
Anaphor resolution in unrestricted texts with partial parsing

A. Ferr~indez; M. Palomar
Dept. Languages and Information Systems

Alicante University - Apt. 99
03080 - Alicante - Spain

antonio@dlsi.ua.es mpalomar@dlsi.ua.es

L. Moreno
Dept. Information Systems and

Computation
Valencia University of Technology

lmoreno@dsic.upv.es

Abstract

In this paper we deal with several kinds of
anaphora in unrestricted texts. These kinds of
anaphora are pronominal references, surface-
count anaphora and one-anaphora. In order to
solve these anaphors we work on the output
of a part-of-speech tagger, on which we
automatically apply a partial parsing from the
formalism: Slot Unification Grammar, which
has been implemented in Prolog. We only use
the following kinds of information: lexical
(the lemma of each word), morphologic
(person, number, gender) and syntactic.
Finally we show the experimental results, and
the restrictions and preferences that we have
used for anaphor resolution with partial
parsing.

Introduction

Nowadays there are two different approaches to
anaphor resolution: integrated and alternative.
The former is based on the integration of different
kinds of knowledge (e.g. syntactic or semantic
information) whereas the latter is based on
statistical, neural networks or the principles of
reasoning with uncertainty: e.g. Connoly (1994)
and Mitkov (1997).

Our system can be included into the first
approach. In these integrated approaches the
semantic and domain knowledge information is
very expensive in relation to computational
processing. As a consequence, current anaphor
resolution implementations mainly rely on
constraints and preference heuristics which
employ information originated from

morphosyntactic or shallow semantic analysis,
e.g. in Baldwin (1997). These approaches,
however, perform remarkably well. In Lappin and
Leass (1994) it is described an algorithm for
pronominal anaphor resolution with a high rate of
correct analyses: 85%. This one operates
primarily on syntactic information only. In
Kennedy and Boguraev (1996) it is proposed an
algorithm for anaphor resolution which is a
modified and extended version of that developed
by Lappin and Leass (1994). In contrast to that
work, this algorithm does not require in-depth,
full, syntactic parsing of text. The modifications
enable the resolution process to work from the
output of a POS tagger, enriched only with
annotations of grammatical function of lexical
items in the input text stream. The advantage of
this algorithm is that anaphor resolution can be
realized within NLP frameworks which do not -or
cannot- employ robust and reliable parsing
components. Quantitative evaluation shows the
anaphor resolution algorithm described here to
run at a rate of 75% accuracy. Our framework
will allow us a similar approach to that of
Kennedy and Boguraev (1996), but we will
automatically get syntactic information from
partial parsing. Moreover, our proposal will also
be applied to other kinds of anaphors such as
surface-count anaphora or one-anaphora.

There are some other approaches that work on
the output of a POS tagger, e.g. that of Mitkov
and Stys (1997), in which it is proposed another
knowledge-poor approach to resolving pronouns
in technical manuals in both English and Polish.
This approach is a modification of the reported in
Mitkov (1997). Here, the knowledge is limited to
a small noun phrase grammar, a list of terms and

This paper has been supported by the CICYT number TIC97-0671-C02-01 / 02

385

a set of antecedent indicators (definiteness,
giveness, term preference, lexical reiteration, ...).
We will work in a similar way to this approach,
since we use some of its antecedent indicators,
but we automatically apply a partial parsing that
allows us to deal with other kinds of anaphors as
well as pronouns.

In this work we are going to apply a partial
parsing on the output of a POS tagger in order to
solve anaphora problem. We will work over the
corpus used within CRATER z. This corpus
contains the International Telecommunications
Union CCITT handbook, also known as The Blue
Book, in English, French and Spanish versions.
This corpus is the most important collection o f
telecommunication texts and contains 5M words,
automatically tagged by the Spanish version o f
the Xerox tagger. We will use the system Slot
Unification Grammar (SUG) in order to get a
partial parsing on the output of this tagger.

SUG is a logical formalism based on
unification, which is an extension of Definite
Clause Grammars (DCG). It is called Slot
Unification Grammar due to the slot structures
generated by the parser. SUG has been developed
with the aim of extending DCG in order to
facilitate the resolution of several Natural
Language Processing (NLP) problems in a
modular way. This system has been firstly
proposed in Ferr~ndez (1997a), and it has been
previously applied to anaphor resolution in
Ferr~indez (1997b).

