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Abstract

Stress has long been established as a major cue
in word segmentation for English infants. We
show that enabling a current state-of-the-art
Bayesian word segmentation model to take ad-
vantage of stress cues noticeably improves its
performance. We find that the improvements
range from 10 to 4%, depending on both the
use of phonotactic cues and, to a lesser ex-
tent, the amount of evidence available to the
learner. We also find that in particular early
on, stress cues are much more useful for our
model than phonotactic cues by themselves,
consistent with the finding that children do
seem to use stress cues before they use phono-
tactic cues. Finally, we study how the model’s
knowledge about stress patterns evolves over
time. We not only find that our model cor-
rectly acquires the most frequent patterns rel-
atively quickly but also that the Unique Stress
Constraint that is at the heart of a previously
proposed model does not need to be built in
but can be acquired jointly with word segmen-
tation.

1 Introduction

Among the first tasks a child language learner has to
solve is picking out words from the fluent speech
that constitutes its linguistic input.1 For English,
stress has long been claimed to be a useful cue
in infant word segmentation (Jusczyk et al., 1993;
Jusczyk et al., 1999b), following the demonstra-

1The datasets and software to replicate our experiments
are available from http://web.science.mq.edu.au/

˜bborschi/

tion of its effectiveness in adult speech process-
ing (Cutler et al., 1986). Several studies have
investigated the role of stress in word segmenta-
tion using computational models, using both neu-
ral network and “algebraic” (as opposed to “statis-
tical”) approaches (Christiansen et al., 1998; Yang,
2004; Lignos and Yang, 2010; Lignos, 2011; Lig-
nos, 2012). Bayesian models of word segmenta-
tion (Brent, 1999; Goldwater, 2007), however, have
until recently completely ignored stress. The sole
exception in this respect is Doyle and Levy (2013)
who added stress cues to the Bigram model (Gold-
water et al., 2009), demonstrating that this leads to
an improvement in segmentation performance. In
this paper, we extend their work and show how to
integrate stress cues into the flexible Adaptor Gram-
mar framework (Johnson et al., 2007). This allows
us to both start from a stronger baseline model and
to investigate how the role of stress cues interacts
with other aspects of the model. In particular, we
find that phonotactic cues to word-boundaries inter-
act with stress cues, indicating synergistic effects for
small inputs and partial redundancy for larger in-
puts. Overall, we find that stress cues add roughly
6% token f-score to a model that does not account
for phonotactics and 4% to a model that already in-
corporates phonotactics. Relatedly and in line with
the finding that stress cues are used by infants be-
fore phonotactic cues (Jusczyk et al., 1999a), we ob-
serve that phonotactic cues require more input than
stress cues to be used efficiently. A closer look at
the knowledge acquired by our models shows that
the Unique Stress Constraint of Yang (2004) can be
acquired jointly with segmenting the input instead
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of having to be pre-specified; and that our models
correctly identify the predominant stress pattern of
the input but underestimate the frequency of iambic
words, which have been found to be missegmented
by infant learners.

The outline of the paper is as follows. In Section 2
we review prior work. In Section 3 we introduce our
own models. In Section 4 we explain our experimen-
tal evaluation and its results. Section 5 discusses our
findings, and Section 6 concludes and provides some
suggestions for future research.

2 Background and related work

Lexical stress is the “accentuation of syllables
within words” (Cutler, 2005) and has long been ar-
gued to play an important role in adult word recog-
nition. Following Cutler and Carter (1987)’s obser-
vation that stressed syllables tend to occur at the be-
ginnings of words in English, Jusczyk et al. (1993)
investigated whether infants acquiring English take
advantage of this fact. Their study demonstrated
that this is indeed the case for 9 month olds, al-
though they found no indication of using stressed
syllables as cues for word boundaries in 6 month
olds. Their findings have been replicated and ex-
tended in subsequent work (Jusczyk et al., 1999b;
Thiessen and Saffran, 2003; Curtin et al., 2005;
Thiessen and Saffran, 2007). A brief summary
of the key findings is as follows: English infants
treat stressed syllables as cues for the beginnings of
words from roughly 7 months of age, suggesting that
the role played by stress needs to be acquired, and
that this requires antecedent segmentation by non-
stress-based means (Thiessen and Saffran, 2007).
They also exhibit a preference for low-pass filtered
stress-initial words from this age, suggesting that it
is indeed stress and not other phonetic or phono-
tactic properties that are treated as a cue for word-
beginnings (Jusczyk et al., 1993). In fact, phontactic
cues seem to be used later than stress cues (Jusczyk
et al., 1999a) and seem to be outweighed by stress
cues (Mattys and Jusczyk, 2000).

