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A b s t r a c t  

Parametric polymorphism has been combined 
with inclusional polymorphism to provide nat- 
ural type systems for Prolog (DH88), HiLog 
(YFS92), and coristraint resolution languages 
(Smo89), and, in linguistics, by HPSG-like 
grammars to classify lists and sets of linguistic 
objects (PS94), and by phonologists in represen- 
tations of hierarchical structure (Kle91). This 
paper summarizes the incorporation of para- 
metric types into the typed attribute-value logic 
of (Car92), thus providing a natural extension 
to the type system for ALE (CP96). Following 
(Car92), the concern here is not with models of 
feature terms themselves, but with how to com- 
pute with parametric types, and what different 
kinds of information one can represent relative 
to a signature with parametric types, than rel- 
ative to a signature without them. This en- 
quiry has yielded a more flexible interpretation 
of parametric types with several specific proper- 
ties necessary to conform to their current usage 
by linguists and implementors who work with 
feature-based formalisms. 

1 M o t i v a t i o n  

Linguists who avail themselves of attribute- 
value logic normally choose whether to encode 
information with subtypes or features on the 
aesthetic basis of what seems intuitively to 
capture their generalizations better. Linguists 
working in LFG typically use one implicit type 
for objects that bear features, and other types 
(atoms) for only featureless objects. In HPSG, 
the situation is less clear, both historically (se- 
mantic relations, for example, used to be val- 
ues of a RELN attribute, and are now sub- 
types of a more general semantic type), and 
synchronically (verbs, for example, are identi- 
fied as (un)inverted and (non-)auxiliaries by two 

boolean-valued features, AUX and INV, whereas 
their form, e.g., finite, infinitive, gerund, is iden- 
tified by a subtype of a single vform type). That 
it makes, or at least should make, no difference 
from a formal or implementational point of view 
which encoding is used has been argued else- 
where (Mos96; Pen-f). 

HPSG's type system also includes parametric 
types, e.g., Figure 1, from (PS94). In contrast 

word ~hrase ¢list ~nelist(_X~. 
\ 7 I / HE.~D:'2t 
V. ,..~[f~ TAIL:list(X) 

. . .  

J_ 

Figure 1: A fragment of the HPSG type signa- 
ture. 

to the relative expressive potential of normal 
typing and features, the expressive potential of 
parametric types is not at all understood. In 
fact, parametric types have never been formal- 
ized in a feature logic or in a manner general 
enough to capture their use in HPSG parsing so 
that a comparison could even be drawn. This 
paper summarizes such a formalization, 1 based 
on the typed attribute-value logic of (Car92). 
This logic is distinguished by its strong inter- 
pretation of appropriateness, a set of condi- 
tions that tell us which features an object of 
a given type can have, and which types a fea- 
ture's value can have. Its interpretation, total 
well-typedness, says that every feature structure 
must have an appropriate value for all and only 
the appropriate features of its type. Previous 
approaches have required that every parameter 
of a subtype should be a parameter of all of its 
supertypes, and vice versa; thus, it would not be 

1 The full version of this paper presents a denotational 
semantics of the logic described here. 
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possible to encode Figure 1 because _1_ E list(X), 
and if ± were parametric, then all other types 
would be. 2 The present one eliminates this re- 
striction (Section 2) by requiring the existence 
of a simple most general type (which (Car92)'s 
logic requires anyway), which is then used dur- 
ing type-checking and inferencing to interpret 
new parameters. All previous approaches deal 
only with fixed-arity terms; and none but one 
uses a feature logic, with the one, CUF (Dot92), 
being an implementation that permits paramet- 
ric lists only as a special case. The present ap- 
proach (Section 4) provides a generalization of 
appropriateness that permits both unrestricted 
parametricity and incremental feature introduc- 
tion. 