We have used SUG instead of other well
known formalisms such as Head Driven Phrase
Structure Grammar (HPSG), Lexical Functional
Grammar (LFG) or Slot Grammars (SG), because
SUG allows a modular and computational
treatment o f NLP problems, and it facilitates its
integration with a POS tagger.

In the following section we will briefly
describe SUG formalism in order to facilitate the
undertanding o f this paper. In section 2 we will
propose a SUG grammar to accomplish the partial
parsing of the unrestricted text and the interface
to work with the output of the POS tagger. In
section 3 we will explain the algorithm used to
anaphor resolution and its constraints and

2 http://138.87.135.33/-mdavies/roanoke.htm

preferences. And, finally, in section 4 we will
offer some figures of the evaluation of the
system.

1 Slot Unification G r a m m a r

In this section we will briefly describe SUG
formalism. We will only show some of the
capabilities of SUG in order to undertand this
paper. For further details on SUG it is necessary
to consult Femindez (1997a).

SUG can be defined as this quadruple:
(NT, T,P,H), where NT and T are a finite set of
nonterminal and terminal symbols respectively;
moreover N T ~ T = fD. P is a finite set of pairs
+ + > 13 where ot~NT, 13~(TuNT)*u {procedures
calls}, and these pairs are called production rules.
Finally H is a set of production rules which only
has the first member of the production rule, i.e. a,
and ot's name is either coordinated, juxtaposition,
fusion, basicWord or isWord.

SUG's production rules adds to those of DCG
that each subconstituent of 13 could be omitted in
the sentence if it is noted between the optional
operator: << constituent >>. It is a well-known
fact that we can get optional constituents in DCG
from making use of a nonterminal symbol (e.g.
optA, with optA--->A and optA-~[]). However this
skill obliges us to add new nonterminal symbols,
whereas SUG allows us to get it without adding
any new one. We can get an example from Figure
1, in which we can see the reduction of
grammatical rules in SUG.

DCG Grammar:

np -> subst. [SUG Grammar:

np -> det, subst. IlnP + + > <<det>>, <<adj>>,
np->det, adj, subst.
np->det, subst, adj. L subst, <<adj>>, <<pp>>.
np ->det, subst, pp,

~CG Grammar with optional constituents:

np -> optDet, optAdj, subst, optAdj, optPP.
optDet -> det. optAdj-> adj.
optDet -> []. optAdj -> [].

Figure 1. Comparison between DCG and SUG
with reference to optional constituents.

Furthermore, this optional operator has the
possibility of reminding whether the optional
constituent has been parsed in the sentence or not.
This information will be very useful in the
resolution of NLP problems such as ellipsis or

386

extraposition. This fact is carried out by adding a
label to the optional constituent, e.g. << SSNP"
np >>. This label will be an uninstantiated Prolog
variable if constituent np is missing, so Prolog
predicate var (SSNP) would success.

We have developed a translator which turns
SUG rules into Prolog clauses. This translator has
been run under SICStus Prolog 2.1 and Arity
Prolog 5.1, and it will translate into Prolog each
SUG production rule. This translator will provide
what we call slot structure (henceforth SS).

This SS stores the syntactic, morphologic and
semantic information of every constituent of the
grammar. Each SS consists of a structure with
functor the name of the constituent (np, vp).
Its first argument corresponds to another structure
with functor conc which includes all the
arguments of the constituent (Number, Gender,
SemanticType). The second one corresponds to
the 3.p of the final logical formula of the
constituent. And the remaining arguments
correspond to the SS of its subconstituents. In this
SS the parser leaves as uninstantiated Prolog
variables ("_") the slots corresponding to the
optional constituents that do not appear in the
sentence, in this way, we know what has been
parsed and what has not. From now on we will
show each SS with 3.p and conc only if it is
necessary, in order to get simplicity.

Se,t .ce) _ . f 1' .roo, o oc to
the Dictionary

I lo, st ctu,,I

I Processof~solutionofNLPproblems: ~
anaphora, ellipsis, PP-atachraent, ...

bTnal Slot Structure without these NLP problems [

Figure 2

Now we would like to make clear the process in
which we obtain the final logical formula. First of
all we parse the sentence, and then we get its SS.
After that, it would be the moment in which we
could try to solve NLP problems such as
extraposition, ellipsis, PP-attachment and
anaphora. The solution will consist of a new SS
which will be used to obtain the final logical
formula. This process has been summed up in

Figure 2. We would like to emphasize that this
skill o f resolution allows us to produce modular
NLP systems in which grammatical rules, logical
formulas and the module of resolution of NLP
problems are quite independent from each other.