The earliest computational model for word seg-
mentation incorporating stress cues we are aware of
is the recurrent network model of Christiansen et al.
(1998) and Christiansen and Curtin (1999). They
only reported a word-token f-score of 44% (roughly,
segmentation accuracy: see Section 4), which is

considerably below the performance of subsequent
models, making a direct comparison complicated.
Yang (2004) introduced a simple incremental algo-
rithm that relies on stress by embodying a Unique
Stress Constraint (USC) that allows at most a sin-
gle stressed syllable per word. On pre-syllabified
child directed speech, he reported a word token f-
score of 85.6% for a non-statistical algorithm that
exploits the USC. While the USC has been argued
to be near-to-universal and follows from the “cul-
minative function of stress” (Fromkin, 2001; Cutler,
2005), the high score Yang reported crucially de-
pends on every word token carrying stress, including
function words. More recently, Lignos (2010, 2011,
2012) further explored Yang’s original algorithm,
taking into account that function words should not
be assumed to possess lexical stress cues. While
his scores are in line with those reported by Yang,
the importance of stress for this learner were more
modest, providing a gain of around 2.5% (Lignos,
2011). Also, the Yang/Lignos learner is unable to
acquire knowledge about the role stress plays in the
language, e.g. that stress tends to fall on particular
positions within words.

Doyle and Levy (2013) extend the Bigram
model of Goldwater et al. (2009) by adding stress-
templates to the lexical generator. A stress-template
indicates how many syllables the word has, and
which of these syllables (if any) are stressed. This
allows the model to acquire knowledge about the
stress patterns of its input by assigning different
probabilities to the different stress-templates. How-
ever, Doyle and Levy (2013) do not directly exam-
ine the probabilities assigned to the stress-templates;
they only report that their model does slightly prefer
stress-initial words over the baseline model by cal-
culating the fraction of stress-initial word types in
the output segmentations of their models. They also
demonstrate that stress cues do indeed aid segmen-
tation, although their reported gain of 1% in token
f-score is even smaller than that reported by Lig-
nos (2011). Our own approach differs from theirs
in assuming phonemic rather than pre-syllabified in-
put (although our model could, trivially, be run on
syllabified input as well) and makes use of Adap-
tor Grammars instead of the Goldwater et al. (2009)
Bigram model, providing us with a flexible frame-
work for exploring the usefulness of stress in differ-
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ent models.
Adaptor Grammar (Johnson et al., 2007) is

a grammar-based formalism for specifying non-
parametric hierarchical models. Previous work ex-
plored the usefulness of, for example, syllable-
structure (Johnson, 2008b; Johnson and Goldwa-
ter, 2009) or morphology (Johnson, 2008b; Johnson,
2008a) in word segmentation. The closest work to
our own is Johnson and Demuth (2010) who investi-
gate the usefulness of tones for Mandarin phonemic
segmentation. Their way of adding tones to a model
of word segmentation is very similar to our way of
incorporating stress.

3 Models

We give an intuitive description of the mathemati-
cal background of Adaptor Grammars in 3.1, refer-
ring the reader to Johnson et al. (2007) for technical
details. The models we examine are derived from
the collocational model of Johnson and Goldwater
(2009) by varying three parameters, resulting in 6
models: two baselines that do not take advantage of
stress cues and either do or do not use phonotactics,
as described in Section 3.2; and four stress models
that differ with respect to the use of phonotactics,
and as to whether they embody the Unique Stress
Constraint introduced by Yang (2004). We describe
these models in section 3.3.

3.1 Adaptor Grammars

Briefly, an Adaptor Grammar (AG) can be seen as
a probabilistic context-free grammar (PCFG) with a
special set of adapted non-terminals. We use un-
derlining to distinguish adapted non-terminals (X )
from non-adapted non-terminals (Y ). The distri-
bution for each adapted non-terminal X is drawn
from a Pitman-Yor Process which takes as its base-
distribution the tree-distribution over trees rooted
in X as defined by the PCFG. As an effect, each
adapted non-terminal can be seen as having associ-
ated with it a cache of previously-generated subtrees
that can be reused without having to be regenerated
using the individual PCFG rules. This allows AGs to
learn reusable sub-trees such as words, sequences of
words, or smaller units such as Onsets and Codas.
Thus, while ordinary PCFGs have a finite number
of parameters (one probability for each rule), Adap-
tor Grammars in addition have a parameter for every

possible complete tree rooted in any of its adapted
non-terminals, leading to a potentially infinite num-
ber of such parameters. The Pitman-Yor Process in-
duces a rich-get-richer dynamics, biasing the model
towards identifying a small set of units that can be
reused as often as possible. In the case of word seg-
mentation, the model will try to identify as compact
a lexicon as possible to segment the unsegmented
input.