In contrast to the other encoding trade- 
off, the use of parametric types in HPSG lin- 
guistics exhibits almost no variation. They 
are used almost exclusively for encoding lists 
(and, unconvincingly, sets), either with type 
arguments as they are posited in (PS94), or 
with general description-level arguments, e.g., 
list(LOCAL:CAT:HEAD:verb), the latter possibly 
arising out of the erroneous belief that para- 
metric types are just "macro" descriptions for 
lists. Even in the former case, however, para- 
metric types have as wide of a range of poten- 
tial application to HPSG as simple types and 
features do; and there is no reason why they 
cannot be used as prolifically once they are un- 
derstood. To use an earlier example, auxiliary, 
inverted, and verb_form could all be parameters 
of a parametric type, verb. In fact, parametri- 
cally typed encodings yield more compact spec- 
ifications than simply typed encodings because 
they can encode products of information in their 
parameters, like features. Unlike features, how- 
ever, they can lend their parameters to appro- 
priateness restrictions, thus refining the feature 
structures generated by the signature to a closer 
approximation of what is actually required in 
the grammar theory itself. 

It is possible, however, to regard paramet- 
ric type signatures 3 as a shorthand for non- 
parametric signatures. The interpretation of 

2In this paper,  the most general type will be called 
.l_. 

3By "signature," I refer to a part ia l  order of types plus 
feature appropriateness declarations. The part ial  order 
itself, I shall refer to as a "type (inheritance) hierarchy." 

parametric type hierarchies is introduced in Sec- 
tion 3 by way of establishing equivalent, infinite 
non-parametric counterparts. Section 5 consid- 
ers whether there are any finite counterparts, 
i.e., whether in actual practice parametric sig- 
natures are only as expressive as non-parametric 
ones, and gives a qualified "yes." 

In spite of this qualification, there is an easy 
way to compute with parametric types directly 
in an implementation, as described in Section 6. 
The two most common previous approaches 
have been to use the most general instance of a 
parametric type, e.g. nelist(J_) without its ap- 
propriateness, or manually to "unfold" a para- 
metric type into a non-parametric sub-hierarchy 
that suffices for a fixed grammar (e.g. Figure 2). 
The former does not suffice even for fixed gram- 

e l ~ t _ p h o n  

l i s t _ s y n ~ ~ ~ e l i s t  

list 

Figure 2: A manually unfolded sub-hierarchy. 

mars because it simply disables type checking 
on feature values. The latter is error-prone, a 
nuisance, and subject to change with the gram- 
mar. As it happens, there is an automatic way 
to perform this unfolding. 

2 P a r a m e t r i c  T y p e  H i e r a r c h i e s  

Parametric types are not types. They are func- 
tions that provide access or a means of reference 
to a set of types (their image) by means of ar- 
gument types, or "parameters" (their domain). 
Figure 1 has only unary functions; but in gen- 
eral, parametric types can be n-ary functions 
over n-tuples of types. 4 This means that hier- 

4In this paper,  "parametric type" will refer to such a 
function, wri t ten as the name of the function, followed 
by the appropriate  number of "type variables," variables 
that  range over some set of types, in parentheses, e.g. 
list(X). "Type" will refer to both "simple types," such as 
_1_ or elist; and "ground instances" of parametr ic  types, 
i.e. types in the image of a parametr ic  type  function, 
wri t ten as the name of the function followed by the ap- 
propriate  number of actual  type  parameters  in paren- 
theses, such as list(l-), set(psoa) or list(set(l-)). I will 
use letters t, u, and v to indicate types; capital  letters 
to indicate type variables; capitalized words to indicate 
feature names; p, q, and r for names of parametr ic  types; 
and g to indicate ground instances of parametr ic  types, 
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archies that use parametric types are not "type" 
hierarchies, since they express a relationship be- 
tween functions (we can regard simple types as 
nullary parametric types): 
Def in i t i on  1: A parametric (type) hierarchy is 
a finite meet semilattice, (P, EP), plus a partial 
argument assignment function, ap : P × P × 
Nat -~ Nat U {0}, in which: 

• P consists of (simple and) parametric 
types, (i.e. no ground instances of para- 
metric types), including the simple most 
general type, _1_, 

• For p,q E P,  ap(p,q , i ) ,  written aq(i), is 
defined iff p EP q and 1 <_ i <_ arity(p), 
and 

• 0 < aq(i) <_ rn, when it exists. 

