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A b s t r a c t  

This paper presents a case study of analyzing 
and improving intercoder reliability in discourse 
tagging using statistical techniques. Bias- 
corrected tags are formulated and successfully 
used to guide a revision of the coding manual 
and develop an automatic classifier. 

1 I n t r o d u c t i o n  

This paper presents a case study of analyz- 
ing and improving intercoder reliability in dis- 
course tagging using the statistical techniques 
presented in (Bruce and Wiebe, 1998; Bruce 
and Wiebe, to appear). Our approach is data 
driven: we refine our understanding and pre- 
sentation of the classification scheme guided by 
the results of the intercoder analysis. We also 
present the results of a probabilistic classifier 
developed on the resulting annotations. 

Much research in discourse processing has 
focused on task-oriented and instructional di- 
alogs. The task addressed here comes to the 
fore in other genres, especially news reporting. 
The task is to distinguish sentences used to ob- 
jectively present factual information from sen- 
tences used to present opinions and evaluations. 
There are many applications for which this dis- 
tinction promises to be important, including 
text categorization and summarization. This 
research takes a large step toward developing 
a reliably annotated gold standard to support 
experimenting with such applications. 

This research is also a case study of ana- 
lyzing and improving manual tagging that is 
applicable to any tagging task. We perform 
a statistical analysis that provides information 
that complements the information provided by 

Cohen's Kappa (Cohen, 1960; Carletta, 1996). 
In particular, we analyze patterns of agreement 
to identify systematic disagreements that result 
from relative bias among judges, because they 
can potentially be corrected automatically. The 
corrected tags serve two purposes in this work. 
They are used to guide the revision of the cod- 
ing manual, resulting in improved Kappa scores, 
and they serve as a gold standard for developing 
a probabilistic classifier. Using bias-corrected 
tags as gold-standard tags is one way to define 
a single best tag when there are multiple judges 
who disagree. 

The coding manual and data from our exper- 
iments are available at: 
http://www.cs.nmsu.edu/~wiebe/projects.  

In the remainder of this paper, we describe 
the classification being performed (in section 2), 
the statistical tools used to analyze the data and 
produce the bias-corrected tags (in section 3), 
the case study of improving intercoder agree- 
ment (in section 4), and the results of the clas- 
sifter for automatic subjectivity tagging (in sec- 
tion 5). 

2 T h e  Subjective a n d  Objective 
C a t e g o r i e s  

We address evidentiality in text (Chafe, 1986), 
which concerns issues such as what is the source 
of information, and whether information is be- 
ing presented as fact or opinion. These ques- 
tions are particularly important in news report- 
ing, in which segments presenting opinions and 
verbal reactions are mixed with segments pre- 
senting objective fact (van Dijk, 1988; Kan et 
al., 1998). 

The definitions of the categories in our cod- 
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ing manual are intention-based: "If the primary 
intention of a sentence is objective presentation 
of material that  is factual to the reporter, the 
sentence is objective. Otherwise, the sentence is 
subjective." 1 

We focus on sentences about private states, 
such as belief, knowledge, emotions, etc. (Quirk 
et al., 1985), and sentences about speech events, 
such as speaking and writing. Such sentences 
may be either subjective or objective. From 
the coding manual: "Subjective speech-event 
(and private-state) sentences are used to com- 
municate the speaker's evaluations, opinions, 
emotions, and speculations. The primary in- 
tention of objective speech-event (and private- 
state) sentences, on the other hand, is to ob- 
jectively communicate material that  is factual 
to the reporter. The speaker, in these cases, is 
being used as a reliable source of information." 

Following are examples of subjective and ob- 
jective sentences: 

1. At several different levels, it's a fascinating 
tale. Subjective sentence. 

2. Bell Industries Inc. increased its quarterly 
to 10 cents from seven cents a share. Ob- 
jective sentence. 

3. Northwest Airlines settled the remaining 
lawsuits filed on behalf of 156 people killed 
in a 1987 crash, but  claims against the 
jetliner's maker axe being pursued, a fed- 
eral judge said. Objective speech-event sen- 
tence. 