3.2 Baseline models

Our starting point is the state-of-the-art AG model
for word segmentation, Johnson and Goldwater
(2009)’s colloc3-syll model, reproduced in Fig-
ure 1.2 The model assumes that words are grouped
into larger collocational units that themselves can be
grouped into even larger collocational units. This
accounts for the fact that in natural language, there
are strong word-to-word dependencies that need to
be accounted for if severe undersegmentations of
the form “is in the” are to be avoided (Goldwater,
2007; Johnson and Goldwater, 2009; Börschinger et
al., 2012). It also uses a language-independent form
of syllable structure to constrain the space of possi-
ble words. Finally, this model can learn word-initial
onsets and word-final codas. In a language like En-
glish, this ability provides additional cues to word-
boundaries as certain onsets are much more likely
to occur word-initially than medially (e.g. “bl” in
“black”), and analogously for certain codas (e.g.
“dth” in “width” or “ngth” in “strength”).

We define an additional baseline model by replac-
ing rules (5) and (6) by (17), and deleting rules (7) to
(12). This removes the model’s ability to use phono-
tactic cues to word-boundaries.

Word → Syll ( Syll ) ( Syll ) ( Syll ) (17)

We refer to the model in Figure 1 as the colloc3-
phon model, and the model that results from sub-
stituting and removing rules as described as the
colloc3-nophon model. Alternatively, one could
limit the models ability to capture word-to-word de-
pendencies by removing rules (1) to (3). This results

2We follow Johnson and Goldwater (2009) in limiting the
length of possible words to four syllables to speed up runtime.
In pilot experiments, this choice did not have a noticeable effect
on segmentation performance.
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Collocations3 → Collocation3+ (1)

Collocation3 → Collocation2+ (2)

Collocation2 → Collocation+ (3)

Collocation → Word+ (4)
Word → SyllIF (5)
Word → SyllI ( Syll ) ( Syll ) SyllF (6)
SyllIF → (OnsetI )RhymeF (7)
SyllI → (OnsetI )Rhyme (8)
SyllF → (Onset )RhymeF (9)

CodaF → Consonant+ (10)
RhymeF → Vowel (CodaF ) (11)

OnsetI → Consonant+ (12)
Syll → (Onset )Rhyme (13)

Rhyme → Vowel (Coda ) (14)

Onset → Consonant+ (15)

Coda → Consonant+ (16)

Figure 1: The baseline model. We use regular-expression
notation to abbreviate multiple rules. X {n} stands for up
to n repetitions of X , brackets indicate optionality, and
X+ stands for one or more repetitions of X . X indicates
an adapted non-terminal. Rules that introduce terminals
for the pre-terminals Vowel , Consonant are omitted.
Refer to the main text for an explanation of the grammar.

in the colloc-model (Johnson, 2008b) that has previ-
ously been found to behave similarly to the Bigram
model used in Doyle and Levy (2013) (Johnson,
2008b; Börschinger et al., 2012). We performed ex-
periments with the colloc-model as well and found
similar results to Doyle and Levy (2013) which are,
while overall worse, similar in trend to the results
obtained for the colloc3-models. For the rest of the
paper, therefore, we will focus on variants of the
colloc3-model.

3.3 Stress-based models

In order for stress cues to be helpful, the model must
have some way of associating the position of stress
with word-boundaries. Intuitively, the reason stress
helps infants in segmenting English is that a stressed
syllable is a reliable indicator of the beginning of
a word (Jusczyk et al., 1993). More generally, if
there is a (reasonably) reliable relationship between
the position of stressed syllables and beginnings (or

Word → {SSyll | USyll }{1,4} (18)
SSyll → (Onset )RhymeS (19)
USyll → (Onset )RhymeU (20)

RhymeS → Vowel ∗ ( Coda ) (21)
RhymeU → Vowel (Coda ) (22)

Onset → Consonant+ (23)

Coda → Consonant+ (24)

