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A new account of parameter  setting dur- 
ing grammatical  acquisition is presented in 
terms of Generalized Categorial Grammar  
embedded in a default inheritance hierar- 
chy, providing a natural partial ordering 
on the setting of parameters. Experiments 
show that  several experimentally effective 
learners can be defined in this framework. 
Ew)lutionary simulations suggest that  a 
lea.rner with default initial settings for pa- 
rameters will emerge, provided that  learn- 
ing is memory limited and the environment 
of linguistic adaptation contains an appro- 
priate language. 

1 T h e o r e t i c a l  B a c k g r o u n d  

Grmnnmtical acquisition proceeds on the basis of a 
partial genotypic specifica.tion of (universal) grmn- 
mar (UG) complemented with a learning procedure 
elmbling the child to complete this specification ap- 
propriately. The parameter  setting frainework of 
Chomsky (1981) claims that  learning involves fix- 
ing the wdues of a finite set of finite-valued param- 
eters to select a single fully-specified grammar from 
within the space defined by the genotypic specifi- 
cation of UG. Formal accounts of parameter  set- 
ting have been developed for small fragments but 
even in these search spaces contain local maxima 
and subset-superset relations which may cause a 
learner to converge to an incorrect grammar (Clark, 
1992; Gibson and Wexler, 1994; Niyogi and Berwick, 
1995). The solution to these problems involves defin- 
ing d(,fault, umnarked initial values for (some) pa- 
rameters and/or  ordering the setting of paraineters 
during learning. 

Bickerton (1984) argues for the Bioprograin Hy- 
pothesis a.s an explanation for universal similarities 
between historically unrelated creoles, and for the 

rapid increase in gramlnatical complexity accompa- 
nying the transition from pidgin to creole languages. 
Prom the perspective of the parameters  framework, 
the Bioprogram Hypothesis claims that  children are 
endowed genetically with a UG which, by default, 
specifies the stereotypical core creole grammar,  with 
right-branching syntax and subject-verb-object or- 
der, as in Saramaccan. Others working within the 
parameters framework have proposed unmarked, de- 
fault parameters (e.g. Lightfoot, 1991), but the Bio- 
program Hypothesis can be interpreted as towards 
one end of a continuum of proposals ranging from all 
parameters initially unset to all set to default values. 

2 The Language Acquisition Device 
A model of the Language Acquisition Device (LAD) 
incorporates a UG with associated parameters,  a 
parser, and an algorithm for updating initial param- 
eter settings on parse failure during learning. 

2.1 The Grammar (set) 

Basic categorial grammar  (CG) uses one rule of ap- 
plication which combines a functor category (con- 
taining a slash) with an argument category to form 
a derived category (with one less slashed argument 
category). Grammatical  constraints of order and 
agreement are captured by only allowing directed 
application to adjacent matching categories. Gener- 
alized Categorial Grammar  (GCG) extends CG with 
further rule schemata)  The rules of FA, BA, gen- 
eralized weak permutation (P) and backward and 
forward colnposition (I?C, BC) are given in Fig- 
ure 1 (where X, Y and Z are category variables, 
[ is a vm'iable over slash and backslash, and . . .  
denotes zero or more further flmctor arguments). 
Once pernmtation is included, several semantically 

l\¥ood (1993) is a general introduction to Categorial 
Grammar mid extensions to the basic theory. The most 
closely related theories to that presented here are those 
of Steedman (e.g. 1988) and Hoffman (1995). 
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X/Y Y ~ X 

Y X\Y ~ X 

Forward Application: 

A y [X(y)] (y) ::~ X(y) 

Backward Application: 

A y [X(y)] (y) =~ X(y) 

X/Y Y/Z ~ X/Z 

Y\Z X\Y ~ X\Z 

Forward Composition: 

y [X(y)] A z [Y(z)] =~ A z [X(Y(z))] 

Backward Composition: 

z [Y(z)] A y [X(y)] ~ A z [X(Y(z))] 

(Generalized Weak) Permutation: 

(XIY1)... IY, ~ (XIYn)IYI.. .  A Yn..-,Yl [X(yl ...,y,.)] =V A Yl,Y . . . .  [X(yl ...,Yn)] 

Figure 1: GCG Rule Schemata 

Kim loves Sandy 
NP (S \NP) /NP NP 
kim' A y,x [love'(x y)] sandy' 

P 
(S /NP) \NP 
A x,y [love'(x y)] 
-BA 

S/NP 
A y [love'(kim' y)] 

FA 
S 
love'(kim' sandy') 

Figure 2: GCG Derivation for Kim loves Sandy 

equivalent derivations for Kim loves Sandy become 
available, Figure 2 shows the non-conventional left- 
branching one. Composition also allows alterna- 
tive non-conventional semantically equivalent (left- 
branching) derivations. 