Our SUG parser will access the dictionary only
once during the whole process of parsing in order
to avoid repeated access to the same word from
the dictionary. It stores the information o f each
word on a list before starting the parse and it will
work with this structure instead of the list o f
words of a DCG parser in Prolog; e.g. DCG list:
[this, book, is, mine], SUG list: [word (this, [adj
(sing, dem), pron (sing, dem)]), word (book,
[noun (...)])]. Each element from the SUG list
is a structure with name word and with two
arguments. The first one corresponds to the same
word of the sentence like a Prolog atom. The
second one corresponds to a structure list which
refers to the lexical entries of the word. That is to
say that every time the parser has to access a
lexical entry of a word, it will look it up in this
list; it will not access the dictionary ever again.

2 Partial parsing with SUG

In Abney (1997) it is considered necessary to
carry out a partial parsing on the unrestricted text
instead of a complete parsing, both due to errors
and the unavoidable incompleteness o f lexicon
and grammar. It is also difficult to do a global
search efficiently with unrestricted text, due to
the length of sentences and the ambiguity of
grammars. Partial parsing is considered a
response to these difficulties. Partial parsing
techniques aim to recover syntactic information
efficiently and reliably from unrestricted text, by
sacrificing completeness and depth of analysis.

In this section we will show the application of
SUG in partial parsing. We are going to take the
output of a POS tagger as input, and after apply a
partial parsing with SUG. The previously
mentioned corpus The blue book is going to be
worked on, which has been automatically tagged
by the Spanish version of the Xerox tagger. Each
word in a tagged sentence has the following
syntax: (surfaceForm, lemma, TAG).

387

- - i (cormcet ions, connection, NCFP) :

(f lnterface in order t o ~ i[";'o;~i,";,.ib;g~',ii~o'.']'): go;,~'(i/'g: " "]
[map each tag into the [~ : [a r t (fem, pl,det)]), word (¢onnection, :
[aproprlate labehnto[:[noun (common,fem,pl)]), ...] :

the SUG grammar J "

i
~ Partial parsing ~ .

with SUG J ~ ISUG grammar in Figure 5 that will
ionly parse certain constituents

• Slot Structure that will be
used in anaphora resolution)

Figure 3. Interface between the tagger and SUG.

We will proceed in the way that is described in
Figure 3. Firstly the tagged sentence is turned into
the SUG list format, where each Xerox tag is
mapped into the apropriate label into the SUG
grammar, e.g. the Xerox tag (connections,
connection, NCFP) is mapped into the SUG tag
word (connection, [noun (common, fem, pl)]).
Finally, this SUG list of words will be taken as
input for the grammar described in Figure 4. This
grammar will carry out the partial parsing of the
text, and the SUG parser will produce the SS that
will be used in the algorithm, which is proposed
for anaphor resolution. This simple interface
between the tagger and SUG is one of the
advantages of the modularity that presents SUG.
It will allow us to work with different dictionaries
or taggers with the same SUG grammar. This is
due to the fact that in this system there is a great
independence between the grammar, the lexicon,
the process of dealing with NLP problems and the
process of obtaining the final logical formula.
sentence + + >

<< PP:pp >>, << NP:np >>, <<P:pronoun>>,
<< V:verb >>, <<C:conj>>,
<#[1,

remainingSentence(PP, NP, P, V, C) # > .

remainingSentence(PP, NP, P, V, C) ++>

<t## ({(var(PP), var(NP), vat(P), var(V), var(C))}, IVV]),
(_ _)

~/f>,
sentence.

% . Grammatical rules for each constituent to parse
coordinated(pp, simplePP).
simplePP ++> preposition, np.
coordinated(np, simpleNP 0).
simpleNP (substantive Type) ++> <<determiner>>,

<<adjective>>, noun, <<pp>> .

simpleNP (adjective Type) ++> <<determiner>>, adjective,
<<pp>> .

Figure 4. Partial parsing with SUG.