4. The South African Broadcasting Corp. 
said the song "Freedom Now" was "un- 
desirable for broadcasting." Subjective 
speech-event sentence. 

In sentence 4, there is no uncertainty or eval- 
uation expressed toward the speaking event. 
Thus, from one point of view, one might have 
considered this sentence to be objective. How- 
ever, the object of the sentence is not presented 
as material that  is factual to the reporter, so 
the sentence is classified as subjective. 

Linguistic categorizations usually do not 
cover all instances perfectly. For example, sen- 

1 The category specifications in the coding manual axe 
based on our previous work on tracking point of view 
(Wiebe, 1994), which builds on Banfield's (1982) linguis- 
tic theory of subjectivity. 

tences may fall on the borderline between two 
categories. To allow for uncertainty in the an- 
notation process, the specific tags used in this 
work include certainty ratings, ranging from 0, 
for least certain, to 3, for most certain. As dis- 
cussed below in section 3.2, the certainty ratings 
allow us to investigate whether a model positing 
additional categories provides a better  descrip- 
tion of the judges' annotations than a binary 
model does. 

Subjective and objective categories are poten- 
tially important  for many text processing ap- 
plications, such as information extraction and 
information retrieval, where the evidential sta- 
tus of information is important .  In generation 
and machine translation, it is desirable to gener- 
ate text that  is appropriately subjective or ob- 
jective (Hovy, 1987). In summarization, sub- 
jectivity judgments  could be included in doc- 
ument profiles, to augment automatically pro- 
duced document summaries, and to help the 
user make relevance judgments  when using a 
search engine. In addition, they would be useful 
in text categorization. In related work (Wiebe 
et al., in preparation), we found that  article 
types, such as announcement and opinion piece, 
are significantly correlated with the subjective 
and objective classification. 

Our subjective category is related to but  dif- 
fers from the statement-opinion category of 
the Switchboard-DAMSL discourse annotat ion 
project (Jurafsky et al., 1997), as well as the 
gives opinion category of Bale's (1950) model 
of small-group interaction. All involve expres- 
sions of opinion, but while our category spec- 
ifications focus on evidentiality in text, theirs 
focus on how conversational participants inter- 
act with one another in dialog. 

3 S t a t i s t i c a l  Too l s  

Table 1 presents data for two judges. The rows 
correspond to the tags assigned by judge 1 and 
the columns correspond to the tags assigned by 
judge 2. Let nij denote the number of sentences 
that  judge 1 classifies as i and judge 2 classi- 
fies as j ,  and let/~ij be the probability that  a 
randomly selected sentence is categorized as i 
by judge 1 and j by judge 2. Then, the max- 
imum likelihood estimate of 15ij is ~ where 

n_l_ + , 

n++ = ~ i j  nij = 504. 
Table 1 shows a four-category data  configu- 
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Judge 1 
= D 

Sub j2,3 
Subjoj 
Objo,1 
Obj2,3 

Judge 2 = J 

Sub j2,3 Sub j oa  Objoa Obj2,3 
n13 = 15 n14 = 4 rill = 158 n12 = 43 

n21 = 0  n22 = 0  n23 = 0  n24 = 0  

n31 = 3 n32 = 2 n33 = 2 n34 = 0 

n41 = 38 n42 --  48 n43 = 49 n44 = 142 

n+z = 199 n+2 = 93 n+3 = 66 n+4 = 146 

nl+ = 220 
n2+ = 0 
n3+ = 7 
n4+ = 277 
n++ = 504 

Table 1: Four-Category Contingency Table 

ration, in which certainty ratings 0 and 1 are 
combined and ratings 2 and 3 are combined. 
Note that  the analyses described in this section 
cannot be performed on the two-category data 
configuration (in which the certainty ratings are 
not considered), due to insufficient degrees of 
freedom (Bishop et al., 1975). 