GCG as presented is inadequate as an account of 
UG or of any individual grammar. In particular, 
the definition of atomic categories needs extending 
to deal with featural variation (e.g. Bouma and van 
Noord, 1994), and the rule schemata, especially com- 
position and weak permutation, must be restricted 
in various parametric ways so that overgeneration 
is prevented for specific languages. Nevertheless, 
GCG does represent a plausible kernel of UG; Hoff- 
man (1995, 1996) explores the descriptive power of a 
very similar system, in which generalized weak per- 
mutation is not required because functor arguments 
are interpreted as multisets. She demonstrates that 

this system can handle (long-distance) scrambling 
elegantly and generates mildly context-sensitive lan- 
guages (Joshi et al, 1991). 

The relationship between GCG as a theory of UG 
(GCUG) and as a the specification of a particu- 
lar grammar is captured by embedding the theory 
in a default inheritance hierarchy. This is repre- 
sented as a lattice of typed default feature structures 
(TDFSs) representing subsumption and default in- 
heritance relationships (Lascarides et al, 1996; Las- 
carides and Copestake, 1996). The lattice defines 
intensionally the set of possible categories and rule 
schemata via type declarations on nodes. For ex- 
ample, an intransitive verb might be treated as a 
subtype of verb, inheriting subject directionality by 
default from a type gend i r  (for general direction). 
For English, gend i r  is default r igh t  but the node of 
the (intransitive) functor category, where the direc- 
tionality of subject arguments is specified, overrides 
this to left, reflecting the fact that English is pre- 
dominantly right-branching, though subjects appear 
to the left of the verb. A transitive verb would in- 
herit structure from the type for intransitive verbs 
and an extra NP argument with default directional- 
ity specified by gendir ,  and so forth. 2 

For the purposes of the evolutionary simulation 
described in §3, GC(U)Gs are represented as a se- 
quence of p-settings (where p denotes principles or 
parameters) based on a flat (ternary) sequential en- 
coding of such default inheritance lattices. The in- 

2Bouma and van Noord (1994) and others demon- 
strate that CGs can be embedded in a constraint-based 
representation. Briscoe (1997a,b) gives further details of 
the encoding of GCG in TDFSs. 
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N P  N S gen-d i r  sub j -d i r  appl ic  
A T  A T  A T  D R  D L  D T  
N P  gend i r  appl ic  S N sub j -d i r  
A T  D R  D T  A T  A T  D L  
"applic N P  N gen-d i r  sub j -d i r  S 
D T  A T  A T  D R  D L  A T  

Figure 3: Sequential encodings of the grammar fragment 

heritance hierarchy provides a partial ordering on 
parameters, which is exploited in the learning pro- 
cedure. For example, the atomic categories, N, 
N P  and S are each represented by a parameter en- 
coding the presence/absence or lack of specification 
(T /F /? )  of the category in the (U)G. Since they will 
be unordered in the lattice their ordering in the se- 
quential coding is arbitrary. However, the ordering 
of the directional types gend i r  and sub jd i r  (with 
values L/R)  is significant as the latter is a more spe- 
cific type. The distinctions between absolute, de- 
fault or unset specifications also form part of the 
encoding (A/D/?) .  Figure 3 shows several equiva- 
lent and equally correct sequential encodings of the 
fragment of the English type system outlined above. 

