & McKeown (2011) 89.5 86.2 87.8 33.0
Yao et al. (2013a) 93.7 84.0 88.6 35.3
Yao et al. (2013b) 92.1 82.8 86.8 29.1
This Work 93.7 89.8 91.7 43.8

E
D

B
++ Yao et al. (2013a) 91.3 82.0 86.4 15.0

Yao et al. (2013b) 90.4 81.9 85.9 13.7
This Work 93.5 82.5 87.6 18.3

Table 2: Results of intrinsic evaluation on two datasets

burgh++3 (Thadani et al., 2012) corpus. The test set
consists of 306 pairs; each pair is aligned by at most
two annotators and we adopt the random selection
policy described in (Thadani et al., 2012) to resolve
disagreements.

Table 2 shows the results. For each corpus, it
shows precision (% alignments that matched with
gold annotations), recall (% gold alignments discov-
ered by the aligner), F1 score and the percentage
of sentences that received the exact gold alignments
(denoted by E) from the aligner.

On the MSR test set, our aligner shows a 3.1%
improvement in F1 score over the previous best sys-
tem (Yao et al., 2013a) with a 27.2% error reduction.
Importantly, it demonstrates a considerable increase
in recall without a loss of precision. TheE score also
increases as a consequence.

On the Edinburgh++ test set, our system achieves a
1.2% increase in F1 score (an error reduction of 8.8%)
over the previous best system (Yao et al., 2013a),
with improvements in both precision and recall. This
is a remarkable result that demonstrates the general
applicability of the aligner, as no parameter tuning
took place.

4.1.1 Ablation Test
We perform a set of ablation tests to assess the

importance of the aligner’s individual components.
Each row of Table 3 beginning with (-) shows a fea-
ture excluded from the aligner and two associated
sets of metrics, showing the performance of the re-
sulting algorithm on the two alignment corpora.

Without a word similarity module, recall drops
as would be expected. Without contextual evidence
(word sequences, dependencies and textual neigh-
bors) precision drops considerably and recall also
falls. Without dependencies, the aligner still gives

3http://www.ling.ohio-state.edu/∼scott/#edinburgh-plusplus

226



MSR EDB++

Feature P% R% F1% P% R% F1%
Original 93.7 89.8 91.7 93.5 82.5 87.6
(-) Word Similarity 95.2 86.3 90.5 95.1 77.3 85.3
(-) Contextual Evidence 81.3 86.0 83.6 86.4 80.6 83.4

(-) Dependencies 94.2 88.8 91.4 93.8 81.3 87.1
(-) Text Neighborhood 85.5 90.4 87.9 90.4 84.3 87.2

(-) Stop Words 94.2 88.3 91.2 92.2 80.0 85.7

Table 3: Ablation test results

state-of-the-art results, which points to the possibility
of a very fast yet high-performance aligner. Without
evidence from textual neighbors, however, the preci-
sion of the aligner suffers badly. Textual neighbors
find alignments across different lexical categories,
a type of alignment that is currently not supported
by our dependency equivalences. Extending the set
of dependency equivalences might alleviate this is-
sue. Finally, without stop words (i.e. while aligning
content words only) recall drops just a little for each
corpus, which is expected as content words form the
vast majority of non-identical word alignments.

4.2 Extrinsic Evaluation
We extrinsically evaluate our system on textual simi-
larity identification and paraphrase detection. Here
we discuss each task and the results of evaluation.

4.2.1 Semantic Textual Similarity
Given two short input text fragments (commonly

sentences), the goal of this task is to identify the
degree to which the two fragments are semantically
similar. The *SEM 2013 STS task (Agirre et al.,
2013) assessed a number of STS systems on four test
datasets by comparing their output scores to human
annotations. Pearson correlation coefficient with hu-
man annotations was computed individually for each
test set and a weighted sum of the correlations was
used as the final evaluation metric (the weight for
each dataset was proportional to its size).

We apply our aligner to the task by aligning each
sentence pair and taking the proportion of content
words aligned in the two sentences (by normalizing
with the harmonic mean of their number of content
words) as a proxy of their semantic similarity. Only
three of the four STS 2013 datasets are freely avail-
able4 (headlines, OnWN, and FNWN), which we use
for our experiments (leaving out the SMT dataset).

4http://ixa2.si.ehu.es/sts/

System Correl.% Rank
Han et al. (2013) 73.7 1 (original)
JacanaAlign 46.2 66
This Work 67.2 7

Table 4: Extrinsic evaluation on STS 2013 data

These three sets contain 1500 annotated sentence
pairs in total.

Table 4 shows the results. The first row shows the
performance of the top system in the task. With a
direct application of our aligner (no parameter tun-
ing), our STS algorithm acheives a 67.15% weighted
correlation, which would earn it the 7th rank among
90 participating systems. Considering the fact that
alignment is one of many components of STS, this
result is truly promising.