Evidence of confusion among the classifica- 
tions in Table 1 can be found in the marginal 
totals, ni+ and n+j.  We see that  judge 1 has a 
relative preference, or bias, for objective, while 
judge 2 has a bias for subjective. Relative bias 
is one aspect of agreement among judges. A 
second is whether the judges'  disagreements are 
systematic, that  is, correlated. One pat tern  of 
systematic disagreement is symmetric disagree- 
ment. When disagreement is symmetric, the 
differences between the actual counts, and the 
counts expected if the judges' decisions were not 
correlated, are symmetric; that  is, 5n~j = 5n~i 
for i ~ j ,  where 5ni~ is the difference from inde- 
pendence. 

Our goal is to correct correlated disagree- 
ments automatically. We are particularly in- 
terested in systematic disagreements resulting 
from relative bias. We test for evidence of 
such correlations by fitting probability models 
to the data. Specifically, we study bias using 
the model for marginal homogeneity, and sym- 
metric disagreement using the model for quasi- 
symmetry. When there is such evidence, we 
propose using the latent class model to correct 
the disagreements; this model posits an unob- 
served (latent) variable to explain the correla- 
tions among the judges'  observations. 

The remainder of this section describes these 
models in more detail. All models can be eval- 
uated using the freeware package CoCo, which 

was developed by Badsberg (1995) and is avail- 
able at: 
h t tp : / /web .math .auc .dk / - jhb /CoCo.  

3.1 P a t t e r n s  of  D i s a g r e e m e n t  

A probability model enforces constraints on the 
counts in the data. The degree to which the 
counts in the data conform to the constraints is 
called the fit of the model. In this work, model 
fit is reported in terms of the likelihood ra- 
tio statistic, G 2, and its significance (Read and 
Cressie, 1988; Dunning, 1993). The higher the 
G 2 value, the poorer the fit. We will consider 
model fit to be acceptable if its reference sig- 
nificance level is greater than 0.01 (i.e., if there 
is greater than a 0.01 probability that  the data  
sample was randomly selected from a popula- 
tion described by the model). 

Bias of one judge relative to another is evi- 
denced as a discrepancy between the marginal 
totals for the two judges (i.e., ni+ and n+j in 
Table 1). Bias is measured by testing the fit of 
the model for marginal homogeneity: ~i+ = P+i 
for all i. The larger the G 2 value, the greater 
the bias. The fit of the model can be evaluated 
as described on pages 293-294 of Bishop et al. 
(1975). 

Judges who show a relative bias do not al- 
ways agree, but their judgments  may still be 
correlated. As an extreme example, judge 1 
may assign the subjective tag whenever judge 
2 assigns the objective tag. In this example, 
there is a kind of symmetry in the judges'  re- 
sponses, but  their agreement would be low. Pat- 
terns of symmetric disagreement can be identi- 
fied using the model for quasi-symmetry. This 
model constrains the off-diagonal counts, i.e., 
the counts that  correspond to disagreement. It 
states that  these counts are the product  of a 
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table for independence and a symmetric table, 
nij = hi+ × )~+j ×/~ij, such that  /kij = )~ji. In 
this formula, )~i+ × ,k+j is the model for inde- 
pendence and ),ij is the symmetric interaction 
term. Intuitively, /~ij represents the difference 
between the actual counts and those predicted 
by independence. This model can be evaluated 
using CoCo as described on pages 289-290 of 
Bishop et al. (1975). 

3.2 Producing Bias-Corrected Tags 
We use the latent class model to correct sym- 
metric disagreements that  appear to result from 
bias. The latent class model was first intro- 
duced by Lazarsfeld (1966) and was later made 
computationally efficient by Goodman (1974). 
Goodman's  procedure is a specialization of the 
EM algorithm (Dempster et al., 1977), which 
is implemented in the freeware program CoCo 
(Badsberg, 1995). Since its development, the 
latent class model has been widely applied, and 
is the underlying model in various unsupervised 
machine learning algorithms, including Auto- 
Class (Cheeseman and Stutz, 1996). 