A set of grammars based on typological distinc- 
tions defined by basic constituent order (e.g. Green- 
berg, 1966; Hawkins, 1994) was constructed as a 
(partial) GCUG with independently varying binary- 
valued parameters. The eight basic language fami- 
lies are defined in terms of the unmarked order of 
verb (V), subject (S) and objects (0) in clauses. 
Languages within families further specify the order 
of modifiers and specifiers in phrases, the order of ad- 
positions and further phrasal-level ordering param- 
eters. Figure 4 list the language-specific ordering 
parameters used to define the full set of grammars 
in (partial) order of generality, and gives examples 
of settings based on familiar languages such as "En- 
glish", "German" and "Japanese". 3 "English" de- 
fines an SVO language, with prepositions in which 
specifiers, complementizers and some modifiers pre- 
cede heads of phrases. There are other grammars in 
the SVO family in which all modifers follow heads, 
there are postpositions, and so forth. Not all combi- 
nations of parameter settings correspond to attested 
languages and one entire language family (OVS) is 
unattested. "Japanese" is an SOV language with 

3Throughout double quotes around language names 
are used as convenient mnemonics for familiar combina- 
tions of parameters. Since not all aspects of these actual 
languages are represented in the grammars, conclusions 
about actual languages must be made with care. 

postpositions in which specifiers and modifiers follow 
heads. There are other languages in the SOV family 
with less consistent left-branching syntax in which 
specifiers and/or  modifiers precede phrasal heads, 
some of which are attested. "German" is a more 
complex SOV language in which the parameter verb- 
second (v2) ensures that the surface order in main 
clauses is usually SVO. 4 

There are 20 p-settings which determine the rule 
schemata available, the atomic category set, and so 
forth. In all, this CGUG defines just under 300 
grammars. Not all of the resulting languages are 
(stringset) distinct and some are proper subsets of 
other languages. "English" without the rule of per- 
mutation results in a stringset-identical language, 
but the grammar assigns different derivations to 
some strings, though the associated logical forms are 
identical. "English" without composition results in 
a subset language. Some combinations of p-settings 
result in 'impossible' grammars (or UGs). Others 
yield equivalent grammars, for example, different 
combinations of default settings (for types and their 
subtypes) can define an identical category set. 

The grammars defined generate (usually infinite) 
stringsets of lexical syntactic categories. These 
strings are sentence types since each is equivalent 
to a finite set of grammatical sentences formed by 
selecting a lexical instance of each lexicai category. 
Languages are represented as a finite subset of sen- 
tence types generated by the associated grammar. 
These represent a sample of degree-1 learning trig- 
gers for the language (e.g. Lightfoot, 1991). Subset 
languages are represented by 3-9 sentence types and 
'full' languages by 12 sentence types. The construc- 
tions exemplified by each sentence type and their 
length are equivalent across all the languages defined 
by the grammar set, but the sequences of lexical cat- 
egories can differ. For example, two SOV language 
renditions of The m a n  who Bi l l  likes gave Fred a 

4Representation of the vl/v2 parameter(s) in terms 
of a type constraint determining allowable functor cate- 
gories is discussed in more detail in Briscoe (1997b). 

420 



gen v l  n sub j  obj  v2 mod spec relcl adpos compl 
Engl R F R L R F R R R R R 
Ger R F R L L T R R R R R 
Jap L F L L L F L L L L ? 

Figure 4: The Grammar Set - Ordering Parameters 

present, one with premodifying and the other post- 
modifying relative clauses, both with a relative pro- 
noun at the right boundary of the relative clause, are 
shown below with the differing category highlighted. 

Bill likes who the-man a-present Fred gave 
NP8 (S \NP, ) \NPo Rc\(S\NPo) N P s \ R c  NPo2 
NPol ((S\NPs)\NPo2)\NPol 

The-man Bill likes who a-present Fred gave 
N P s / R c  NPs (S\NPs)\NPo Rc\(S\NPo) NPo2 
NPol ((S\NPs)\NPo2)\NPol 

2.2 The Parser 

The parser is a deterministic, bounded-context 
stack-based shift-reduce algorithm. The parser op- 
erates on two data structures, an input buffer or 
queue, and a stack or push down store. The algo- 
rithm for the parser working with a GCG which in- 
cludes application, composition and permutation is 
given in Figure 5. This algorithm finds the most left- 
branching derivation for a sentence type because Re- 
duce is ordered before Shift. The category sequences 
representing the sentence types in the data for the 
entire language set are designed to be unambiguous 
relative to thi s 'greedy', deterministic algorithm, so 
it will always assign the appropriate logical form to 
each sentence type. However, there are frequently al- 
ternative less left-branching derivations of the same 
logical form. 