Figure 2: Description of the all-stress-patterns model. We
use X {m,n} for “at least m and at most n repetitions of
X ” and {X | Y } for “either X or Y ”. Stress is asso-
ciated with a vowel by suffixing it with the special termi-
nal symbol ∗ , leading to a distinction between stressed
(SSyll ) and unstressed (USyll ) syllables. A word can
consist of any possible sequence of up to four syllables,
as indicated by the regular-expression notation. By ad-
ditionally adding initial and final variants of SSyll and
USyll as in Figure 1, phonotactics can be combined with
stress cues.

endings) of words, a learner might exploit this rela-
tionship. In a Bayesian model, this intuition can be
captured by modifying the lexical generator, that is,
the distribution that generates Word s.

Here, changing the lexical generator corresponds
to modifying the rules expanding Word . A straight-
forward way to modify it accordingly is to enu-
merate all possible sequences of stressed and un-
stressed syllables.3 A lexical generator like this is
given in Figure 2. In the data, stress cues are rep-
resented using a special terminal “ ∗ ” that follows
a stressed vowel, as illustrated in Figure 3. In the
grammar, “ ∗ ” is constrained to only surface follow-
ing a Vowel , rendering a syllable in which it occurs
stressed (SSyll ). Syllables that do not contain a “ ∗ ”
are considered unstressed (USyll ). By performing
inference for the probabilities assigned to the dif-
ferent expansions of rule (18), our models can, for
example, learn that a bi-syllabic word that is stress-
initial (a trochee) is more probable than one that puts
stress on the second syllable (an iamb). This (partly)
captures the tendency of English for stress-initial
words and thus provide an additional cue for identi-
fying words; and it is exactly the kind of preference
infant learners of English seem to acquire (Jusczyk

3This is, in essence, also the strategy chosen by Doyle and
Levy (2013).
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grammar phon stress USC
colloc3-nophon
colloc3-phon •

colloc3-nophon-stress •
colloc3-phon-stress • •

colloc3-nophon-stress-usc • •
colloc3-phon-stress-usc • • •

Table 1: The different models used in our experiments.
“phon” indicates whether phonotactics are used, “stress”
whether stress cues are used and “usc” whether the
Unique Stress Constraint is assumed.

orthographic the do-gie
no-stress dh ah d ao g iy

stress dh ah d ao * g iy

Figure 3: Illustration of the input-representation we
choose. We indicate primary stress according to the dic-
tionary with bold-face in the orthography. The phonemic
transcription uses ARPABET and is produced using an
extended version of CMUDict. Primary stress is indi-
cated by inserting the special symbol “*” after the vowel
of a stressed syllable.

et al., 1993).
We can combine this lexical generator with the

colloc3-nophon baseline, resulting in the colloc3-
nophon-stress model. We can also add phonotac-
tics to the lexical generator in Figure 2 by adding
initial and final variants of SSyll and USyll , anal-
ogous to rules (5) to (12) in Figure 1. This yields
the colloc3-phon-stress model. We can also add
the Unique Stress Constraint (USC) (Yang, 2004)
by excluding all variants of rule (18) that generate
two or more stressed syllables. For example, while
the lexical generator for the colloc3-nophon-stress
model will include the rule Word → SSyll SSyll ,
the lexical generator embodying the USC lacks this
rule. We refer to the models that include the USC as
colloc3-nophon-stress-usc and colloc3-phon-stress-
usc models. A compact overview of the six different
models is given in Table 1.

4 Experiments

We evaluate our models on several corpora of child
directed speech. We first describe the corpora we
used, then the experimental methodology employed
and finally the experimental results. As the trend is

comparable across all corpora, we only discuss in
detail results obtained on the Alex corpus. For com-
pleteness, however, Table 3 reports the “standard”
evaluation of performing inference over all of the
three corpora.