The form of the latent class model is that  of 
naive Bayes: the observed variables are all con- 
ditionally independent of one another, given the 
value of the latent variable. The latent variable 
represents the true state of the object, and is the 
source of the correlations among the observed 
variables. 

As applied here, the observed variables are 
the classifications assigned by the judges. Let 
B, D, J ,  and M be these variables, and let L 
be the latent variable. Then, the latent class 
model is: 

p ( b , d , j , m , l )  = p(bll)p(dll)p(jll)p(mll)p(l ) 
(by C.I. assumptions) 

p( b, l )p( d, l )p(j , l )p( m,  l) 
p(t)3 

(by definition) 

The parameters of the model 
are  {p(b, l),p(d, l),p(j, l),p(m, l)p(l)}. Once  es- 

t i m a t e s  of these parameters are obtained, each 
clause can be assigned the most probable latent 
category given the tags assigned by the judges. 

The EM algorithm takes as input  the number 
of latent categories hypothesized, i.e., the num- 
ber of values of L, and produces estimates of the 

parameters. For a description of this process, 
see Goodman (1974), Dawid & Skene (1979), or 
Pedersen & Bruce (1998). 

Three versions of the latent class model are 
considered in this study, one with two latent 
categories, one with three latent categories, and 
one with four. We apply these models to three 
data configurations: one with two categories 
(subjective and objective with no certainty rat- 
ings), one with four categories (subjective and 
objective with coarse-grained certainty ratings, 
as shown in Table 1), and one with eight cate- 
gories (subjective and objective with fine-grained 
certainty ratings). All combinations of model 
and data configuration are evaluated, except the 
four-category latent class model with the two- 
category data configuration, due to insufficient 
degrees of freedom. 

In all cases, the models fit the data well, as 
measured by G 2. The model chosen as final 
is the one for which the agreement among the 
latent categories assigned to the three data con- 
figurations is highest, that  is, the model that  is 
most consistent across the three data  configura- 
tions. 

4 Improving Agreement in 
Discourse Tagging 

Our annotation project consists of the following 
steps: 2 

1. A first draft of the coding instructions is 
developed. 

2. Four judges annotate a corpus according 
to the first coding manual, each spending 
about four hours. 

3. The annotated corpus is statistically ana- 
lyzed using the methods presented in sec- 
tion 3, and bias-corrected tags are pro- 
duced. 

4. The judges are given lists of sentences 
for which their tags differ from the bias- 
corrected tags. Judges M, D, and J par- 
ticipate in interactive discussions centered 
around the differences. In addition, after 
reviewing his or her list of differences, each 
judge provides feedback, agreeing with the 

2The results of the first three steps are reported in 
(Bruce and Wiebe, to appear). 
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bias-corrected tag in many cases, but  argu- 
ing for his or her own tag in some cases. 
Based on the judges' feedback, 22 of the 
504 bias-corrected tags are changed, and a 
second draft of the coding manual is writ- 
ten. 

5. A second corpus is annotated by the same 
four judges according to the new coding 
manual. Each spends about five hours. 

6. The results of the second tagging experi- 
ment  are analyzed using the methods de- 
scribed in section 3, and bias-corrected tags 
are produced for the second data  set. 

Two disjoint corpora are used in steps 2 and 
5, both  consisting of complete articles taken 
from the Wall Street Journal Treebank Corpus 
(Marcus et al., 1993). In both  corpora, judges 
assign tags to each non-compound sentence and 
to each conjunct of each compound sentence, 
504 in the first corpus and 500 in the second. 
The segmentation of compound sentences was 
performed manually before the judges received 
the data. 

Judges J and B, the first two authors of this 
paper, are NLP researchers. Judge M is an 
undergraduate computer  science student,  and 
judge D has no background in computer  science 
or linguistics. Judge J, with help from M, devel- 
oped the original coding instructions, and Judge 
J directed the process in step 4. 