The parser is augmented with an algorithm which 
computes working memory load during an analy- 
sis (e.g. Baddeley, 1992). Limitations of working 
memory are modelled in the parser by associating a 
cost with each stack cell occupied during each step 
of a derivation, and recency and depth of process- 
ing effects are modelled by resetting this cost each 
time a reduction occurs: the working memory load 
(WML) algorithm is given in Figure 6. Figure 7 gives 
the right-branching derivation for Kim loves Sandy, 
found by the parser utilising a grammar without per- 
mutation. The WML at each step is shown for this 
derivation. The overall WML (16) is higher than for 
the left-branching derivation (9). 

The WML algorithm ranks sentence types, and 

1. T h e  Reduce Step: if the top 2 cells of the 
stack are occupied, 
then try 
a) Application, if match, then apply and goto 
1), else b), 
b) Combination, if match then apply and goto 
1), else c), 
c) Permutation, if match then apply and goto 
1), else goto 2) 

2. The Shift Step: if the first cell of the Input 
Buffer is occupied, 
then pop it and move it onto the Stack to- 
gether with its associated lexical syntactic cat- 
egory and goto 1), 
else goto 3) 

3. T h e  H a l t  Step:  if only the top cell of the Stack 
is occupied by a constituent of category S, 
then return Success, 
else return Fail 

The Match and Apply operation: if a binary 
rule schema matches the categories of the top 2 cells 
of the Stack, then they are popped from the Stack 
and the new category formed by applying the rule 
schema is pushed onto the Stack. 

The Permutation operation: each time step lc) 
is visited during the Reduce step, permutation is ap- 
plied to one of the categories in the top 2 cells of the 
Stack until all possible permutations of the 2 cate- 
gories have been tried using the binary rules. The 
number of possible permutation operations is finite 
and bounded by the maximum number of arguments 
of any functor category in the grammar. 

Figure 5: The Parsing Algorithm 
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Stack Input Buffer Operation Step WML 
Kim loves Sandy 0 0 

Kim:NP:kim ~ loves Sandy Shift 1 1 
loves:(S\NP)/NP:A y,x(love' x, y) Sandy Shift 2 3 
Kim:NP:kim ~ 
Sandy:NP:sandy ~ Shift 3 6 
loves:(S\NP)/NP:A y,x(love' x, y) 
Kim:NP:kim ~ 
loves Sandy:S/NP:A x(love' x, sandy') Reduce (A) 4 
Kim:NP:kim ~ 
Kim loves Sandy:S:(love' kim ~, sandy ~) Reduce (A) 5 

Figure 7: WML for Kim loves Sandy 

After each parse step (Shift, Reduce, Halt (see 
Fig 5): 

1. Assign any new Stack entry in the top cell (in- 
troduced by Shift or Reduce) a WML value of 
0 

2. Increment every Stack cell's WML value by 1 

3. Push the sum of the WML values of each Stack 
cell onto the WML-record 

When the parser halts, return the sum of the WML- 
record gives the total WML for a derivation 

Figure 6: The WML Algorithm 

thus indirectly languages, by parsing each sentence 
type from the exemplifying data with the associ- 
ated grammar  and then taking the mean of the  
WML obtained for these sentence types. "En- 
glish" with Permutation has a lower mean WML 
than "English" without Permutation, though they 
are stringset-identical, whilst a hypothetical mix- 
ture of "Japanese" SOV clausal order with "En- 
glish" phrasal syntax has a mean WML which is 25% 
worse than that  for "English". The WML algorithm 
is in accord with existing (psycholinguistically- 
motivated) theories of parsing complexity (e.g. Gib- 
son, 1991; Hawkins, 1994; Rambow and Joshi, 1994). 