4.1 Corpora and corpus creation

Following Christiansen et al. (1998) and Doyle and
Levy (2013), we use the Korman corpus (Korman,
1984) as one of our corpora. It comprises child-
directed speech for very young infants, aged be-
tween 6 and 16 weeks and, like all other cor-
pora used in this paper, is available through the
CHILDES database (MacWhinney, 2000). We de-
rive a phonemicized version of the corpus using
an extended version of CMUDict (Carnegie Mellon
University, 2008)4, as we were unable to obtain the
stress-annotated version of this corpus used in previ-
ous experiments. The phonemicized version is pro-
duced by replacing each orthographic word in the
transcript with the first pronunciation given by the
dictionary. CMUDict also annotates lexical stress,
and we use this information to add stress cues to the
corpus. We only code primary lexical stresses in the
input, ignoring secondary stresses in line with ex-
perimental work that indicates that human listeners
are capable of reliably distinguishing primary and
secondary stress (Mattys, 2000). Due to the very
low frequency of words with 3 or more syllables in
these corpora, this choice has very little effect on the
number of stress cues available in the input. Our ver-
sion of the Korman corpus contains, in total, 11413
utterances. Unlike Christiansen et al. (1998), Yang
(2004), and Doyle and Levy (2013), we follow Lig-
nos and Yang (2010) in making the more realistic as-
sumption that the 94 mono-syllabic function words
listed by Selkirk (1984) never surface with lexical
stress. As function words account for roughly 50%
of the tokens but only roughly 5% of the types in our
corpora, this means that the type and token distribu-
tion of stress patterns differs dramatically in all our
corpora, as can be seen from Table 2.

We also added stress information to the Brent-
Bernstein-Ratner corpus (Bernstein-Ratner, 1987;
Brent, 1999), following the procedure just out-
lined. This corpus is a de-facto standard for evaluat-

4http://svn.code.sf.net/p/cmusphinx/
code/trunk/cmudict/cmudict.0.7a
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Pattern
brent korman alex

Tok Typ Tok Typ Tok Typ
W+ .48 .07 .47 .08 .44 .05
SW∗ .49 .86 .49 .86 .52 .87

WSW∗ .03 .07 .03 .06 .04 .07
Other .00 .00 .00 .00 .00 .00

Table 2: Relative frequencies for stress patterns for the
corpora used in our study. X∗ stands for 0 or more, X+

for one or more repetitions of X , and S for a stressed and
W for an unstressed syllable. Note the stark asymmetry
between type and token frequencies for unstressed words.
Up to two-decimal places, patterns other than the ones
given have relative frequency 0.00 (frequencies might not
sum to 1 as an artefact of rounding to 2 decimal places).

ing models of Bayesian word segmentation (Brent,
1999; Goldwater, 2007; Goldwater et al., 2009;
Johnson and Goldwater, 2009), comprising in total
9790 utterances.

As our third corpus, we use the Alex portion
of the Providence corpus (Demuth et al., 2006;
Börschinger et al., 2012). A major benefit of the
Providence corpus is that the video-recordings from
which the transcripts were produced are available
through CHILDES alongside the transcripts. This
will allow future work to rely on even more realis-
tic stress cues that can be derived directly from the
acoustic signal. While beyond the scope of this pa-
per, we believe choosing a corpus that makes richer
information available will be important for future
work on stress (and other acoustic) cues. Another
major benefit of the Alex corpus is that it provides
longitudinal data for a single infant, rather than be-
ing a concatenation of transcripts collected from
multiple children, such as the Korman and the Brent-
Bernstein-Ratner corpus. In total, the Alex corpus
comprises 17948 utterances.

Note that despite the differences in age of the in-
fants and overall make-up of the corpora, the dis-
tribution of stress patterns across the corpora is
roughly the same, as shown by Table 2 for the first
10,000 utterances of each of the corpora. This sug-
gests that the distribution of stress patterns both at a
token and type level is a robust property of English
child-directed speech.

4.2 Evaluation procedure

The aim of our experiments is to understand the
contribution of stress cues to the Bayesian word
segmentation models described in Section 3. To
get an idea of how input size interacts with this,
we look at prefixes of the corpora with increasing
sizes (100, 200, 500, 1000, 2000, 5000, and 10,000
utterances). In addition, we are interested in under-
standing what kind of stress pattern preferences our
models acquire. For this, we also collect samples of
the probabilities assigned to the different expansions
of rule (18), allowing us to examine this directly.
The standard evaluation of segmentation models in-
volves having them segment their input in an un-
supervised manner and evaluating performance on
how well they segmented that input. We addition-
ally evaluate the models on a test set for each cor-
pus. Use of a separate test set has previously been
suggested as a means of testing how well the knowl-
edge a learner acquired generalizes to novel utter-
ances (Pearl et al., 2011), and is required for the kind
of comparison across different sizes of input we are
interested in to determine whether there the role of
stress cues interacts with the input size.