The analysis performed in step 3 reveals 
strong evidence of relative bias among the 
judges. Each pairwise comparison of judges also 
shows a strong pat tern  of symmetric disagree- 
ment. The two-category latent class model pro- 
duces the most consistent clusters across the 
data  configurations. It, therefore, is used to de- 
fine the bias-corrected tags. 

In step 4, judge B was excluded from the in- 
teractive discussion for logistical reasons. Dis- 
cussion is apparently important ,  because, al- 
though B's Kappa values for the first study are 
on par with the others, B's Kappa values for 
agreement with the other judges change very 
little from the first to the second study (this 
is true across the range of certainty values). In 
contrast, agreement among the other judges no- 
ticeably improves. Because judge B's poor Per- 
formance in the second tagging experiment is 
linked to a difference in procedure, judge B's 

Study 1 Study 2 
% o f  ~ % o f  

corpus corpus 
covered covered 

Certainty Values 0,1,2 or 3 
M & D  
M & J  
D & J  

B & J  
B & M  
B & D  

0.60 100 
0.63 100 
0.57 100 

0.62 100 
0.60 100 
0.58 100 

0.76 100 
0.67 100 
0.65 100 

0.64 100 
0.59 100 
0.59 100 

Certainty Values 1,2 or 3 
M & D  0.62 96 0.84 92 
M & J 0.78 81 0.81 81 
D & J 0.67 84 0.72 82 

Certainty Values 2 or 3 
M & D  
M & J  
D & J  

0.67 89 
0.88 64 
0.76 68 

0.89 81 
0.87 67 
0.88 62 

Table 2: Palrwise Kappa (a) Scores 

tags are excluded from our subsequent analysis 
of the data  gathered during the second tagging 
experiment. 

Table 2 shows the changes, from study 1 to 
study 2, in the Kappa values for pairwise agree- 
ment among the judges. The best results are 
clearly for the two who are not authors of this 
paper (D and M). The Kappa value for the 
agreement between D and M considering all cer- 
tainty ratings reaches .76, which allows tenta- 
tive conclusions on Krippendorf 's  scale (1980). 
If we exclude the sentences with certainty rat- 
ing 0, the Kappa values for pairwise agreement 
between M and D and between J and M are 
both  over .8, which allows definite conclusions 
on Krippendorf 's  scale. Finally, if we only con- 
sider sentences with certainty 2 or 3, the pair- 
wise agreements among M, D, and J all have 
high Kappa values, 0.87 and over. 

We are aware of only one previous project 
reporting intercoder agreement results for simi- 
lar categories, the switchboard-DAMSL p ro j ec t  
mentioned above. While their Kappa results are 
very good for other tags, the opinion-statement 
tagging was not very successful: "The distinc- 
tion was very hard to make by labelers, and 
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Test DIJ 
M.H.: 

G 2 104.912 
Sig. 0.000 

Q.S.:  
G 2 0.054 

Sig. 0.997 

DIM JIM 

17.343 136.660 
0.001 0.000 

0.128 0.350 
0.998 0.95 

Table 3: Tests for Patterns of Agreement 

accounted for a large proportion of our interla- 
beler error" (Jurafsky et al., 1997). 

In step 6, as in step 3, there is strong evi- 
dence of relative bias among judges D, J and M. 
Each pairwise comparison of judges also shows a 
strong pattern of symmetric disagreement. The 
results of this analysis are presented in Table 
3. 3 Also as in step 3, the two-category latent 
class model produces the most consistent clus- 
ters across the data  configurations. Thus, it is 
used to define the bias-corrected tags for the 
second data set as well. 