The grammar in Figure 4 will only parse
coordinated prepositional phrases (pp),
coordinated noun phrases (np), pronouns (p),
conjunctions (conj) and verbs (verb) in whatever
order that they appear in the text and it will allow
us to work in a similar way that the algorithm
mentioned in Kennedy and Boguraev (1996). But
in our approach we will automatically get the
syntactic information from this grammar. The SS
returned by the parser will consist of a sequence
of these constituents: pp, np, p, conj, verb and
free words. The attachments (e.g. of the pp) will
be postponed to the module of resolution of NLP
problems, which could work jointly with the
algorithm for anaphor resolution (in a similar way
to the approach proposed in Azzam (1995)). The
free words will consist of constituents that are not
covered by the grammar (e.g. adverbs) or words
that are not important for the anaphor resolution.
The output of the whole system will consist of a
sequence of the logical formulas of each
constituent.

Here sentence will be the initial symbol of the
grammar and the partial parsing will be applied
with the rules shown in Figure 4. If we want a
complete parsing, we just have to substitute these
rules for the following: sentence ++> np, vp, and
obviously we will have to add the grammatical
rule for a verbal phrase (vp).

3 The algorithm

In this section we are going to propose an
algorithm which can deal with discourse
anaphora in unrestricted texts with partial
parsing. It is based on the process of parsing
described in Figure 3. So this process will take
the output of a POS tagging as input, and it will
be applied after the partial parsing of a sentence
(using the grammar described in Figure 4) and
before obtaining its logical formula.

This algorithm is shown in Figure 5 and it will
deal with pronominal references, surface-count
anaphora and one-anaphora. This algorithm will
take a slot structure (SS) that consists of a
sequence of the following constituents: np, pp, p,
conj and verbs and it will return a new one
without anaphors. Every possible antecedent
(noun phrases) will be stored in a list o f

388

antecedents, that will be used to solve the
anaphors. Another structure will be stored in this
list for each antecedent: paral (Sent, Clause,
PosVerb, NumConst, NumCoord). This structure
will be used to deduce the parallelism with partial
parsing between an anaphor and its antecedent.
Its first argument, Sent, is the sentence in which
the antecedent appears. The second one is the
clause in which it appears. Consider that the
beginning of a new clause has been found when
we parse a f ree conjuction (we do not refer to the
conjunctions that join the coordinated noun and
prepositional phrases). The third one is the
position of the antecedent with reference to the
verb of the clause: before (bv) or after (av). The
fourth one is the number of constituent in the
sentence and the fifth one is the number of
coordinated constituent if it is included in a
coordinated np or pp. For example in: He said
that Peter and John bought a book, we have the
following: paralm (S, 1, bv, 1, 1), paraljoh, (S, 2,
bv, 4, 2) and paralbook (S,2,av,6,1).
Parse a sentence. We obtain its slot structure (SS1).
For each anaphor in SSI:

Select the antecedents of the previous X sentences
depending on the kind of anaphor in LO
Apply constraints (depending on the kind of anaphor) to LO
with a result of L I :
Case of:

IL l l = I Then:
This one will be the antecedent of the anaphor

IL I I • 1 Then:
Apply preferences (depending on the kind of enaphor) to
L 1, with a result of L2:
The first one of L2 will be the selected antecedent

Update SSf with each antecedent of each anaphor with a
result of SS2.

Figure 5. Algorithm for anaphor resolution.

At the same time that we are searching for
antecedents, we will also search for anaphors and
whenever we found an anaphor this algorithm
will be applied. The kind of anaphors we are
going to search are the following: pronouns (he,
she), pronominal noun phrases formed by:
determiner + pronoun (the second, the former,
...), noun phrases with the structure: determiner +
adjective + "one" (the red one, this anaphors in
Spanish 3 are noun phrases in which the noun has

3 We are going to work with Spanish unrestricted
texts, but whenever it is possible, all the examples will
be translated into English in order to facilitate its
understanding.

been omitted: el rojo). We will identify such
anaphors from its SS (its functor and its number
and type of arguments). For example, the one-
anaphor in Spanish will have the following SUG
rule: np + + > <<determiner>>, adjective,
<<pp>>, and the following SS: np (determiner
(...), adjective (...), pp (...)).

The number of previous sentences considered
in the resolution of an anaphor will be determined
by the kind of anaphor itself. For pronominal
references will be considered the antecedents in
the same sentence or in the previous sentence if it
is in the same paragraph, unlike to one-anaphora
which have more lexical information, so we will
consider the antecedents in the same paragraph.
We will be able to know the number of sentence
because this information will be stored jointly
with the SS of every antecedent: for each
sentence will be assigned a different Prolog
variable and all the antecedents in this sentence
will have this variable in itsparal structure.