For comparison, we also evaluate the previous best
aligner named JacanaAlign (Yao et al., 2013a) on
STS 2013 data (the JacanaAlign public release5 is
used, which is a version of the original aligner with
extra lexical resources). We apply three different val-
ues derived from its output as proxies of semantic
similarity: a) aligned content word proportion, b) the
Viterbi decoding score, and c) the normalized decod-
ing score. Of the three, (b) gives the best results,
which we show in row 2 of Table 4. Our aligner
outperforms JacanaAlign by a large margin.

4.2.2 Paraphrase Identification
The goal of paraphrase identification is to decide if

two sentences have the same meaning. The output is
a yes/no decision instead of a real-valued similarity
score as in STS. We use the MSR paraphrase cor-
pus6 (4076 dev pairs, 1725 test pairs) (Dolan et al.,
2004) to evaluate our aligner and compare with other
aligners. Following earlier work (MacCartney et al.,
2008; Yao et al., 2013b), we use a normalized align-
ment score of the two sentences to make a decision
based on a threshold which we set using the dev set.
Alignments with a higher-than-threshold score are
taken to be paraphrases and the rest non-paraphrases.

Again, this is an oversimplified application of the
aligner, even more so than in STS, since a small
change in linguistic properties of two sentences
(e.g. polarity or modality) can turn them into non-

5https://code.google.com/p/jacana/
6http://research.microsoft.com/en-us/downloads/607d14d9-

20cd-47e3-85bc-a2f65cd28042/

227



System Acc.% P% R% F1%
Madnani et al. (2012) 77.4 79.0 89.9 84.1
Yao et al. (2013a) 70.0 72.6 88.1 79.6
Yao et al. (2013b) 68.1 68.6 95.8 79.9
This Work 73.4 76.6 86.4 81.2

Table 5: Extrinsic evaluation on MSR paraphrase data

paraphrases despite having a high degree of align-
ment. So the aligner was not expected to demonstrate
state-of-the-art performance, but still it gets close as
shown in Table 5. The first column shows the accu-
racy of each system in classifying the input sentences
into one of two classes: true (paraphrases) and false
(non-paraphrases). The rest of the columns show the
performance of the system for the true class in terms
of precision, recall, and F1 score. Italicized numbers
represent scores that were not reported by the authors
of the corresponding papers, but have been recon-
structed from the reported data (and hence are likely
to have small precision errors).

The first row shows the best performance by any
system on the test set to the best of our knowledge.
The next two rows show the performances of two
state-of-the-art aligners (performances of both sys-
tems were reported in (Yao et al., 2013b)). The
last row shows the performance of our aligner. Al-
though it does worse than the best paraphrase system,
it outperforms the other aligners.

5 Discussion

Our experiments reveal that a word aligner based on
simple measures of lexical and contextual similar-
ity can demonstrate state-of-the-art accuracy. How-
ever, as alignment is frequently a component of larger
tasks, high accuracy alone is not always sufficient.
Other dimensions of an aligner’s usability include
speed, consumption of computing resources, replica-
bility, and generalizability to different applications.
Our design goals include achieving a balance among
such multifarious and conflicting goals.

A speed advantage of our aligner stems from for-
mulating the problem as one-to-one word alignment
and thus avoiding an expensive decoding phase. The
presence of multiple phases is offset by discarding
already aligned words in subsequent phases. The
use of PPDB as the only (hashable) word similarity
resource helps in reducing latency as well as space
requirements. As shown in Section 4.1.1, further

speedup could be achieved with only a small perfor-
mance degradation by considering only the textual
neighborhood as source of contextual evidence.

However, the two major goals that we believe the
aligner achieves to the greatest extent are replicabil-
ity and generalizability. The easy replicability of
the aligner stems from its use of only basic and fre-
quently used NLP modules (a lemmatizer, a POS
tagger, an NER module, and a dependency parser: all
available as part of the Stanford CoreNLP suite7; we
use a Python wrapper8) and a single word similarity
resource (PPDB).

We experimentally show that the aligner can be
successfully applied to different alignment datasets
as well as multiple end tasks. We believe a design
characteristic that enhances the generalizability of
the aligner is its minimal dependence on the MSR
alignment training data, which originates from a tex-
tual entailment corpus having unique properties such
as disparities in the lengths of the input sentences
and a directional nature of their relationship (i.e.,
the premise implying the hypothesis, but not vice
versa). A related potential reason is the symmetry
of the aligner’s output (caused by its assumption of
no directionality) – the fact that it outputs the same
set of alignments regardless of the order of the input
sentences, in contrast to most existing aligners.

Major limitations of the aligner include the inabil-
ity to align phrases, including multiword expressions.
It is incapable of capturing and exploiting long dis-
tance dependencies among words (e.g. coreferences).
No word similarity resource is perfect and PPDB is
no exception, therefore certain word alignments also
remain undetected.

6 Conclusions

We show how contextual evidence can be used to
construct a monolingual word aligner with certain de-
sired properties, including state-of-the-art accuracy,
easy replicability, and high generalizability. Some
potential avenues for future work include: allow-
ing phrase-level alignment via phrasal similarity re-
sources (e.g. the phrasal paraphrases of PPDB), in-
cluding other sources of similarity such as vector
space models or WordNet relations, expanding the set

7http://nlp.stanford.edu/downloads/corenlp.shtml
8https://github.com/dasmith/stanford-corenlp-python

228



of dependency equivalences and/or using semantic
role equivalences, and formulating our alignment al-
gorithm as objective optimization rather than greedy
search.