Meet semilatticehood, a requirement of 
(Car92)'s logic as well, allows us to talk about 
unification, because we have a unique most- 
general unifier for every unifiable pair of types. 
The argument assignment function encodes the 
identification of parameters between a paramet- 
ric type and its parametric subtype. The num- 
ber, n, refers to the n th  parameter of a paramet- 
ric type, with 0 referring to a parameter that 
has been dropped. In practice, this is normally 
expressed by the names given to type variables. 
In the parametric type hierarchy of Figure 1, 
list and nelist share the same variable, X, be- 

,~nelist[l~ is 1. If _ n e l i s t t l ~  = 0, then nelist c a u s e  t~list k x l Ulist k l ) 
would use a different variable name. As a more 
complicated example, in Figure 3, ad(1) = 1, 

b ( X , ~ e  

.1_ 

Figure 3: A subtype that inherits type variables 
from more than one supertype. 

ad(2) = 3, aed(2) = 2, ad(1) = 0, and a± and ae 
are undefined (1") for any pair in P × Nat. 

3 I n d u c e d  T y p e  H i e r a r c h i e s  

The relationship expressed between two func- 
tions by EP, informally, is one between their im- 
age sets under their domains, 5 while each image 

where the arguments do not need to be expressed. 
5One can restrict these domains with "parametric re- 

strictions," a parallel to appropriateness restrictions on 

set internally preserves the subsumption order- 
ing of its domain. It is, thus, possible to think 
of a parametric type hierarchy as "inducing" a 
non-parametric type hierarchy, populated with 
the ground instances of its parametric types, 
that obeys both of these relationships. 
Def in i t ion  2: Given parametric type hier- 
archy, (P, E p ,  a ) ,  the induced (type) hierarchy, 
( I (P) ,  El) ,  is defined such that: 

• I (P)  is the smallest set, I,  such that, for 
every parametric type, p ( X t , . . . , X n )  E 
P,  and for every tuple, ( t t . . . t n ) E I  n, 
p ( t l , . . . ,  tn )e I .  

• p ( t l , . . . , t n )  EI  q (u t , . . .  ,urn) iff p EP q, 
and, for all l < i < n ,  either at(i  ) = 0 or ti E t  
u~(i). 

It can easily be shown that ( I (P) ,  EI)  is a par- 
tial order with a least element, namely .L, the 
least element of P.  Note that I (P )  also contains 
all of the simple types of P.  In the case where 
9rand92 are simple, gl EI g2 iff gl EP 92. 

Figure 4 shows a fragment of the type hierar- 
chy induced by Figure 1. If list and nclist had 

nelist(,wo d~. .~el i~t(phrase)  . . . . . .  
' n "" "(si n "  nelist(list(.l_)) ens (, g / . . " " 

list ( ~  (phrase) l / l i s t  ~ist  (_k)). . . 

t~sr( s z g r v ' - - - ~ l i s t ~  ) 

Figure 4: Fragment induced by Figure 1. 

not shared the same type variable ?,,nelistfl~ 
0), then it would have induced the type hier- 
archy in Figure 5. In the hierarchy induced 

n e l i s t ( w o r ~ j n e l i s t ( p h r a s e }  i 
nelist ( s i g r~ .~ne l i s t  (list (_l_ ) ) 

l ist(word phrase) : cl),,flist(phrese) . 
list (sig ..Llist (list (-L ) ) 

list(Z) 

Figure 5: Another possible induced hierarchy. 

feature values. This abstract assumes that  these domains 
are always the set of all types in the signature. This is 
the most expressive case of parametric types, and the 
worst case, computationally. 
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by Figure 3, b(e,e) subsumes types d(e,Y,e), 
for any type Y, for example d(e,c(e,e),e), 
or d(e,b(_L,e),e), but  not d(c(_L,e),e,e), since 
eElc(_l_, e). Also, for any types, W, X, and Z, 
c(W,e) subsumes d(X,e,Z). 