2.3 The Parameter Setting Algorithm 

The parameter  setting algorithm is an extension of 
Gibson and Wexler's (1994) Trigger Learning Al- 
gorithm (TLA) to take account of the inheritance- 
based partial ordering and the role of memory in 
learning. The TLA is error-driven - parameter  set- 
tings are altered in constrained ways when a learner 
cannot parse trigger input. Trigger input is de- 
fined as primary linguistic data  which, because of 

its structure or context of use, is determinately un- 
parsable with the correct interpretation (e.g. Light- 
foot, 1991). In this model, the issue of ambigu- 
ity and triggers does not arise because all sentence 
types are treated as triggers represented by p-setting 
schemata. The TLA is memoryless in the sense that  
a history of parameter  (re)settings is not maintained, 
in principle, allowing the learner to revisit previous 
hypotheses. This is what allows Niyogi and Berwick 
(1995) to formalize parameter  setting as a Markov 
process. However, as Brent (1996) argues, the psy- 
chological plausibility of this algorithm is doubt- 
ful - there is no evidence that  children (randomly) 
move between neighbouring grammars along paths 
that  revisit previous hypotheses. Therefore, each 
parameter can only be reset once during the learn- 
ing process. Each step for a learner can be defined 
in terms of three functions: P-SETTING, GRAMMAR 
and PARSER, as: 

PARSERi(GRAMMAR/(P-SETTING/(Sentence j))) 

A p-setting defines a grammar  which in turn defines 
a parser (where the subscripts indicate t heou tpu t  of 
each function given the previous trigger). A param- 
eter is updated on parse failure and, if this results 
in a parse, the new setting is retained. The algo- 
ri thm is summarized in Figure 8. Working mem- 
ory grows through childhood (e.g. Baddeley, 1992), 
and this may assist learning by ensuring that  trigger 
sentences gradually increase in complexity through 
the acquisition period (e.g. Elman, 1993) by forcing 
the learner to ignore more complex potential triggers 
that  occur early in the learning process. The WML 
of a sentence type can be used to determine whether 
it can function as a trigger at a particular stage in 
learning. 
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Data: {$1, S2, . . .  Sn} 

unleSs 
P A R SE R i (  G R A M M A R i ( P - S E T T I N G i ( S j  ) ) ) : Success 
then 

p-settingj = UPDATE(p-settings) 
unless 
PARSERj (GRAMMARj (P-SETTINGj (Sj))) -- Success 
then 

RETURN p-settings/ 
else 

RETURN p-settingsy 

Update: 
Reset the first (most general) default or unset pa- 
rameter in a left-to-right search of the p-set accord- 
ing to the following table: 

Input: D 1 D 0  ? ? ] 
Output: R 0 R 1 ? 1/0 (random) I (where 1 

= T / L  and 0 = F /R)  

Figure 8: The Learning Algorithm 

3 T h e  S i m u l a t i o n  M o d e l  

The computational simulation supports the evolu- 
tion of a population of Language Agents (LAgts), 
similar to Holland's (1993) Echo agents. LAgts gen- 
erate and parse sentences compatible with their cur- 
rent p-setting. They participate in linguistic inter- 
actions which are successful if their p-settings are 
compatible. The relative fitness of a LAgt is a func- 
tion of the proportion of its linguistic interactions 
which have been successful, the expressivity of the 
language(s) spoken, and, optionally, of the mean 
WML for parsing during a cycle of interactions. An 
interaction cycle consists of a prespecified number 
of individual random interactions between LAgts, 
with generating and parsing agents also selected ran- 
domly. LAgts which have a history of mutually suc- 
cessful interaction and high fitness can 'reproduce'. 
A LAgt can 'live' for up to ten interaction cycles, 
but may 'die' earlier if its fitness is relatively low. It 
is possible for a population to become extinct (for 
example, if all the initial LAgts go through ten in- 
teraction cycles without any successful interaction 
occurring), and successful populations tend to grow 
at a modest rate (to ensure a reasonable proportion 
of adult speakers is always present). LAgts learn 
during a critical period from ages 1-3 and reproduce 
from 4-10, parsing and/or  generating any language 
learnt throughout their life. 

During learning a LAgt can reset genuine param- 

Variables Typical Values 
Population Size 32 
Interaction Cycle 2K Interactions 
Simulation Run 50 Cycles 
Crossover Probability 0.9 
Mutation Probability 0 
Learning memory limited yes 

critical period yes 

Figure 9: The Simulation Options 

(Cost/Benefits per sentence (1-6); summed for each 
LAgt at end of an interaction cycle and used to cal- 
culate fitness functions (7-8)): 