The aligner is available for download at
https://github.com/ma-sultan/
monolingual-word-aligner.

Acknowledgments

This material is based in part upon work supported by
the National Science Foundation under Grant Num-
bers EHR/0835393 and EHR/0835381. Any opin-
ions, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Na-
tional Science Foundation.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-

Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic Textual Similarity. In Proceedings of
the Second Joint Conference on Lexical and Compu-
tational Semantics. Association for Computational
Linguistics, 32-43.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with Bilingual Parallel Corpora. In Proceed-
ings of the 43rd Annual Meeting on Association for
Computational Linguistics. Association for Computa-
tional Linguistics, 597-604.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics. Association for
Computational Linguistics, 435-440.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The Second PASCAL Recognising Textual En-
tailment Challenge. In Proceedings of The Second
PASCAL Recognising Textual Entailment Challenge.

Chris Brockett. 2007. Aligning the RTE 2006 Cor-
pus. Technical Report MSR-TR-2007-77, Microsoft
Research.

Nathanael Chambers, Daniel Cer, Trond Grenager, David
Hall, Chloe Kiddon, Bill MacCartney, Marie-Catherine
de Marneffe, Daniel Ramage, Eric Yeh, and Christopher
D Manning. 2007. Learning alignments and leverag-
ing natural logic. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing As-
sociation for Computational Linguistics, 165-170.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek
Srikumar. 2010. Discriminative Learning over Con-
strained Latent Representations. In Proceedings of the
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
Association for Computational Linguistics, 429-437.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase Iden-
tication as Probabilistic Quasi-Synchronous Recogni-
tion. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP. Association for Computational Linguistics,
468-476.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating Typed
Dependency Parses from Phrase Structure Parses. In
Proceedings of the International Conference on Lan-
guage Resources and Evaluation. 449-454.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford typed dependencies manual.
Technical Report, Stanford University.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised Construction of Large Paraphrase Corpora:
Exploiting Massively Parallel News Sources. In Pro-
ceedings of the International Conference on Compu-
tational Linguistics. Association for Computational
Linguistics, 350-356.

Jenny Rose Finkel, Trond Grenager, and Christopher Man-
ning. 2005. Incorporating Non-local Information into
Information Extraction Systems by Gibbs Sampling. In
Proceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, 363-370.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics. Association for Computational
Linguistics, 758-764.

Lushan Han, Abhay Kashyap, Tim Finin, James Mayeld,
and Jonathan Weese. 2013. UMBC EBIQUITY-CORE:
Semantic Textual Similarity Systems. In Proceedings
of the Second Joint Conference on Lexical and Compu-
tational Semantics, Volume 1. Association for Compu-
tational Linguistics, 44-52.

Andrew Hickl and Jeremy Bensley. 2007. A Discourse
Commitment-Based Framework for Recognizing Tex-
tual Entailment. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing. As-
sociation for Computational Linguistics, 171-176.

Andrew Hickl, Jeremy Bensley, John Williams, Kirk
Roberts, Bryan Rink, and Ying Shi. 2006. Recog-
nizing Textual Entailment with LCCs GROUNDHOG

229



System. In Proceedings of the Second PASCAL Chal-
lenges Workshop on Recognizing Textual Entailment.

Milen Kouylekov and Bernardo Magnini. 2005. Rec-
ognizing textual entailment with tree edit distance al-
gorithms. In Proceedings of the PASCAL Challenges
Workshop: Recognising Textual Entailment Challenge
17-20.

Bill MacCartney, Michel Galley, and Christopher D. Man-
ning. 2008. A Phrase-Based Alignment Model for Nat-
ural Language Inference. In Proceedings of the 2008
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics,
802-811.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining Machine Translation Metrics for
Paraphrase Identification. In Proceedings of 2012 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, 182-190.

Kapil Thadani and Kathleen McKeown. 2011. Optimal
and Syntactically-Informed Decoding for Monolingual
Phrase-Based Alignment. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Associa-
tion for Computational Linguistics, 254-259.

Kapil Thadani, Scott Martin, and Michael White. 2012.
A Joint Phrasal and Dependency Model for Paraphrase
Alignment. In Proceedings of COLING 2012: Posters.
1229-1238.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003 Feature-rich Part-of-speech
Tagging with a Cyclic Dependency Network In Pro-
ceedings of the 2003 Human Language Technology
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics. Association for
Computational Linguistics, 173-180.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013a. A Lightweight and High Per-
formance Monolingual Word Aligner. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational
Linguistics, 702-707.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013b. Semi-Markov Phrase-based
Monolingual Alignment. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics,
590-600.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013c. Answer Extraction as Se-
quence Tagging with Tree Edit Distance. In Proceed-
ings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguis-

tics. Association for Computational Linguistics, 858-
867.

230