The algorithm will apply a set of constraints to
the list of possible antecedents in order to
discount candidates. If there is only one
candidate, this one will be the antecedent of the
anaphor. Otherwise, if there are still more than
one candidates left, a set of preferences will be
applied that will sort the list o f remaining
antecedents, and the selected antecedent will be
the first one. It is important to remark that these
constraints and preferences could be different for
each kind of anaphor.

Next the constraints and preferences are going
to be briefly explained. Morphosyntactic
agreement (person, gender and number) will be
checked by unification of the structure conc
described in section 1. It is a strong constraint on
reference, but it is not absolute: At the zoo, a
monkey scampered between two elephants. One
snorted at it 4, or in: John and Bill~ went into the
shop. They~ bought a book. To solve the second
example we will store a new antecedent with
plural number which includes all the coordinated
noun phrases (in this case John and Bill). We will
detect the coordination of noun phrases from the
SS returned by the SUG fact coordinated. In one-

4 In this paper we will not deal with problems
caused by quantification.

389

anaphora we have considered the number
agreement as a preference instead of a constraint
in order to solve sentences like this: Wendy didn't
give either boy a green shirti, but she gave Sue
two red onesj, where the anaphor and its
antecedent do not agree in number (so they do not
co-refer to the same entity of the discourse).

The c-command constraints will be applied on
the syntactic information stored in the SS of each
constituent and its structure paral. For example
the following constraint: "A pronominal NP must
be interpreted as non-coreferential with any NP
that c-commands it", e.g. Zeldai bores herj. It is
accomplished by the information stored in their
structures: paral~ (Sent1, Clause1) and paralj
(Sent1, Clause1) which means that they are in
the same sentence and clause. However in Johnj
was late for work, because he~ slept in, here John
and he can be coreferential because they are in
different clauses separated by the conjunction
because: paraljoh, (Senti, Clausel), paralh~
(Sent1, Clause2). But in John~ and hej bought
a book, the pronoun will not corefer with John
although there is a conjunction between them
because they are in the same coordinated noun
phrase, which is known from: parali ($1, C1, by,
1_, 1) and paralj ($1, C1, by, 1, 2). In sentences
like (John~ 's portrait o f himj)ue is interesting and
This is (the mani who hej saW)N P the coreference is
not permitted because the pronoun and the
antecedent are in the same constituent NP (they
are in the same slot structure: np (det (the), noun
(man), relSent (...)). As well in John bought a
book for Peteri and for a friend of him~, the
pronoun can corefer with Peter although they
belong to the same coordinated constituent
because the pronoun is an adjunct o f the second
coordinated constituent. From the reflexivity
constraints in Maryj loves herse~, we can
conclude the antecedent o f herself is Mary
because they are in the same clause.

In relation to preferences, they will be different
for each kind of anaphor: the non-reflexive
pronouns will prefer the antecedent in the same
sentence and clause, and if there are still more
than one antecedent left, those in the same
position with reference to the verb: syntactic
parallelism. Moreover we have added some other
preferences, e.g. a non-reflexive pronoun would

not be allowed to have an antecedent that appear
in the same clause due to reflexivity constraints:
Jacki saw Samj at the party. Samj gave himi a
drink. If after applying these preferences, there
are more than one antecedent left, we will choose
the antecedent most recently mentioned.

In order to solve surface-count anaphora we
will use the SS returned by the SUG fact
coordinated. This fact allows the coordination of
constituents with the same or different form:
Peter, your daughter and she and it will allow us
to access whatever coordinated constituent in the
order we wish. That is to say, its SS: np
(simpleNP (Peter), conj(', '), np (simpleNP (det
(your), noun (daughter)), conj (and), np
(simpleNP (pron (she)), , _))), and their
structures paral with their fifth argument will tell
us the number of coordinated constituent:
paralp,,er (S, C, V, P, 1), paraldaugh,e, (S, C, V, P, 2),
.... In this way the anaphor: the second one will
choose an antecedent with a structure paral with
a value of 2 in its fifth argument.