1. Generate cost: 1 (GC) 

2. Parse cost: ! (PC) 

3. Generate subset language cost: 1 (GSC) 

4. Parse failure cost: 1 (PF) 

5. Parse memory cost: WML(st) 

6. Interaction success benefit: 1 (SI) 

7. Fitness(WML): SI  GC • G C + P C  X GC+GSC X 

8. Fitness(-~WML): sI c c  G C + P C  X CC.-[-GSC 

Figure 10: Fitness Functions 

eters which either were unset or had default settings 
'at birth'. However, p-settings with an absolute 
value (principles) cannot be altered during the life- 
time of an LAgt. Successful LAgts reproduce at the 
end of interaction cycles by one-point crossover of 
(and, optionally, single point mutation of) their in i -  

t ial  p-settings, ensuring neo-Darwinian rather than 
Lamarckian inheritance. The encoding of p-settings 
allows the deterministic recovery of the initial set- 
ting. Fitness-based reproduction ensures that suc- 
cessful and somewhat compatible p-settings are pre- 
served in the population and randomly sampled in 
the search for better versions of universal grammar, 
including better initial settings of genuine parame- 
ters. Thus, although the learning algorithm p e r  se 

is fixed, a range of alternative learning procedures 
can be explored based on the definition of the inital 
set of parameters and their initial settings. Figure 9 
summarizes crucial options in the simulation giving 
the values used in the experiments reported in §4 
and Figure 10 shows the fitness functions. 
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4 E x p e r i m e n t a l  R e s u l t s  

4.1 Effectiveness of  Learning Procedures 

Two learning procedures were predefined - a default 
learner and an unset learner. These LAgts were ini- 
tialized with p-settings consistent with a minimal in- 
herited CGUG consisting of application with NP and 
S atomic categories. All the remaining p-settings 
were genuine parameters for both learners. The un- 
set learner was initialized with all unset, whilst the 
default learner had default settings for the parame- 
ters gend i r  and sub jd i r  and a r g o r d e r  which spec- 
ify a minimal SVO right-branching grammar, as well 
as default (off) settings for c o m p  and p e r m  which 
determine the availability of Composition and Per- 
mutation, respectively. The unset learner represents 
a 'pure' principles-and-parameters learner. The de- 
fault learner is modelled on Bickerton's bioprogram 
learner. 

Each learner was tested against an adult LAgt 
initialized to generate one of seven full lan- 
guages in the set which are close to an at- 
tested language; namely, "English" (SVO, predom- 
inantly right-branching), "Welsh" (SVOvl, mixed 
order), "Malagasy" (VOS, right-branching), "Taga- 
log" (VSO, right-branching), "Japanese" (SOV, 
left-branching), "German" (SOVv2, predominantly 
right-branching), "Hixkaryana" (OVS, mixed or- 
der), and an unattested full OSV language with left- 
branching syntax. In these tests, a single learner in- 
teracted with a single adult. After every ten interac- 
tions, in which the adult randomly generated a sen- 
tence type and the learner attempted to parse and 
learn from it, the state of the learner's p-settings was 
examined to determine whether the learner had con- 
verged on the same grammar as the adult. Table 1 
shows the number of such interaction cycles (i.e. the 
number of input sentences to within ten) required by 
each type of learner to converge on each of the eight 
languages. These figures are each calculated from 
100 trials to a 1% error rate; they suggest that, in 
general, the default learner is more effective than 
the unset learner. However, for the OVS language 
(OVS languages represent 1.24% of the world's lan- 
guages, Tomlin, 1986), and for the unattested OSV 
language, the default (SVO) learner is less effective. 
So, there are at least two learning procedures in the 
space defined by the model which can converge with 
some presentation orders on some of the grammars 
in this set. Stronger conclusions require either ex- 
haustive experimentation or theoretical analysis of 
the model of the type undertaken by Gibson and 
Wexler (1994) and Niyogi and Berwick (1995). 

Unset Default None 
WML 15 39 26 

-~WML 34 17 29 

Table 2: Overall preferences for parameter types 

4.2 Evolution of Learning Procedures 

In order to test the preference for default versus un- 
set parameters under different conditions, the five 
parameters which define the difference between the 
two learning procedures were tracked through an-- 
other series of 50 cycle runs initialized with either 16 
default learning adult speakers and 16 unset learning 
adult speakers, with or without memory-limitations 
during learning and parsing, speaking one of the 
eight languages described above. Each condition was 
run ten times. In the memory limited runs, default 
parameters came to dominate some but not all pop- 
ulations. In a few runs all unset parameters dis- 
appeared altogether. In all runs with populations 
initialized to speak "English" (SVO) or "Malagasy" 
(VOS) the preference for default settings was 100%. 
In 8 runs with "Tagalog" (VSO) the same preference 
emerged, in one there was a preference for unset pa- 
rameters and in the other no clear preference. How- 
ever, for the remaining five languages there was no 
strong preference. 