We create the test-sets by taking the final 1000 ut-
terances for each corpus. These 1000 utterances will
be segmented by the model after it has performed
inference on its input, without making any further
changes to the lexicon that the model has induced.
In other words, the model will have to segment each
of the test utterances using only the lexicon (and any
additional knowledge about co-occurrences, phono-
tactics, and stress) it has acquired from the training
portion of the corpus during inference.

We measure segmentation performance using the
standard metric of token f-score (Brent, 1999) which
is the harmonic mean of token precision and recall.
Token f-score provides an overall impression of how
accurate individual word tokens were identified. To
illustrate, if the gold segmentation is “the dog”, the
segmentation “th e dog” has a token precision of 1

3
(one out of three predicted words is correct); a token
recall of 1

2 (one of the two gold words was correctly
identified); and a token f-score of 0.4.

4.3 Inference

For inference, we closely follow Johnson and Gold-
water (2009): we put vague priors on all the hyper-
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p s usc alex korman brent
train test train test train test
.81 .81 .85 .83 .82 .82

• .85 .84 .86 .84 .86 .86
• .86 .87 .87 .86 .86 .87

• • .88 .88 .88 .87 .87 .87
• • .87 .88 .87 .88 .86 .87

• • • .88 .88 .88 .87 .87 .88

Table 3: Token f-scores on both train and test portions
for all three corpora when inference is performed over
the full corpus. Note that the benefit of stress is clearer
when evaluating on the test set, and that overall, perfor-
mance of the different models is comparable across all
three corpora. Models are coded according to the key in
Table 1.

parameters of our models and run 4 chains for 1000
iterations, collecting 20 samples from each chain
with a lag of 10 iterations between each sample af-
ter a burn-in of 800 iterations, using both batch-
initialization and table-label resampling to ensure
good convergence of the sampler. We construct a
single segmentation from the posterior samples us-
ing their minimum Bayes risk decoding, providing a
single score for each condition.

4.4 Experimental conditions

Each of our six models is evaluated on inputs of in-
creasing size, starting at 100 and ending at 10,000
utterances, allowing us to investigate both how per-
formance and “knowledge” of the learner varies as
a function of input size. For completeness, we also
report the “standard” evaluation, i.e. performance of
our models on all corpora when trained on the entire
input in Table 3. We will focus our discussion on the
results obtained on the Alex corpus, which are de-
picted in Figure 4, where the input size is depicted
on the x-axis, and the segmentation f-score for the
test-set on the y-axis.

5 Discussion

We find a clear improvement for the stress-models
over both the colloc3-nophon and the colloc3-phon
models. As can be seen in Table 3, the overall
trend is the same for all three corpora, both when
evaluating on the input and the separate test-set.5

5We performed Wilcox rank sum tests on the individual
scores of the 4 independent chains for each model on the full
training data sets and found that the stress-models were always

Note how the relative gain for stress is roughly
1% higher when evaluating on the test-set; this
might have to do with Jusczyk (1997)’s observa-
tion that the advantage of stress “might be more
evident for relatively unexpected or unfamiliarized
strings” (Jusczyk, 1997). A closer look at Figure 4
indicates further interesting differences between the
colloc3-nophon and the colloc3-phon models that
only become evident when considering different in-
put sizes.

5.1 Stress cues without phonotactics

For the colloc3-nophon models, we observe a rel-
atively stable improvement by adding stress cues
of 6-7%, irrespective of input size and whether or
not the Unique Stress Constraint (USC) is assumed.
The sole exception to this occurs when the learner
only gets to see 100 utterances: in this case, the
colloc-nophon-stress model only shows a 3% im-
provement, whereas the colloc3-nophon-stress-usc
model obtains a boost of roughly 8%. Noticeable
consistent differences between the colloc3-nophon-
stress and colloc3-nophon-stress-usc model, how-
ever, all but disappear starting from around 500 ut-
terances. This is somewhat surprising, considering
that it is the USC that was argued by Yang (2004) to
be key for taking advantage of stress.6

We take this behaviour to indicate that even
with as little evidence as 200 to 500 utterances,
a Bayesian ideal learner can effectively infer that
something like the USC is true of English. This
also becomes clear when examining how the learn-
ers’ preferences for different stress patterns evolve
over time, as we do in Section 5.3 below.

5.2 Stress cues and phonotactics

Overall, the models including phonotactic cues per-
form better than those that do not rely on phono-
tactics. However, the overall gain contributed by
stress to the colloc3-phon baseline is smaller, al-

significantly more accurate (p < 0.05) than the baseline models
except when evaluating on the training data for the Korman and
Brent corpora.