To solve one-anaphora we will apply the
following preference: we will choose the
antecedents with a similar structure. For example,
in Wendy didn't give either boy a green tie-dyed
T-shirti, but she gave Sue a blue onej, the
antecedent a green tie-dyed T-shirt would be
chosen instead o f Wendy or Sue because they
have similar SS (a determiner, a common noun
and an adjective): np (noun(Wendy)), npi (~, det
(a), adj ([green, tie-dyed]5), noun (T-shirt)) and
npj ~ , det (a), adj ([blue]), pron (one)). This SS
will allow decomposition of the description (i.e.
green can be broken off) and the solution of the
anaphora will be: np (Y, det (a), adj ([blue]),
noun (T-shirt)). It is important to remark that the
solution will have a different variable 6 (Y) than its
antecedent (X). It means the anaphor and its
antecedent do not co-refer, so the anaphor refers
to a new entity in the discourse. However in John
bought a red dark apple~ and a green pear. He ate
the red one~, the anaphor will co-refer with a red
dark apple. We will distinguish both cases

s This list of adjectives is provided by the SUG fact
juxtaposition.

6 This variable corresponds to the ~.p of the final
logical formula of the constituent (see section 1).

390

because in the second one the anaphor and its
antecedent share the same modifiers 7 (red) and
they agree in number.

4 Evaluation of the system

We have run our system on part of the previously
mentioned corpus (9600 words), and we have got
the following figures. Our system has detected
100% of the anaphors described in this paper, and
the partial parsing described in Figure 4, has
parsed 81% of words with a very simple
grammar 8. The medium length of the sentences
with anaphors is 48 words. For pronominal
references we have a 83% accuracy in detecting
the position of the antecedent. For one-anaphora
and surface-count anaphora, we have not got
significant figures since there were not so many
anaphors as we wished (only 5 anaphors with a
80% accuracy). The reason why some of the
references have failed is mainly due to the lack of
semantic information and due to the problem of
attachments between different parsed
constituents 9.

Conclusions

In this paper we have proposed a computational
approach to the resolution of pronominal
references, surface-count anaphora and one-
anaphora. This approach works on the output of a
POS tagger, on which we will automatically
apply a partial parsing from the formalism: Slot
Unification Grammar. We have only used lexical,
morphologic and syntactic information. We have
slightly '° improved the accuracy (83%) in
pronominal references to the work of Kennedy
and Boguraev (1996) (75%), but we have also
improved that approach since we automatically

7 It is obvious that we will probably need more
semantic information in order to solve these anaphors,
but in this paper we are not going to consider this
information since the tagger does not provide it.

s We could easily improve this percentage from
adding more constituents to the grammar (e.g. adverbs
or punctuation marks).

9 To solve this problem is also necessary semantic
information.

,o It is difficult to compare both measures because
we have worked on different texts (Spanish texts).

apply a partial parsing and we deal with other
kinds of anaphors.

As a future aim we will include semantic
information in our algorithm in order to check the
improvement that we get with it. This information
will be stored in a dictionary which could be
automatically consulted (since this semantic
information is not provided by the tagger).

References

Abney S. (1997) Part*of-Speech Tagging and Partial
Parsing. In Steve Young and Gerrit Bloothooft (eds)
Corpus-based methods in language and speech
processing. Kluwer Academic Publishers

Azzam S. (1995) An Algorithm to Co-Ordinate
Anaphor resolution and PPS Disambiguation
Process. EACL

Baldwin B. (1997) CogNIAC: high precision
coreference with limited knowledge and linguistic
resources. ACL/EACL workshop on Operational
factors in practical, robust anaphor resolution

Connoly D., Burger J. and Day D. (1994) A Machine
learning approach to anaphoric reference.
International Conference on New Methods in
Language Processing, UMIST

Ferdmdez A., Palomar M. and Moreno L. (1997a) Slot
Unification Grammar. Joint Conference on
Declarative Programming. APPIA-GULP-PRODE

Ferr6ndez A., Palomar M. and Moreno L. (1997b) Slot
Unificacion Grammar and anaphor resolution.
Recent Advances in Natural Language Processing

Kennedy C. and Boguraev B. (1996) Anaphora for
Everyone: Pronominal Anaphor resolution without a
Parser. COLING

Lappin S. and Leass H. (1994) An algorithm for
pronominal anaphor resolution. Computational
Linguistics, 20(4)

Mitkov R. (1997) Pronoun resolution: the practical
alternative". In S. Botley, T. McEnery (eds)
Discourse Anaphora and Anaphor Resolution, Univ.
College London Press

Mitkov R. (1995) An uncertainty reasoning approach
to anaphor resolution. Natural Language Pacific Rim
Symposium. Seoul. Korea

Mitkov R. and Stys M. (1997) Robust reference
resolution with limited knowledge: high precision
genre-specific approach for English and Polish.
Recent Advances in Natural Language Processing

391