The results for the runs without memory limita- 
tions are different, with an increased preference for 
unset parameters across all languages but no clear 
100% preference for any individual language. Ta- 
ble 2 shows the pattern of preferences which emerged 
across 160 runs and how this was affected by the 
presence or absence of memory limitations. 

To test whether it was memory limitations during 
learning or during parsing which were affecting the 
results, another series of runs for "English" was per- 
formed with either memory limitations during learn- 
ing but not parsing enabled, or vice versa. Memory 
limitations during learning are creating the bulk of 
the preference for a default learner, though there 
appears to be an additive effect. In seven of the 
ten runs with memory limitations only in learning, a 
clear preference for default learners emerged. In five 
of the runs with memory limitations only in parsing 
there appeared to be a slight preference for defaults 
emerging. Default learners may have a fitness ad- 
vantage when the number of interactions required to 
learn successfully is greater because they will tend to 
converge faster, at least to a subset language. This 
will tend to increase their fitness over unset learners 
who do not speak any language until further into the 
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Learner Language 
SVO SVOvl VOS VSO SOV SOVv2 OVS OSV 

Unset 60 80 70 80 70 70 70 70 
Default 60 60 60 60 60 60 80 70 

Table 1: Effectiveness of Two Learning Procedures 

learning period. 
The precise linguistic environment of adaptation 

determines the initial values of default parameters 
which evolve. For example, in the runs initialized 
with 16 unset learning "Malagasy" VOS adults and 
16 default (SVO) learning VOS adults, the learn- 
ing procedure which dominated the population was 
a variant VOS default learner in which the value 
for s u b j d i r  was reversed to reflect the position of 
the subject in this language. In some of these 
runs, the entire population evolved a default sub-  
j d i r  'right '  setting, though some LAgts always re- 
tained unset settings for the other two ordering pa- 
rameters, gend i r  and argo,  as is illustrated in Fig- 
ure 11. This suggests that  if the human language fac- 
ulty has evolved to be a right-branching SVO default 
learner, then the environment of linguistic adapta- 
tion must have contained a dominant language fully 
compatible with this (minimal) grammar. 

4.3 E m e r g e n c e  o f  Language and Learners 

To explore the emergence and persistence of struc- 
tured language, and consequently the emergence of 
effective learners, (pseudo) random initialization was 
used. A series of simulation runs of 500 cycles were 
performed with random initialization of 32 LAgts'  
p-settings for any combination of p-setting values, 
with a probability of 0.25 that  a setting would be an 
absolute principle, and 0.75 a parameter  with unbi- 
ased allocation for default or unset parameters and 
for values of all settings. All LAgts were initialized 
to be age 1 with a critical period of 3 interaction 
cycles of 2000 random interactions for learning, a 
maximum age of 10, and the ability to reproduce by 
crossover (0.9 probability) and mutation (0.01 prob- 
ability) from 4-10. In around 5% of the runs, lan- 
guage(s) emerged and persisted to the end of the 
run. 

Languages with close to optimal WML scores typi- 
cally came to dominate the population quite rapidly. 
However, sometimes sub-optimal languages were ini- 
tially selected and occasionally these persisted de- 
spite the later appearance of a more optimal lan- 
guage, but with few speakers. Typically, a minimal 
subset language dominated - although full and inter- 
mediate languages did appear briefly, they did not 

survive against less expressive subset languages with 
a lower mean WML. Figure 12 is a typical plot of 
the emergence (and extinction) of languages in one 
of these runs. In this run, around 10 of the initial 
population converged on a minimal OVS language 
and 3 others on a VOS language. The latter is more 
optimal with respect to WML and both are of equal 
expressivity so, as expected, the VOS language ac- 
quired more speakers over the next few cycles. A few 
speakers also converged on VOS-N, a more expres- 
sive but higher WML extension of VSO-N-GWP- 
COMP. However, neither this nor the OVS language 
survived beyond cycle 14. Instead a VSO language 
emerged at cycle 10, which has the same minimal 
expressivity of the VOS language but a lower WML 
(by virtue of placing the subject before the object) 
and this language dominated rapidly and eclipsed all 
others by cycle 40. 