6On data in which function words are marked for stress (as
in Yang (2004) and Doyle and Levy (2013)), the USC yields ex-
tremely high scores across all models, simply because roughly
every second word is a function word. Given that this assump-
tion is extremely unnatural, we do not take this as an argument
for the USC.
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Figure 4: Segmentation performance of the different models, across different input sizes and as evaluated on the
test-set for the Alex corpus. The no-stress baselines are given in red, the stress-models without the Unique Stress
Constraint (USC) in green and the ones including the USC in black. Solid lines indicate models that use, dashed lines
models that do not use phonotactics. Refer to the text for discussion.

though this seems to depend on the size of the input.
While phonotactics by itself appears to be a pow-
erful cue, yielding a noticeable 4-5% improvement
over the colloc3-nophon baseline, the learner seems
to require at least around 500 utterances before the
colloc3-phon model becomes clearly more accurate
than the colloc3-nophon model. In contrast, even
for only 100 utterances stress cues by themselves
provide a 3% improvement to the colloc3-nophon
model, indicating that they can be taken advantage
of earlier. While the number of utterances processed
by a Bayesian ideal learner is not directly related to
developmental stages, this observation is consistent
with the psycholinguists’ claim that phonotactics are
used by infants for word segmentation after they
have begun to use stress for segmentation (Jusczyk
et al., 1999a).

Turning to the interaction between stress and
phonotactics, we see that there is no consistent ad-
vantage of including the USC in the model. This
is, in fact, even clearer than for the colloc3-nophon
model where at least for small inputs of size 100,
the USC added almost 5% in performance. For the
colloc3-phon models, we only observe a 1-2% im-
provement by adding the USC up until 500 utter-

ances. This further strengthens the point that even in
the absence of such an innate constraint, a statisti-
cal learner can take advantage of stress cues and, as
we show below, actually acquire something like the
USC from the input.

The 4% difference between the colloc3-phon-
stress / colloc3-phon-stress-usc models to the
colloc3-phon baseline is smaller than the 7% dif-
ference between the colloc3-nophon and colloc3-
nophon-stress models. This shows that there is a
redundancy between phonotactic and stress cues in
large amounts of data, as their joint contribution to
the colloc3-nophon baseline is less than the sum of
their individual contributions at 10,000 utterances,
of 4% (for phonotactics) and 7% (for stress).

Unlike for the colloc3-nophon models, we also
see a clear impact of input size. In particular, at
100 utterances the addition of stress cues leads to
an 8 – 10% improvement, depending on whether or
not the USC is assumed, whereas for the colloc3-
nophon model we only observed a 3 – 8% improve-
ment. This is particularly striking when we con-
sider that by themselves, the phonotactic cues only
contribute a 1% improvement to the colloc3-nophon
baseline when trained on the 100 utterance corpus,
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indicating a synergistic interaction (rather than re-
dundancy) between phonotactics and stress for small
inputs. This effect disappears starting from around
1000 utterances; for inputs of size 1000 and larger,
the net-gain of stress drops from roughly 10% to a
3–4% improvement. That is, while we did not notice
any relationship between input size and impact of
stress cues for the colloc3-nophon model, we do see
such an interaction for the combination of phonotac-
tics and stress cues which, taken together, lead to a
larger relative gain in performance on smaller inputs
than on large ones.

5.3 Acquisition of stress patterns

In addition to acquiring a lexicon, the Bayesian
learner acquires knowledge about the possible stress
patterns of English words. The fact that this knowl-
edge is explicitly represented through the PCFG
rules and their probabilities that define the lexi-
cal generator allows us to study the generalisations
about stress the model actually acquires. While
Doyle and Levy (2013) suggest carrying out such
an analysis, they restrict themselves to estimating
the fraction of stress patterns in the segmented out-
put. As shown in Table 2, however, the type and
token distributions of stress patterns can differ sub-
stantially. We therefore investigate the stress pref-
erences acquired by our learner by examining the
probabilities assigned to the different expansions of
rule (18), aggregating the probabilities of the indi-
vidual rules into patterns. For example, the rules
Word → SSyll (USyll ){0,3} correspond to the
pattern “Stress on the first syllable”, whereas the
rules Word → USyll {1,4} correspond to the pat-
tern “Unstressed word”. By computing the respec-
tive probabilities, we get the overall probability as-
signed by a learner to the pattern.