The present approach permits parametric 
types in the type signature, but  only ground 
instances in a grammar  relative to that  signa- 
ture. If one must  refer to "some list" or "every 
list" within a grammar,  for instance, one may 
use l i s t ( I ) ,  while still retaining groundedness. 
An alternative to this approach would be to at- 
t empt  to cope with type variable parameters 
directly within descriptions. From a process- 
ing perspective, this is problematic when clos- 
ing such descriptions under total well-typing, 
as observed in (Car92). The most general sat- 
isfier of the description, list(X)A(HEAD:HEAD 
"-" TAIL:HEAD), for example, is an infinite fea- 
ture s tructure of the infinitely parametric type, 
nelist(nelist(.., because X must be bound to 
nelist(X). 

For which P does it make sense to talk about 
unification in I (P) ,  that  is, when is I (P)  a meet 
semilattice? We can generalize the usual notion 
of coherence from programming languages, so 
that  a subtype can add, and in certain cases 
drop, parameters with respect to a supertype: 

D e f i n i t i o n  3: (P, EP, ap) is semi-coherent if, 
for a l lp ,  q E P such t h a t p  Ep  q, a l l1  _< i _< 
arity(p), 1 <_ j <_ arity(q): 

• a g ( i )  = i ,  

• either aq(i) = 0 or for every chain, p = 
Pl EP p2 E P  . . .  EP Pn = q, aq(i) = 

,up._, t . . .aP~(i) . . . ) ) ,  and 

• Ifpllpq$, then for all i and j for which there 
is a k >_ 1 such that  appUpq(i) = apqUpa(j) = 
k, the set, {rip Up q EP r and (@(i) = 0 or 
arq(j) = 0)} is empty  or has a least element 
(with respect to EP). 

T h e o r e m  1: If (P, Ep, ap) is semi-coherent, 
then ( I ( P ) , E I )  is a meet semilattice. In 
particular, p ( t i , . . . , t n )  Ut q(u i , . . . ,Um)  = 
r ( v i , . . . , v s ) ,  where p tap q = r, and, for all 

l < k < s ,  

ti Ut u# 

Vk = ti 
Uj 
_L 

if there exist i and j such that  
@(i) = k and arq(j) = k 

if such an i, but  no such j 
if such a j ,  but  no such i 
if no such i or j .  

So p ( t i , . . . ,  tn) UI q ( u i , . . . ,  Um)~ if p Up q]', or 
there exist i, j ,  and k > 1 such that  @(i) = 
arq(j) = k, but  ti UI ujl". 6 

In the induced hierarchy of Figure 3, for ex- 
ample, b(e, 2)  Ut 5(2, e) = b(e,e); b(e,e) U1 
c(_L) = die , 2,  e); and b(e, e) and b(c(_L), e) are 
not unifiable, as e and c(_l_) are not unifiable. 
The first two conditions of semi-coherence en- 
sure that  ap, taken as a relation between pairs 
of pairs of types and natural  numbers,  is an or- 
der induced by the order, EP, where it is not, 
taken as a function, zero. The third ensures that  
joins are preserved even when a parameter  is 
d r o p p e d  (ap = 0). Note that  joins in an induced 
hierarchy do not always correspond to joins in 
a parametric hierarchy. In those places where 
ap ---- 0, types can unify without  a correspond- 
ing unification in their parameters.  Such is the 
case in Figure 5, where every instance of l is t (X) 
ultimately subsumes nelist(_k). One may also 
note that  induced hierarchies can have not only 
deep infinity, where there exist infinitely long 
subsumption chains, but  broad infinity, where 
certain types can have infinite supertype (but 
never subtype) branching factors, as in the case 
of nel i s t ( I )  or, in Figure 1, elist. 