In all these runs, the population settled on sub- 
set languages of low expressivity, whilst the percent- 
age of absolute principles and default parameters  in- 
creased relative to that  of unset parameters  (mean 
% change from beginning to end of runs: +4.7, +1.5 
and -6.2, respectively). So a second identical set of 
ten was undertaken, except that  the initial popula- 
tion now contained two SOV-V2 "German" speak- 
ing unset learner LAgts. In seven of these runs, the 
population fixed on a full SOV-V2 language, in two 
on the intermediate subset language SOV-V2-N, and 
in one on the minimal subset language SOV-V2-N- 
GWP-COMP. These runs suggest that  if a full lan- 
guage defines the environment of adaptation then 
a population of randomly initialized LAgts is more 
likely to converge on a (related) full language. Thus, 
although the simulation does not model the devel- 
opment of expressivity well, it does appear that  it 
can model the emergence of effective learning pro- 
cedures for (some) full languages. The pat tern of 
language emergence and extinction followed that  of 
the previous series of runs: lower mean WML lan- 
guages were selected from those that  emerged during 
the run. However, often the initial optimal SVO-V2 
itself was lost before enough LAgts evolved capable 
of learning this language. In these runs, changes 
in the percentages of absolute, default or unset p- 
settings in the population show a marked difference: 
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Figure 12: Emergence of language(s) 

the mean number of absolute principles declined by 
6.1% and unset parameters  by 17.8%, so the num- 
ber of default parameters  rose by 23.9% on average 
between the beginning and end of the 10 runs. This 
may reflect the more complex linguistic environment 
in which (incorrect) absolute settings are more likely 
to handicap, rather than simply be irrelevant to, the 
performance of the LAgt. 

5 C o n c l u s i o n s  

Partially ordering the updating of parameters can 
result in (experimentally) effective learners with a 
more complex parameter  system than that  studied 
previously. Experimental comparison of the default 
(SVO) learner and the unset learner suggests that  
the default learner is more efficient on typologically 
more common constituent orders. Evolutionary sim- 
ulation predicts that  a learner with default param- 
eters is likely to emerge, though this is dependent 
both on the type of language spoken and the pres- 
ence of memory limitations during learning and pars- 
ing. Moreover, a SVO bioprogram learner is only 
likely to evolve if the environment contains a domi- 
nant SVO language. 

The evolution of a bioprogram learner is a man- 
ifestation of the Baldwin Effect (Baldwin, 1896) - 
genetic assimilation of aspects of the linguistic envi- 

ronment during the period of evolutionary adapta- 
tion of the language learning procedure. In the case 
of grammar learning this is a co-evolutionary process 
in which languages (and their associated grammars) 
are also undergoing selection. The WML account of 
parsing complexity predicts that  a right-branching 
SVO language would be a near optimal selection at 
a stage in grammatical development when complex 
rules of reordering such as extraposition, scrambling 
or mixed order strategies such as v l  and v2 had 
not evolved. Briscoe (1997a) reports further exper- 
iments which demonstrate language selection in the 
model. 

Though, simulation can expose likely evolution- 
ary pathways under varying conditions, these might 
have been blocked by accidental factors, such as ge- 
netic drift or bottlenecks, causing premature  fixa- 
tion of alleles in the genotype (roughly correspond- 
ing to certain p-setting values). The value of the 
simulation is to, firstly, show that  a bioprogram 
learner could have emerged via adaptation, and sec- 
ondly, to clarify experimentally the precise condi- 
tions required for its emergence. Since in many 
cases these conditions will include the presence of 
constraints (working memory limitations, expressiv- 
ity, the learning algorithm etc.) which will remain 
causally manifest, further testing of any conclusions 
drawn must concentrate on demonstrating the ac- 
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curacy of the assumptions made about such con- 
straints. Briscoe (1997b) evaluates the psychological 
plausibility of the account of parsing and working 
memory. 
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