Figure 5 provides this information for several dif-
ferent rule patterns. Additionally, these plots in-
clude the empirical type (red dotted) and token pro-
portions (red double-dashed) for the input corpus.
Note how for the two major patterns, all models suc-
cessfully track the type, rather than the token fre-
quency, correctly developing a preference for stress-
initial over unstressed words, despite the compa-
rable token frequency of these two patterns. This
is compatible with a recent proposal by Thiessen
and Saffran (2007), who argue that infants infer the

stress pattern over their lexicon. For a Bayesian
model such as ours or Goldwater et al. (2009)’s,
there is no need to pre-specify that the distribution
ought to be learned over types rather than tokens, as
the models automatically interpolate between type
and token statistics according to the properties of
their input (Goldwater et al., 2006). In addition,
a Bayesian framework provides a simple answer to
the question of how a learner might identify the role
of stress in its language without already having ac-
quired at least some words. By combining differ-
ent kinds of cues, e.g. distributional, phonotactic
and prosodic, in a principled manner a Bayesian
learner can jointly segment its input and learn the
appropriate role of each cue, without having to pre-
specify specific preferences that might differ across
languages.

The iambic rule pattern that puts stress on the sec-
ond syllable is much more infrequent on a token
level. All models track this low token frequency,
underestimating the type frequency of this pattern
by a fair amount. This suggests that learning this
pattern correctly requires considerably more input
than for the other patterns. Indeed, the iambic pat-
tern is known to pose problems for infants when they
start using stress as an effective cue. It is only from
roughly 10 months of age that infants successfully
segment iambic words (Jusczyk et al., 1999b). Not
surprisingly, the USC doesn’t aid in learning about
this pattern because it is completely silent on where
stress might fall (and does not noticeably improve
segmentation performance to begin with).

Finally, we can also investigate whether the
models that lack the USC nevertheless learn that
words contain at most one lexically stressed syl-
lable. The bottom-right graph in Figure 5 plots
the probability assigned by the models to patterns
that violate the USC. This includes, for example,
the rules Word → SyllS SyllS and Word →
SyllS SyllU SyllS . Note how the probabilities as-
signed to these rules approaches zero, indicating that
the learner becomes more certain that there are no
words that contain more than one syllable with lex-
ical stress. As we argued above, this suggests that a
Bayesian learner can acquire the USC from a mod-
est amount of data — it will properly infer that the
unnatural patterns are simply not supported by the
input. To summarize, by examining the internal
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Figure 5: Evolution of the knowledge the learner acquires on the Alex corpus. The red dotted line indicates the
empirical type distribution of a specific pattern, and the double-dashed line the empirical token distribution. Top-Left:
Stress-initial pattern, Top-Right: Unstressed Words, Bottom-Left: Stress-second pattern, Bottom-Right: Patterns that
violate the USC.

state of the Bayesian learners we can characterise
how their knowledge about the stress preferences of
their languages develops, rather than merely measur-
ing how well they perform word segmentation. We
find that the iambic pattern that has been observed to
pose problems for infant learners also is harder for
the Bayesian learner to acquire, arguably due to its
extremely low token-frequency.

6 Conclusion and Future Work

We have presented Adaptor Grammar models of
word segmentation that are able to take advantage
of stress cues and are able to learn from phonemic
input. We find that phonotactics and stress interact
in interesting ways, and that stress cues makes a sta-
ble contribution to existing word segmentation mod-
els, improving their performance by 4-6% token f-
score. We also find that the USC introduced by Yang
(2004) need not be prebuilt into a model but can be
acquired by a Bayesian learner from the data. Sim-
ilarly, we directly investigate the stress preferences

acquired by our models and find that for stress-initial
and unstressed words, they track type rather than
token frequencies. The rare stress-second pattern
seems to require more input to be properly acquired,
which is compatible with infant development data.

An important goal for future research is to eval-
uate segmentation models on typologically different
languages and to study the relative usefulness of dif-
ferent cues cross-lingually. For example, languages
such as French lack lexical stress; it would be inter-
esting to know whether in such a case, phonotactic
(or other) cues are more important. Relatedly, recent
work such as Börschinger et al. (2013) has found
that artificially created data often masks the com-
plexity exhibited by real speech. This suggests that
future work should use data directly derived from
the acoustic signal to account for contextual effects,
rather than using dictionary look-up or other heuris-
tics. In using the Alex corpus, for which good qual-
ity audio is available, we have taken a first step in
this direction.
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