4 A p p r o p r i a t e n e s s  

So far, we have formally considered only type 
hierarchies, and no appropriateness. Appropri- 
ateness constitutes an integral par t  of a para- 
metric type signature's expressive power, be- 
cause the scope of its type variables extends to 
include it. 
D e f i n i t i o n  4: A parametric (type) signature is 
a parametric hierarchy, (P, EP,  ap>, along with 
finite set of features, Featp,  and a partial  (para- 
metric) appropriateness function, Appropp : 
Featp x P --~ Q, where Q = UneNat Qn, and 
each Qn is the smallest set satisfying the equa- 
tion, Qn = { 1 , . . . , n }  u {P(qi , . . . ,qk) lP  E P a r -  
ity k, qi E Qn}, such that:  

6The proofs of these theorems can be found in the full 
version of this paper. 
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1. (Feature Introduction) For every feature 
f E Featp, there is a most general 
parametric type Intro(f) E P such that 
Appropp(f , Intro(f) ) is defined 

2. (Upward Closure / Right Monotonicity) 
For any p, q E P,  if Appropp(f,p) is de- 
fined and p EP q, then Appropp(f,q) 
is also defined and Appropp(f,p) EQ 
Appropp(f,q), where EQ is defined as 
EI(P) with natural numbers interpreted 
as universally quantified variables (e.g. 
a(1) EQ b(1) iffVx E I(P).a(x) EI(P) b(x)) 

3. (Parameter Binding) For every p E P of ar- 
ity n, for every f E Featp, if Appropp(f ,p) 
is defined, then Appropp(f,p) e Qn. 

Appropp maps a feature and the parametric 
type for which it is appropriate to its value re- 
striction on that parametric type. The first two 
conditions are the usual conditions on (Car92)'s 
appropriateness. The third says that the nat- 
ural numbers in its image refer, by position, 
to the parametric variables of the appropriate 
parametric type - -  we can use one of these 
parameters wherever we would normally use a 
type. Notice that ground instances of para- 
metric types are permitted as value restrictions, 
as are instances of parametric types whose pa- 
rameters are bound to these parametric vari- 
ables, as are the parametric variables them- 
selves. The first is used in HPSG for fea- 
tures such as SUBCAT, whose value must be 
list(synsem); whereas the second and third 
are used in the appropriateness specification for 
nelist(X) in Figure 1. The use of parameters 
in appropriateness restrictions is what conveys 
the impression that ground instances of lists or 
other parametric types are more related to their 
parameter types than just in name. 

It is also what prevents us from treating in- 
stances of parametric types in descriptions as 
instantiations of macro descriptions. These pu- 
tative "macros" would be, in many cases, equiv- 
alent only to infinite descriptions without such 
macros, and thus would extend the power of 
the description language beyond the limits of 
HPSG's own logic and model theory. Lists in 
HPSG would be one such case, moreover, as 
they place typing requirements on every element 
of lists of unbounded length. Ground instances 
of parametric types are also routinely used in 

appropriate value restrictions, whose extension 
to arbitrary descriptions would substantially ex- 
tend the power of appropriateness as well. This 
alternative is considered further in the full ver- 
sion of this paper. 

A parametric signature induces a type hier- 
archy as defined above, along with the appro- 
priateness conditions on its ground instances, 
determined by the substitution of actual param- 
eters for natural numbers. Thus: 
T h e o r e m  2: If Appropp satisfies properties 
(1)-(3) in Definition 4, then Appropi(p ) satisfies 
properties (1) and (2). 