5 M a c h i n e  L e a r n i n g  R e s u l t s  

Recently, there have been many successful ap- 
plications of machine learning to discourse pro- 
cessing, such as (Litman, 1996; Samuel et al., 
1998). In this section, we report the results 
of machine learning experiments, in which we 
develop probablistic classifiers to automatically 
perform the subjective and objective classifica- 
tion. In the method we use for developing clas- 
sifters (Bruce and Wiebe, 1999), a search is per- 
formed to find a probability model that cap- 
tures important interdependencies among fea- 
tures. Because features can be dropped and 
added during search, the method also performs 
feature selection. 

In these experiments, the system considers 
naive Bayes, full independence, full interdepen- 
dence, and models generated from those using 
forward and backward search. The model se- 
lected is the one with the highest accuracy on a 
held-out portion of the training data. 

10-fold cross validation is performed. The 
data is partitioned randomly into 10 different 

SFor the analysis in Table 3, certainty ratings 0 and 1, 
and 2 and 3 are combined. Similar results are obtained 
when all ratings are treated as distinct. 

sets. On each fold, one set is used for testing, 
and the other nine are used for training. Fea- 
ture selection, model selection, and parameter 
estimation are performed anew on each fold. 

The following are the potential features con- 
sidered on each fold. A binary feature is in- 
cluded for each of the following: the presence 
in the sentence of a pronoun, an adjective, a 
cardinal number, a modal other than will, and 
an adverb other than not. We also include a 
binary feature representing whether or not the 
sentence begins a new paragraph. Finally, a fea- 
ture is included representing co-occurrence of 
word tokens and punctuation marks with the 
subjective and objective classification. 4 There 
are many other features to investigate in future 
work, such as features based on tags assigned 
to previous utterances (see, e.g., (Wiebe et al., 
1997; Samuel et al., 1998)), and features based 
on semantic classes, such as positive and neg- 
ative polarity adjectives (Hatzivassiloglou and 
McKeown, 1997) and reporting verbs (Bergler, 
1992). 

The data consists of the concatenation of the 
two corpora annotated with bias-corrected tags 
as described above. The baseline accuracy, i.e., 
the frequency of the more frequent class, is only 
51%. 

The results of the experiments are very 
promising. The average accuracy across all 
folds is 72.17%, more than 20 percentage points 
higher than the baseline accuracy. Interestingly, 
the system performs better on the sentences for 
which the judges are certain. In a post hoc anal- 
ysis, we consider the sentences from the second 
data set for which judges M, J, and D rate their 
certainty as 2 or 3. There are 299/500 such sen- 
tences. For each fold, we calculate the system's 
accuracy on the subset of the test set consisting 
of such sentences. The average accuracy of the 
subsets across folds is 81.5%. 

Taking human performance as an upper 
bound, the system has room for improvement. 
The average pairwise percentage agreement be- 
tween D, J, and M and the bias-corrected tags in 
the entire data set is 89.5%, while the system's 
percentage agreement with the bias-corrected 
tags (i.e., its accuracy) is 72.17%. 

aThe per-class enumerated feature representation 
from (Wiebe et ai., 1998) is used, with 60% as the con- 
ditional independence cutoff threshold. 
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6 C o n c l u s i o n  

This paper demonstrates a procedure for auto- 
matically formulating a single best tag when 
there are multiple judges who disagree. The 
procedure is applicable to any tagging task in 
which the judges exhibit symmetric disagree- 
ment resulting from bias. We successfully use 
bias-corrected tags for two purposes: to guide 
a revision of the coding manual, and to develop 
an automatic classifier. The revision of the cod- 
ing manual results in as much as a 16 point im- 
provement in pairwise Kappa values, and raises 
the average agreement among the judges to a 
Kappa value of over 0.87 for the sentences that 
can be tagged with certainty. 

Using only simple features, the classifier 
achieves an average accuracy 21 percentage 
points higher than the baseline, in 10-fold cross 
validation experiments. In addition, the aver- 
age accuracy of the classifier is 81.5% on the 
sentences the judges tagged with certainty. The 
strong performance of the classifier and its con- 
sistency with the judges demonstrate the value 
of this approach to developing gold-standard 
tags. 
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