5 S i g n a t u r e  S u b s u m p t i o n  

Now that parametric type signatures have been 
formalized, one can ask whether parametric 
types really add something to the expressive 
power of typed attribute-value logic. There are 
at least two ways in which to formalize that 
question: 
Def in i t ion  5: Two type signatures, P and Q, 
are equivalent (P ~s Q) if there exists an order- 
isomorphism (w.r.t. subsumption) between the 
abstract totally well-typed feature structures of 
P and those of Q. 

Abstract totally well-typed feature structures 
are the "information states" generated by sig- 
natures. Formally, as (Car92) shows, they can 
either be thought of as equivalence classes of 
feature structures modulo alphabetic variants, 
or as pairs of a type assignment function on 
feature paths and a path equivalence relation. 
In either case, they are effectively feature struc- 
tures without their "nodes," which only bear in- 
formation insofar as they have a type and serve 
as the focus of potential instances of structure 
sharing among feature path, where the traversal 
of two different paths from the same node leads 
to the same feature structure. 

If, for every parametric signature P,  there is 
a finite non-parametric N such that P ~ s  N,  
then parametric signatures add no expressive 
power at all - -  their feature structures are 
just those of some non-parametric signatures 
painted a different color. This is still an open 
question. There is, however, a weaker but still 
relevant reading: 
Def in i t ion  6: Type signature, P, subsumes 
signature Q (P Es  Q) if there exists an injec- 
tion, f ,  from the abstract totally well-typed fea- 
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ture structures of P to those of Q, such that: 

• if FI mAT(P ) F2J', then f ( F t )  UAT(Q ) f(F2)J', 

• otherwise, both  exist and f(F1UAT(p)F2) = 
/(F1) Uar(Q)/(F2). 

If for every parametric P ,  there is a finite 
non-parametric N such that  P ___s N, then it 
is possible to embed problems (specifically, uni- 
fications) that  we wish to solve from P into N, 
solve them, and then map the answers back to 
P .  In this reading, linguist users who want to 
think about their grammars with P must accept 
no non-parametric imitations because N may 
not have exactly the same structure of informa- 
tion states; but  an implementor of a feature- 
based NLP system, for example, could secretly 
perform all of the work for those grammars in 
N,  and no one would ever notice. 

Under this reading, many parametrically 
typed encodings add no extra expressive power: 
D e f i n i t i o n  7: Parametric type hierarchy, 
(P, EP, ap) is persistent if ap never attains zero. 
T h e o r e m  3: For any persistent parametric 
signature, P ,  there is a finite non-parametric 
signature, N,  such that  P Es  N. 
If elist in Figure 1 retained list(X)'s parame- 
ter, then HPSG's  type hierarchy (without sets) 
would be persistent. This is not an unreason- 
able change to make. The encoding, however, 
requires the use of junk slots, attr ibutes with 
no empirical significance whose values serve as 
workspace to store intermediate results. 

There are at least some non-persistent P ,  in- 
cluding the port ion of HPSG's type hierarchy 
explicitly introduced in (PS94) (without sets), 
that  subsume a finite non-parametric N; but  
the encodings are far worse. It can be proven, 
for example, that  for any such P,  some of its 
acyclic feature structures must be encoded by 
cyclic feature structures in N; and the encoding 
cannot be injective on the equivalence classes 
induced by the types of P ,  i.e. some type in 
N must encode the feature structures of more 
than one type from P .  While parametric types 
may not be necessary for the grammar pre- 
sented in (PS94) in the strict sense, their use in 
that  grammar  does roughly correspond to cases 
for which the alternative would be quite unap- 
pealing. Of course, parametric types are not 
the only extension that  would ameliorate these 
encodings. The addit ion of relational expres- 

sions, functional uncertainty, or more power- 
ful appropriateness restrictions can completely 
change the picture. 

6 F i n i t e n e s s  

It would be ideal if, for the purposes of feature- 
based NLP, one could simply forget the encod- 
ings, unfold any parametric type signature into 
its induced signature at compile-time and then 
proceed as usual. This is not possible for sys- 
tems that  pre-compute all of their type opera- 
tions, as the induced signature of any paramet-  
ric signature with at least one non-simple type 
contains infinitely many types. 7 On the other 
hand, at least some pre-compilation of type in- 
formation has proven to be an empirical neces- 
sity for efficient processing. 8 Given that  one will 
only see finitely many ground instances of para- 
metric types in any fixed theory, however, it is 
sufficient to perform some pre-compilation spe- 
cific to those instances, which will involve some 
amount  of unfolding. What  is needed is a way 
of determining, given a signature and a gram- 
mar, what part  of the induced hierarchy could 
be needed at run-time, so that  type operations 
can be compiled only on that  part.  

One way to identify this part  is to identify 
some set of ground instances (a generator set) 
that  are necessary for computat ion,  and close 
that  set under Ui(p): 
T h e o r e m  4: If G C I(P), is finite, then the 
sub-algebra of I(P) generated by G, I(G),  is 
finite. 
[I(G)[ is exponential in [G[ in the worst case; 
but  if the maximum parametric depth of G can 
be bounded (thus bounding [GD, then it is poly- 
nomial in [P[, al though still exponential in the 
maximum arity of P:  
D e f i n i t i o n  8: Given a parametr ic  hierar- 
chy, P ,  the parametric depth of a type, t -- 
p(t l , . . . , tn)  e I(P), ~(t), is 0 if n = 0, and 
1 + maxl<i<n ~(ti) if n > O. 
So, for example, 6(list(list(list(.l_))))= 3. 
In practice, the maximum parametr ic  depth  
should be quite low, 9 as should the max imum 

7With parametric restrictions (fn. 5), this is not nec- 
essarily the case. 

SEven in LFG, a sensible implementation will use de 
facto feature co-occurrence constraints to achieve much 
of the same effect. 

9With lists, so far as I am aware, the potential de- 
mand has only reached 6 -- 2 (MSI98) in the HPSG 
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arity. A standard closure algorithm can be used, 
although it should account for the commutativ- 
ity and associativity of unification. One could 
also perform the closure lazily during process- 
ing to avoid a potentially exponential delay at 
compile-time. All of the work, however, can be 
performed at compile-time. One can easily con- 
struct a generator set: simply collect all ground 
instances of types attested in the grammar, or 
collect them and add all of the simple types, or 
add the simple types along with some extra set 
of types distinguished by the user at compile- 
time. The partial unfoldings like Figure 2 are 
essentially manual computations of I(G). 

Some alternatives to this approach are dis- 
cussed in the full version of this paper. The 
benefit of this one is that, by definition, I(G) 
is always closed under Ili(p). In fact, I(G) 
is the least set of types that is adequate 
for unification-based processing with the given 
grammar. Clearly, this method of sub-signature 
extraction can be used even in the absence of 
parametric types, and is a useful, general tool 
for large-scale grammar design and grammar re- 
use. 

7 C o n c l u s i o n  

This paper presents a formal definition of para- 
metric type hierarchies and signatures, ex- 
tending (Car92)'s logic to the parametric case 
through equivalent induced non-parametric sig- 
natures. It also extends appropriateness to the 
common practice of giving the binding of para- 
metric type variables scope over appropriate 
value restrictions. 

Two formalizations of the notion of expressive 
equivalence for typed feature structures are also 
provided. While the question of ~s-equivalence 
remains to be solved, a weaker notion can be 
used to establish a practical result for under- 
standing what parametric types actually con- 
tribute to the case of HPSG's type signature. A 
general method for generating sub-signatures is 
outlined, which, in the case of parametric type 
signatures, can be used to process with signa- 
tures that even have infinite equivalent induced 
signatures, avoiding equivalent encoding prob- 
lems altogether. 

Parametric type compilation is currently be- 
ing implemented for ALE using the method 

literature to date. 

given in Section 6. 
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